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I. A SENSITIVITY STUDY ON THE NUMBER OF MOVING
REFERENCE POINTS

In this section, a set of experiments are conducted to
examine effect of different numbers of moving reference points
M . Specifically, given a fixed total number of reference points
(R), we examine five different values of the ratio M/R:
10%, 20%, 30%, 40%, and 50%. Note that a ratio of 0% is
equivalent to the static version which has been already shown
to be worse than the dynamic algorithm. Tables I and II shows
the hypervolume values on the training set and the test set
obtained by the five different ratios. As can be seen from the
tables, there is very little difference between the hypervolume
values of the five ratios. We also use the Wilcoxon signed-rank
test at the 5% significance level to compare results obtained
by 50% and the other four settings. The comparisons show
that the results are not significantly different on all datasets,
which illustrates that the proposed algorithm is not sensitive
to the number of moving reference points.

II. FURTHER COMPARISONS WITH STATE-OF-THE-ART
MANY-OBJECTIVE EMO ALGORITHMS

In this section, MOEA/D-STAT is compared with three
state-of-the-art EMO algorithms: NSGA-III [1], MOEA/DD
[2], θ-DEA [3]. All three benchmark algorithms use multiple
reference points to generate reference lines, and then each
solution is assigned to its closest reference line. Instead of
using a crowding distance as in NSGA-II, NSGA-III uses
the number of solutions associated with each reference line,
known as a niche count, to select solutions from the boundary
non-domination level. MOEA/DD is based on MOEA/D, but
has a different update procedure. After generating offspring
solutions, MOEA/DD sequentially adds one offspring solution
to the current population and then removes one solution from
the obtained population. The removed solution is selected
according to its non-dominated rank, its PBI value, and the
number of solutions assigned to its sub-region. θ-DEA divides
the population into clusters corresponding to the reference
lines. The solutions are then ranked by θ dominance. Basically,
x is said to θ-dominate y if they are from the same cluster and
the PBI value of x is smaller than that of y.

Tables III and IV show the hypervolume values obtained
by MOEA/D-STAT and the three many-objective algorithms
on training and test sets, respectively. It can be seen that
MOEA/D-DYN achieves similar or significantly better hyper-
volume values than the three benchmark algorithms. NSGA-
III has the worst performance, mainly because, like NSGA-II,
it relies heavily on the non-dominated sorting. Figs. 1 and 2
show the median fronts (i.e., the front corresponding to the
median hypervolume value) obtained by the four algorithms.

It can be seen that NSGA-III’s front has the smallest num-
ber of solutions, and its solutions are generally dominated
by solutions of the other algorithms. θ-DEA evolves more
diverse fronts than NSGA-III. In comparison between θ-DEA
and MOEA/DD, the latter usually has more diverse fronts.
However, given the same number of features, feature subsets
evolved by θ-DEA usually have smaller error rates. MOEA/D-
DYN has much more diverse fronts than either MOEA/DD or
θ-DEA, and it can evolve feature subsets with small error rates
that cannot be achieved by either MOEA/DD or θ-DEA. The
experimental results show that in feature selection, allocating
reference points along the fRatio axis results in a more
diverse solution set than allocating reference points evenly on
the line wf + we = 1 where wf and we are the weights
corresponding to fRatio and eRate, respectively.

III. A FURTHER COMPARISON WITH MOEA/D-BASED
FILTER FEATURE SELECTION

In this section, MOEA/D-DYN is compared with the first
MOEA/D-based feature selection algorithm from Paul and
Das [4]. Their algorithm (which we refer to as MOEA/D-
F) is a filter-based feature selection approach which has two
objectives: minimizing the intra-class distance and maximizing
the inter-class distance. The number of selected features is
added to each distance as a penalty to increase the affinity
towards selecting fewer features. Table V shows the compari-
son between MOEA/D-DYN and MOEA/D-F on the test sets.
It can be seen that on all datasets MOEA/D-DYN achieves
significantly better hypervolume than MOEA/D-F.

Fig. 3 shows the median fronts obtained by the two
algorithms. Although MOEA/D-F considers the number of
features during its evolutionary process, it tends to select
a large number of features. On most datasets, the largest
feature subset selected by MOEA/D-DYN is still smaller
than the smallest feature subset selected by MOEA/D-F. The
reason is that MOEA/D-DYN directly considers the number
of selected features as an objective to optimize. On the other
hand, MOEA/D-F uses the number of selected features as
a penalty, which reduces the pressure to select fewer fea-
tures. Further, combining the inter/intra-class distances and
the number of selected features is problematic since they
are different kinds of measures with different ranges. Simply
adding them (even with weights) does not give good results.
Regarding the classification accuracy, given the same number
of features, MOEA/D-DYN evolves better feature subsets with
lower classification error rates than MOEA/D-F. This is mainly
because MOEA/D-DYN uses a classification algorithm during
its training process, which considers the interaction between
the selected features and the wrapped classification algorithm.



2

TABLE I: Hypervolume obtained by different number of moving reference points on the training sets.

Dataset 10% 20% 30% 40% 50%
Wine 0.877±0.001 (◦) 0.877±0.001 (◦) 0.878±0.001 (◦) 0.878±0.001 (◦) 0.878±0.001
Australian 0.795±0.000 (◦) 0.795±0.002 (◦) 0.795±0.000 (◦) 0.795±0.000 (◦) 0.795±0.000
Vehicle 0.802±0.001 (◦) 0.802±0.001 (◦) 0.802±0.001 (◦) 0.802±0.001 (◦) 0.802±0.001
German 0.720±0.003 (◦) 0.720±0.003 (◦) 0.719±0.004 (◦) 0.719±0.003 (◦) 0.719±0.003
WBCD 0.920±0.000 (◦) 0.920±0.000 (◦) 0.920±0.000 (◦) 0.920±0.000 (◦) 0.920±0.000
Sonar 0.894±0.008 (◦) 0.885±0.007 (◦) 0.890±0.007 (◦) 0.891±0.009 (◦) 0.886±0.009
Hillvalley 0.625±0.003 (◦) 0.624±0.003 (◦) 0.625±0.002 (◦) 0.625±0.003 (◦) 0.625±0.003
Musk1 0.935±0.004 (↑) 0.932±0.004 (◦) 0.931±0.004 (◦) 0.931±0.003 (◦) 0.929±0.004
Arrhythmia 0.958±0.001 (◦) 0.958±0.001 (◦) 0.958±0.001 (◦) 0.957±0.001 (◦) 0.957±0.001
Madelon 0.895±0.003 (◦) 0.897±0.003 (◦) 0.896±0.003 (◦) 0.895±0.003 (◦) 0.896±0.003
Isolet5 0.991±0.000 (◦) 0.991±0.000 (◦) 0.991±0.000 (◦) 0.991±0.000 (◦) 0.991±0.000
MultipleFeatures 0.994±0.000 (◦) 0.994±0.000 (◦) 0.994±0.000 (◦) 0.994±0.000 (◦) 0.994±0.000

TABLE II: Hypervolume obtained by different number of moving reference points on the test sets.

Dataset 10% 20% 30% 40% 50%
Wine 0.904±0.000 (◦) 0.904±0.000 (◦) 0.904±0.000 (◦) 0.904±0.000 (◦) 0.904±0.000
Australian 0.793±0.003 (◦) 0.787±0.007 (◦) 0.791±0.002 (◦) 0.790±0.005 (◦) 0.790±0.005
Vehicle 0.796±0.002 (◦) 0.798±0.002 (◦) 0.798±0.004 (◦) 0.799±0.004 (◦) 0.798±0.002
German 0.681±0.006 (◦) 0.683±0.006 (◦) 0.681±0.006 (◦) 0.683±0.007 (◦) 0.680±0.008
WBCD 0.914±0.000 (◦) 0.914±0.000 (◦) 0.914±0.000 (◦) 0.914±0.001 (◦) 0.914±0.000
Sonar 0.811±0.013 (↑) 0.800±0.016 (◦) 0.805±0.015 (◦) 0.795±0.020 (◦) 0.797±0.013
Hillvalley 0.593±0.007 (◦) 0.590±0.009 (◦) 0.593±0.010 (◦) 0.599±0.011 (◦) 0.596±0.009
Musk1 0.876±0.007 (◦) 0.878±0.013 (◦) 0.869±0.005 (◦) 0.875±0.009 (◦) 0.871±0.006
Arrhythmia 0.952±0.002 (◦) 0.953±0.002 (◦) 0.952±0.003 (◦) 0.952±0.002 (◦) 0.952±0.002
Madelon 0.886±0.005 (◦) 0.885±0.003 (◦) 0.887±0.003 (◦) 0.886±0.004 (◦) 0.886±0.005
Isolet5 0.989±0.000 (◦) 0.989±0.001 (◦) 0.988±0.001 (◦) 0.989±0.001 (◦) 0.989±0.001
MultipleFeatures 0.990±0.001 (◦) 0.990±0.000 (◦) 0.990±0.001 (◦) 0.990±0.001 (◦) 0.990±0.001

TABLE III: Comparisons (hypervolume) between MOEA/D-DYN and many-objective algorithms on the training sets.

Dataset NSGA-III MOEA/DD θ-DEA MOEA/D-DYN
Wine 0.869±0.012 (↓) 0.870±0.004 (↓) 0.863±0.015 (↓) 0.877±0.001
Australian 0.779±0.014 (↓) 0.788±0.007 (↓) 0.777±0.014 (↓) 0.795±0.000
Vehicle 0.787±0.021 (↓) 0.792±0.005 (↓) 0.787±0.013 (↓) 0.802±0.001
German 0.698±0.017 (↓) 0.714±0.006 (↓) 0.711±0.007 (↓) 0.719±0.003
WBCD 0.902±0.026 (↓) 0.919±0.001 (↓) 0.916±0.006 (↓) 0.920±0.000
Sonar 0.796±0.024 (↓) 0.874±0.011 (↓) 0.871±0.010 (↓) 0.889±0.009
Hillvalley 0.510±0.024 (↓) 0.617±0.004 (↓) 0.619±0.003 (↓) 0.625±0.003
Musk1 0.745±0.028 (↓) 0.925±0.005 (↓) 0.928±0.005 (↓) 0.931±0.004
Arrhythmia 0.749±0.023 (↓) 0.951±0.004 (↓) 0.950±0.004 (↓) 0.957±0.001
Madelon 0.618±0.021 (↓) 0.886±0.008 (↓) 0.894±0.005 (◦) 0.896±0.003
Isolet5 0.721±0.019 (↓) 0.944±0.014 (↓) 0.964±0.005 (↓) 0.991±0.000
MultipleFeatures 0.744±0.017 (↓) 0.969±0.010 (↓) 0.973±0.003 (↓) 0.994±0.000

TABLE IV: Comparisons (hypervolume) between MOEA/D-DYN and many-objective algorithms on the test sets.

Dataset NSGA-III MOEA/DD θ-DEA MOEA/D-DYN
Wine 0.883±0.024 (↓) 0.895±0.021 (↓) 0.884±0.028 (↓) 0.904±0.000
Australian 0.747±0.060 (↓) 0.743±0.063 (↓) 0.742±0.059 (↓) 0.790±0.005
Vehicle 0.784±0.020 (↓) 0.790±0.004 (↓) 0.783±0.015 (↓) 0.798±0.003
German 0.655±0.023 (↓) 0.678±0.011 (◦) 0.675±0.015 (◦) 0.680±0.006
WBCD 0.887±0.029 (↓) 0.914±0.000 (◦) 0.911±0.007 (◦) 0.914±0.000
Sonar 0.741±0.033 (↓) 0.784±0.021 (◦) 0.780±0.024 (◦) 0.791±0.020
Hillvalley 0.500±0.023 (↓) 0.596±0.008 (◦) 0.602±0.010 (◦) 0.598±0.012
Musk1 0.701±0.035 (↓) 0.842±0.019 (↓) 0.847±0.021 (↓) 0.874±0.008
Arrhythmia 0.748±0.023 (↓) 0.946±0.004 (↓) 0.943±0.004 (↓) 0.953±0.002
Madelon 0.612±0.022 (↓) 0.874±0.009 (↓) 0.879±0.005 (↓) 0.886±0.004
Isolet5 0.719±0.019 (↓) 0.941±0.014 (↓) 0.962±0.005 (↓) 0.989±0.001
MultipleFeatures 0.742±0.017 (↓) 0.965±0.010 (↓) 0.968±0.003 (↓) 0.990±0.001
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Fig. 1: Median fronts obtained by many-objective algorithms and MOEA/D-DYN on the training sets.
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Fig. 2: Median fronts obtained by many-objective algorithms and MOEA/D-DYN on the test sets.
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Fig. 3: Median fronts obtained by MOEA/D-DYN (DYN) and MOEA/D-F.

TABLE V: Comparison between MOEA/D-DYN and
MOEA/D-F in terms of hypervolume.

Dataset MOEA/D-F MOEA/D-DYN
Wine 0.737±0.067 (↓) 0.904±0.000
Australian 0.665±0.067 (↓) 0.790±0.005
Vehicle 0.689±0.059 (↓) 0.798±0.003
German 0.587±0.048 (↓) 0.680±0.006
WBCD 0.861±0.035 (↓) 0.914±0.000
Sonar 0.694±0.038 (↓) 0.791±0.020
Hillvalley 0.454±0.026 (↓) 0.598±0.012
Musk1 0.657±0.028 (↓) 0.874±0.008
Arrhythmia 0.614±0.030 (↓) 0.953±0.002
Madelon 0.385±0.019 (↓) 0.886±0.004
Isolet5 0.641±0.032 (↓) 0.989±0.001
MultipleFeatures 0.649±0.029 (↓) 0.990±0.001

On the other hand, MOEA/D-F uses inter/intra-class distances
as an estimation of the classification accuracy, which results
in larger classification errors than MOEA/D-DYN.
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