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I. INTRODUCTION

This is the Online Supplementary Materials of Multi-
objective Differential Evolution for Feature Selection in Clas-
sification.

Tables I and II show the average test classification accuracy
and the average number of selected features of the solution
with the best training accuracy under the results of 30 runs.
Table III presents the average PV and AN results of Omni-
optimizer, DN-NSGAII, MO_Ring_PSO, and MOCDE. Table
IV gives some examples of different feature subsets with the
same objective values on the Multiple, Arrhythmia, SRBCT,
Leukemia, and DLBCL datasets.

To readers’ convenience, an example of the representation
of individuals is given in Fig. 1. Meanwhile, Fig. 2 presents
the performance of the proposed initialization method (PIM)
on two multi-objective optimization methods, i.e., NSGA-II
and SPEA2.

To illustrate the effect of the frequency of grouping m on
the algorithm performance, the average results of I and I;gp
according to the different values of m are shown in Fig. S.3.
Five situations under four datasets (Sonar, Musk1, SRBCT and
Leukemia datasets) where m = 1,5, 10, 15, 20 (scale value in
horizontal axes) are explored, respectively. To obtain the I;p
results on the test sets, the true PF is still estimated by the non-
dominated solutions obtained from the eight algorithms with
30 independent runs.

II. THE REPRESENTATION OF INDIVIDUALS

In Fig. 1, suppose that a dataset includes n features, F}
to F,,, and the individuals S; to Sp form a population with
size P. Each individual in DE is a n-dimensional vector, and
one dimension corresponds to one feature. Each element in
an individual is a real number between 0 and 1. If a value
is not less than a predefined threshold 6, e.g., 8 = 0.6, its
corresponding feature will be selected. Otherwise, it will not
be selected. For example, the first feature F} is not selected
in S, but selected in Ss.
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Fig. 1. An example of the encoding scheme for the individuals in different spaces.
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Fig. 2. The Iy and I7gp of NSGA-II and SPEA2 with and without the proposed
PIM initialization method.

III. ANALYSIS ON THE INITIALIZATION AND CLUSTERING
INTERVAL

A. Performance of the proposed initialization method

In Fig. 2, NSGA-II or SPEA2 without PIM means NSGA-
II or SPEA?2 uses the traditional random initialization method,
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Fig. 3. The boxplots of two indicators on the test sets based on the different values of m.

where all features have the same probability to be selected
in the initialization step. Noted that the smaller I;5p values
mean the better algorithm performance, which is opposite for
Iy. It can be observed that NSGA-II with PIM achieves
larger Iy values and smaller I;gp values on almost all
the 14 datasets compared with NSGA-II with the traditional
initialization method.

As for SPEA2, by using the proposed PIM initialization
method, SPEA2 obtains a higher Iz value than the traditional
initialization method apart from the Wine dataset. The superi-
ority is particularly obvious on the last nine datasets. A similar
trend can be seen on the ;o p results.

The results indicate that on almost all the 14 datasets, apply-
ing the MIC-based initialization method can help EMO-based
feature selection algorithms to achieve better classification
performance.

B. Analysis on the effect of the clustering interval m

In Fig. 3, the average Iy and I;gp on the test sets have
little difference when the value of m of a dataset is different.
The average difference does not exceed 0.1 for both Iy and
Irgp. It stays almost unchanged, e.g., the average I;gp on
the Musk1 dataset and the average Iy on the Sonar dataset.
But there are still some fluctuations, which are more obvious
when the number of features is large. For example, for the
Leukemia dataset, the largest value of average I;gp is 0.267
while the smallest value is 0.012.

As mentioned above, the larger the Iy and the lower the
I p, the better the algorithm. When m = 1, the upper limit of
I and the lower limit of I;4p are not the highest and lowest
compared with other values of m in any of those four datasets.
Also, there are more large outliers for average I;gp on the
SRBCT and Leukemia datasets than that of m = 5,10, 15.

According to the average values of Iy and I;gp in Fig.
3, the proposed MOCDE method is not very sensitive to
the values of the parameter m. Cluster interval m = 1
means that MOCDE will perform clustering at each gener-
ation, which increases the computational complexity of the

proposed MOCDE algorithm. When m is too big, e.g., 20,
the performance is slightly decreased in general. Therefore,
a smaller value of m is not recommended. Based on Fig. 3,
m = 10 is a good starting point.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this subsection, the computation complexity of the used
dynamic SCD and the hypervolume contribution indicator is
analyzed. Then, the total computation complexity of MOCDE
is discussed.

Assume using a population with its size of N to solve a
problem with M objectives and n decision variables. The
computational complexity of traditional crowding distance is
O(MN log N) [1]. The difference in computation complexity
between SCD and the traditional crowding distance lies in the
calculation of crowding distance in the search space. Then,
the computation complexity of SCD is O((M + n)N log N).
Suppose that the number of solutions that need to be removed
is t in Algorithm 2 of Section IILF, the computational com-
plexity of the used dynamic SCD is O((M +n+t)N log N).
Similarly, the computational complexity of the used dynamic
hypervolume contribution indicator is O((m + N)M) (m is
the number of solutions that need to be removed in Algorithm
3 of Section III.G), and that of the original hypervolume
contribution indicator is O(N™) [2]. In this work, M is 2, and
the minimum and the maximum values of ¢ and m are 0 and N.
Therefore, the computation complexity of the dynamic SCD is
in the range of [O(nN log N),O(nN log N?)]. Similarly, the
computational complexity of the used dynamic hypervolume
contribution indicator in the proposed MOCDE algorithm is
between O(N?) and O(4N?).

The complexity of the proposed MOCDE algorithm mainly
includes three aspects: the main iteration loop of DE, cluster-
ing, and the calculations of SCD and C'yy. The complexity of
the main loop and clustering are O(N) and O(N?). Therefore,
the total computational complexity of MOCDE is between
O(N?) and O(N® + nN?log N).
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TABLE I: The average classification accuracy results on the test sets

Dataset NSGA-II | SPEA2 | MOEA/D | SparseEA | Omni-optimizer | DN-NSGAII | MO_Ring_PSO | MOCDE
Wine 95.83% 96.42% 96.09% 96.79 % 94.99% 94.94% 93.10% 95.05%
Zoo 89.19% 86.43% 88.72% 84.79% 86.77% 86.37% 82.69% 90.03%
SPECT 65.72% 63.33% 65.76% 61.89% 66.66% 64.76% 63.83% 69.24%
WBCD 88.22% 88.20% 88.49% 87.92% 88.49% 88.66% 87.91% 90.94%
Ionosphere 85.94% 86.53% 86.01% 86.06% 86.04% 85.63% 85.73% 86.96 %
Sonar 67.66% 65.00% 67.74% 67.14% 66.83% 66.63% 68.65% 76.98 %
Movement 61.96% 63.42% 62.33% 61.85% 61.22% 60.30% 61.51% 70.45%
Hillvally 53.14% 53.25% 53.25% 54.34% 51.39% 51.87% 51.88% 55.72%
Muskl 96.74% 96.92% 97.21% 96.57% 95.16% 95.45% 95.79% 97.48%
Multiple 92.88% 93.46% 92.88% 93.69% 93.96% 93.70% 94.22% 95.09 %
Arrhythmia | 57.55% 56.92% 57.00% 50.35% 55.14% 55.75% 55.89% 56.01%
SRBCT 75.59% 78.73% 77.35% 72.55% 76.77% 77.35% 79.31% 85.83%
Leukemia 82.63% 81.75% 83.57% 85.86% 87.37% 86.93% 86.93% 89.56 %
DLBCL 87.41% 87.65% 86.46% 75.69% 81.10% 81.74% 81.83% 90.03 %
TABLE II: The average size results on the test sets
Dataset NSGA-II | SPEA2 | MOEA/D | SparseEA | Omni-optimizer | DN-NSGAII | MO_Ring PSO | MOCDE
Wine 3.53 4.00 3.98 4.30 4.97 4.93 4.37 4.03
Zoo 6.33 6.27 6.32 5.73 6.97 7.23 6.87 7.43
SPECT 7.07 7.07 6.88 4.57 6.87 6.93 7.10 6.83
WBCD 4.83 4.53 4.26 7.13 10.23 10.43 8.37 8.17
Ionosphere 597 5.07 5.12 6.43 8.53 9.93 6.73 7.13
Sonar 10.50 10.20 11.00 14.87 20.00 19.80 18.23 17.33
Movement 14.47 14.87 14.68 20.10 29.57 32.60 29.40 22.67
Hillvally 13.77 12.23 12.11 11.40 34.00 33.50 30.00 19.57
Muskl 17.27 15.83 16.57 13.93 57.03 55.83 51.77 38.10
Multiple 47.07 58.73 66.35 76.57 89.40 86.93 96.43 101.60
Arrhythmia 27.73 28.00 26.52 11.17 95.87 97.47 97.33 63.47
SRBCT 100.20 117.40 105.24 11.80 826.63 831.53 832.37 51.23
Leukemia 565.57 594.70 535.87 4.00 1912.57 1918.60 1871.30 3593
DLBCL 1031.20 1107.53 857.25 8.90 2701.23 2707.30 2648.17 125.40

TABLE III: The PV and AN of the four algorithms (Omni-optimizer, DN-NSGAII, MO_Ring_PSO, and MOCDE)

Dataset Omni-optimizer DN-NSGAII MO_Ring_PSO MOCDE
2% AN PV AN PV AN PV AN
Wine 0% 0 0% 0 6.7% 0.1 96.7 % 2.3
Zoo 13.3% 0.4 20% 0.4 80% 4.0 100% 6.1
SPECT 16.7% 0.4 6.7% 0.1 86.7% 33 100% 14.7
WBCD 6.7% 0.1 20% 05 | 26.7% 0.6 100% 6.0
Ionosphere 3.3% 0.1 10% 02 | 36.7% 1.0 93.3% 7.5
Sonar 3.3% 0.1 6.7% 0.1 20% 0.4 96.7% | 10.1
Movement 13.3% 0.3 16.7% 0.3 3.3% 0.1 93.3% 6.3
Hillvally 3.3% 0.1 6.7% 0.1 3.3% 0.1 0% 0
Muskl 80% 33 833% | 34 10% 0.2 93.3% | 16.4
Multiple 100% 10.8 100% | 12.4 0% 0 100% | 27.9
Arrhythmia 90% 6.3 76.7% | 6.4 0% 0 100% 2.9
SRBCT 90% 25.3 933% | 36.5 | 23.3% 0.5 100% 8.7
Leukemia 93.3% 38.6 100% | 78.4 | 13.3% 0.3 100% 10.3
DLBCL 100% 80.6 100% | 91.6 | 3.3% 0.1 933% | 152
REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol. Comput.,

vol. 6, no. 2, pp. 182-197, 2002.
(2]

A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume

indicator: Problems and algorithms,” arXiv preprint arXiv:2005.00515,

2020.



IEEE TRANSACTIONS ON CYBERNETICS

TABLE IV: The obtained different feature subsets with the same training accuracy on the five datasets

Dataset

Feature subsets

Accuracy

Multiple

{F1, F3, F15, F19, Fas, F30, F32, F34, Fas, Fus, F51, F55, Fs6, Foa, Fes, Fr3, Frs, Fso, Fs7,
Fio3, F1os, F109, F110, F112, F115, F122, Fi39, F1a1, Fis0, Fiss, Fiss, Fies, Fies, F1so, Fiss, Fiss, F190, F192, F193,
Fi97, F202, F206, F213, F218, F221, Fa2a4, Fa29, F233, Fass, F2a0},
{F12, F19, Fa5, Fa9, F30, F39, Fus, Fs5, Fs6, Fss, Fes, Fes, Fes, Fr0, Fr2, Fr9, Fs3, Fse, Fss, Fo1,
Foq, For, F101, F103, F106, F110, F112, Fi16, F125, F126, F129, F134, Fi3s, F139, Fia6, F152, F159, F161, F163, Fi69,
Fi70, Fi7a, Figs, Fi93, F202, Fao6, Fo1s, F221, Fa2e, Fas1, Fa3z}

97.0%

{F2, F3, F4, Fs, F12, F1s5, Fis, F1s, F2o, F30, F3s, Fao, Fa1, Faa, Fas, F51, F56, F59, Fo1, Fe3, Fos,

Fer, F71, Fr2, Frs, Frs, Fso, Fs1, Fsa, Foa, Foe, For, Fi00, F102, F103, F10s, F109, F110, F113, F115, F119, F122,
Fi23, F125, Fi27, Fi2s, F129, F132, F133, Fis7, F140, F141, F142, F1a6, Fra7, F151, Fis2, F1s4, F155, F1s57, Fie6, Fies,
Fie9, Fi71, Fir2, Fi7s, Fi77, Fiss, Fios, Fi97, F200, F204, F206, F215, Fo19, F221, Fa25, Fa30, F233, F23s},

{F3, F7, F12, F14, F15, F1s, Fig, F20, F21, Fag, F30, F34, F35, F39, Fa2, Faa, Fag, F51, F53, Fs6,

Fs7, Fee, 7o, Frs, Fre, Fr7, Frg, Fso, Fs2, Fse, Fss, Fo1, Foe, For, F1o00, F103, F105, F1os, F111, F112,

Fi17, Fi19, Fi20, F124, F125, F127, F129, Fi3s1, F140, F1a1, F1as, F151, Fis3, Fi55, Fise, F157, F158, Fi64, Fies, Fi71,
Fi72, Fi76, Fis3, Fi94, F19s, F202, F203, Faos, F210, Fo12, F214, F218, Fo19, Fa23, F225, Fa26, Fa27, F230, F231, Fazo}

98.7%

Arrhythmia

{Fs0, Fos, F107, F112, F131, F1e0, F171, Fa31, Faa1, F2s4}, {F2s, Fs0, Fio7, Fi12, Fi1s, Fi23, Fi31, Fieo, F231, Foa1}

56.5%

{F4, F12, F15, Fa5, F32, F33, F34, F39, Fa1, Fas, Fag, Fs6, F59, Fgo, Fs1, Fo1, Fos, For, Fios, F109,
Fi15, Fi20, F123, Fi2s, Fis7, Fis1, Fies, Fi71, Fi74, Furs, Fis1, Faor, F211, F212, F215, Foor, Faos, F23s, Faas, Faas,
Fas9, Fae0, Fa75}
{F15, Fs2, F36, F37, F39, Fag, Fs4, F59, Fo2, Fr4, F75, Fsa, Fs7, Fsg, Fo1, Foa, F103, F107, F112, F114,
Fia2, F125, F129, F137, Fi3s, F1a3, F1a9, Fi55, Fise, Fis7, Fies, Fie7, Firs, Firs, Fire, Fio2, Fi9s, F205, F235, Fosr,
Faa1, F2s0, Fas6, Faro}

63.5%

SRBCT

{F159, F169, Fa36, Faa6, F256, F337, F391, F392, F509, F512, F577, F622, Fess, Fris, Frs4, Fs16, Fs70, Fo26, Fors, F100s,
F1044, F1o71, F1232, F1256, F1305, F1370, F1455, F1a7s, F1575, Fi611, F163s, F1731, F1747, F1949, F2009, F2078, F2079, F2121}
{Fs, Fs9, F151, F169, F237, F244, Faa6, F375, F301, Fa11, F500, F521, Fs72, Fé21, Frs4, Fr7s, Fs15, Fs16, Fosa, Foss,
Fio01, F1358, F1381, F1443, F1a75, F1559, F1578, F1603; F1611, F1809, F1953, F2008, F2014, F2084, F2140, F2175, F2210, F2252}

96.1%

{Fo3, F157, F1s2, F238, F257, Fag1, F276, F335, F349, F361, Fus2, F509, F545, F566, F738, Fraa, Fras, F7s2, Fro1, Fe2o,
Fs30, Fs69, Fosr, Fos1, Fors, Fors, Fio57, Fio74, F1269, F1274, F1370, F1410, F1431, F1503, F1596, F1601, F1694, F1778, F1835, F1856,
Fio3s, F19s5, F1957, F2053, F2069, F2084, F2202,}
{Fo3, F136, F149, F238, Faas, Fae1, F361, F363, Fa99, F509, F545, Fs66, F623, Fros, Fraa, Fras, Fs30, Fseo, Foz7, Fos1,
Fors, Fors, F1o57, F1o67, Fi254, F1a10, F1431, F1aa1, Fis24, F1551, Fis95, Fi6o1, Fi650: F1e70, F1675, Fi679, F1s50, F1ss6, F1939, F2047,
Fo055, F2084, F2170, F2208, F2229, F2230, F2281

100%

Leukemia

{F17, Fsa, Fr02, Fsa6, F558, F1011, F1203, F1333, F1450, F1726, F1753, F1819, F2014, Fa728, F2006, F2913, F2915, F3031, F3069,
F3071, F3184, F3200, F3582, F3718, F3726, F3760, F3872, Fu026, F1033, Fa185, Fa226, Fu231, Fuz06, Faasa, Fusos, Fue26, Facas, Fagsa,
Fuss0, Faos3, Fs0s7},

{Fe7s, Fra0, Foss, F1232, F1280, F1304, F1349, F1375, F1413, F1437, F1a7s, Fie2s, F1es2, Fis24, F1904, F1960, F2452, Fa7s6, F2816, F3069,
F3195, F3200, F3395, F3465, F3481, F3550, F3638, F3789, F3800, F3818, F3821, F3859, F3967, Fa026, Fao6s, Fa119, Fa306, Fu664,
Fur15, Farro, Faoar},

{F160, F219, F266, Fa61, Fs530, Fss2, F1122, F1184, F1203, F1468, F1646, F1732, F1922, F1927, F1934, F1960, F1980, F2080, F2138, F2158,
Fas02, Far22, Far3s, F2930, F3045, F3365, F3378, F3517, F3728, F3886, Fa200, Fa305, Faa97, Fas13, Faeeo, Faeee, Far13, Far1s,
Fs021, Fs037, F5117}

100%

DLBCL

{F321, F357, Fago, Fr15, F155, F777, F1247, F1275, F1313, F1372, Fi705, F1917, Fa071, F2161, F2452, F2458, F3102, F3179, F3187, F3203,
F3758, F3772, F3943, F3949, Fa112, Fa2s2, Fa202, Fa208, Fu302, Fasr9, Fas39, Fae21, F5081, F5389, F5418, F5437, F5452, Fs66s, 5838, F5036,
Fs043, Fo244, Fo261, Foea3, Fosss, Fosess Feo10, Fe913, Feoas, Fro23}

{F25, Fa1, Fare, Fsa4, Frs55, Fre0, Fsr1, Fosr, F1013, F1134, Fi372, Fi393, Fi505, Fi562, F1914, Fa245, Fa280, F2351, F2460, F2575,
Fas91, Far7s, Fa915, F3794, F3813, F3837, Fi3852, F3870, Fa018, Fa214, Fa314, Fa367, Faa60, Fasra, Fas93, Fae21, Fa907, Fa9a9, Faosga, F5011,
Fso064, F5105, F5308, F5321, Fs547, Fe074, Fe135, Fe191, Feo9s, Fr037}

96.1%

{Fs, Fs2, Fuze, Fge9, F1134, F1405, F1s62, F1611, F1670, F1676, F1990, F2043, F2081, F2193, F2213, F2419, F2460, F2497, Fa542, F2595,
F3008, F3102, F3604, F3704, F3716, F3897, F3949, F3987, Fu314, Fagaa, Fasoa, Fuss7, Fasea, Fae21, Fasss, Fs002, Fs169, Fs342, F5389, Fs577,
Fs781, F5904, Fo259, Fo277, Fos10, Fesar, Feees, Feoa1, F7003, Fro17, Fro23, Frose }

{Fi5, F321, Fra0, Fr77, Fos7, Fio16, Fiose, Fi21s, Fi3a4, Fie21, Fi7es, Fisaz, Fa1ss, Fa213, Faoyq9, Foaa1, Faae0, F2a70, F2513, Farss,
Fase3, F3198, F3363, F3656, F'3779, F3949, F3990, Fa273, Faa60, Fas04, Far37, Far77, F5002, F5112, F5236, F5418, F5644, F5777, Fi5781, F5867,
Fssss, Fooes, Feora, Feo91, Fe259, Fea69, Fess6, Feeas, Fe910, Fe940, Fe990, Fro23}

98.1%

{Fé61, Fe21, F760, F1013, F1o16, F1134, F1250, F1405, F1407, F1a21, F1a40, F1as4, F1a02, F1a96, F1504, F1561, F1626, F1768, F1891, F2094,
Fa100, F2277, F2370, F2460, F2871, F3020, F3039; F3102, F3136, F3268, F3781, F3927, F3955, Fa179, Fu230, Fa2s0, Fus79, Fasoa, Fuee7, F5055,
Fs157, Fs169, F5236, F5496, F5576, F5615, F5703, Fo256, Fo259, Fo2r2, Fosss, Fer3e, Feoa1, Fro2s}

{Fz, Fr9, Fs2, Fage, Fare, Fr99, Fo0, Fo7a, Fis62, F1704, F2006, F2081, F2158, F2245, F2459, F2460, F2795, F2043, F3079, F3267,
F33ss, F3511, F3596, F3617, F3704, F3717, F3781, F3990, Fa160, Fa165, Fa219, Fa205, Fass2, Fass1, Fae21, Fasss, Faso1, Faoss, Faoa9, Fi5055,
Fs092, F5320, F5361, F5736, F5897, F5975, Fo2s0, Fera2, Ferae, Forr1, Fesoz, Fossa, Fesoz, Fro2s}

{Fuar, Fr9, F357, F504, F6a9, Fra7, Fr35, Fr55, F1013, F1381, F1407, Fises, Fie12, Fi7es, F1s23, F1s2s5, F2163, F2164, F2460, F2466,
Fas91, Far26, Fa833, Fas7s, Fa9s6, Fa974, F3102, F3155, F33094, F3506, F3897, Fa186, Fa220, Faz2s, Fazgs, Fu302, Faa60, Faa9s, Faos2, F5170,
Fs336, Fses6, F5747, F5762, F5907, Fe051, Fe091, Fe132, Feas7, Fer3e, F913, Feoas, Fro23, Froao}

100%




