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Swarm Intelligence
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Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence technique based 
around the study of collective behavior in decentralized, self-organized 

systems. 

SI systems are typically made up of a population of simple agents 
interacting locally with one another and with their environment. Although 
there is normally no centralized control structure dictating how individual 

agents should behave, local interactions between such agents often lead 
to the emergence of global behavior. Examples of systems like this can 

be found in nature, including ant colonies, bird flocking, animal herding, 
bacteria molding and fish schooling (from Wikipedia).
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Swarm Intelligence

Mind is social…

Human intelligence results from social interaction:

Evaluating, comparing, and imitating one another, learning from experience and 

emulating the successful behaviours of others, people are able to adapt to 

complex environments through the discovery of relatively optimal patterns of 

attitudes, beliefs, and behaviours. (Kennedy & Eberhart, 2001).

Culture and cognition are inseparable consequences of human sociality:

Culture emerges as individuals become more similar through mutual social 

learning. The sweep of culture moves individuals toward more adaptive 

patterns of thought and behaviour.
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Swarm Intelligence

To model human intelligence, we should model individuals in a social 

context, interacting with one another.
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Swarm Intelligence applications
� Swarm-bots, an EU project led by Marco Dorigo, aimed to study new approaches to 

the design and implementation of self-organizing and self-assembling artifacts
(http://www.swarm-bots.org/).

� A 1992 paper by M. Anthony Lewis and George A. Bekey discusses the possibility of 
using swarm intelligence to control nanobots within the body for the purpose of killing 

cancer tumours.

� Artists are using swarm technology 

as a means of creating complex 
interactive environments. 

- Disney's The Lion King was the 
first movie to make use of swarm 

technology (the stampede of the 
bisons scene). 

- The movie "Lord of the Rings" 
has also made use of similar 

technology during battle scenes. 

(Some examples from Wikipedia)
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Novel about swarm

“… Within hours of his arrival at the 

remote testing center, Jack discovers 

his wife's firm has created self-

replicating nanotechnology--a literal 

swarm of microscopic machines. 

Originally meant to serve as a 

military eye in the sky, the swarm 

has now escaped into the 

environment and is seemingly intent 

on killing the scientists trapped in the 

facility.” (Michael Crichton, 2002)  
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Particle Swarm Optimization

Russell EberhartJames Kennedy

The inventors:
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Particle Swarm Optimization

PSO has its roots in Artificial Life and social psychology, as well as 

engineering and computer science.

The particle swarms in some way are closely related to 

cellular automata (CA):

a) individual cell updates are done in parallel 

b) each new cell value depends only on the old values of 
the cell and its neighbours, and 

c) all cells are updated using the same rules (Rucker, 

1999).

Individuals in a particle swarm can be conceptualized as cells in a CA, 

whose states change in many dimensions simultaneously.

Blinker

Glider

7/05/2012 11

Particle Swarm Optimization

As described by the inventers James 

Kennedy and Russell Eberhart, “particle 

swarm algorithm imitates human (or insects) 

social behaviour. Individuals interact with one 

another while learning from their own 

experience, and gradually the population 

members move into better regions of the 

problem space”. 

Why named as “particle”, not “points”? Both 

Kennedy and Eberhart felt that velocities and 

accelerations are more appropriately applied 

to particles.
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PSO Precursors

Reynolds (1987)’s simulation Boids – a simple flocking model consists of 

three simple local rules: 

� Collision avoidance: pull away before they crash into one another;

� Velocity matching: try to go about the same speed as their 

neighbours in the flock;

� Flock centering: try to move toward the center of the flock as they 

perceive it.

Heppner (1990) interests in rules 

that enabled large numbers of 

birds to flock synchronously.  

A demo: http://www.red3d.com/cwr/boids/

With just the above 3 rules, Boids show 

very realistic flocking behaviour.
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Its links to Evolutionary Computation

� Both PSO and EC are population based.

� PSO also uses the fitness concept, but, less-fit particles do not 
die. No “survival of the fittest”.

� No evolutionary operators such as crossover and mutation.

� Each particle (candidate solution) is varied according to its past 
experience and relationship with other particles in the 
population.

� Having said the above, there are hybrid PSOs, where some EC 
concepts are adopted, such as selection, mutation, etc.

“In theory at least, individual members of the school can profit from 

the discoveries and previous experience of all other members of 

the school during the search for food. This advantage can become

decisive, outweighing the disadvantages of competition for food 

items, whenever the resource is unpredictably distributed in 

patches” (by Sociobiologist E. O. Wilson)
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PSO applications
Problems with continuous, discrete, or mixed search 

space, with multiple local minima; problems with 

constraints; multiobjective, dynamic optimization.

� Evolving neural networks:
• Human tumor analysis;
• Computer numerically controlled milling optimization;

• Battery pack state-of-charge estimation;
• Real-time training of neural networks (Diabetes among Pima Indians);

• Servomechanism (time series prediction optimizing a neural network); 

� Reactive power and voltage control;

� Ingredient mix optimization;

� Pressure vessel (design a container of compressed air, with many

constraints);

� Compression spring (cylindrical compression spring with certain 

mechanical characteristics);

� Moving Peaks (multiple peaks dynamic environment); and more

PSO can be tailor-designed to deal with specific real-world problems.
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Original PSO
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Original PSO

Velocity        (which denotes the amount of change) of the i-th particle is 

determined by three components:
iv
�
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momentum

cognitive 

component

social 

component

� momentum – previous velocity term to carry the particle in the direction it 

has travelled so far; 

� cognitive component – tendency to return to the best position visited so far;

� social component – tendency to be attracted towards the best position found 

in its neighbourhood.

Neighbourhood topologies can be used to control information propagation 

between particles, e.g., ring, star, or von Neumann. lbest and gbest PSOs.
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Pseudo-code of a basic PSO

Randomly generate an initial population

repeat

for i = 1 to population_size do

if f(  ) < f(  ) then   =   ;       

= min(        );

for d =1 to dimensions do

velocity_update();

position_update();

end

end

until termination criterion is met.
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Synchronous vs Asynchronous

� Synchronous updates
� Personal best and neighborhood bests updated separately 

from position and velocity vectors

� Slower feedback about best positions

� Better for gbest PSO

� Asynchronous updates
� New best positions updated after each particle position 

update

� Immediate feedback about best regions of the search space

� Better for lbest PSO
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Problems…
The velocity has a tendency to explode to a large value. 

To prevent it, a parameter Vmax can be used. Basically if the velocity 

value exceeds ±Vmax, it gets reset to ±Vmax accordingly.

This velocity clamping does not necessarily prevent particles from leaving 

the search space, nor to converge. However, it does limit the particle step 

size, therefore restricting particles from further divergence.
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Inertia weight
The     and      can be collapsed into a single term     without losing any 

information:

where                      and     
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Since the velocity term tends to keep the particle moving in the same direction as of 

its previous flight, a coefficient inertia weight, w, can be used to control this influence: 
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The inertia weighted PSO can converge under certain conditions without using 

Vmax.

represents the weighted average of      and        . Note that the division operator 
is a point-wise vector division.
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Inertia weight

The inertia weight can be used to control exploration and exploitation:

For w ≥ 1: velocities increase over time, swarm diverge;

For 0 < w < 1: particles decelerate; convergence depends on value for c1 and c2;

For w < 0: velocities decrease over time, eventually reaching 0; convergence behaviour. 

Empirical results suggest that a constant inertia weight w = 0.7298 and 

c1=c2=1.49618 provide good convergence behaviour.

Eberhart and Shi also suggested to use the inertia weight which decreasing 

over time, typically from 0.9 to 0.4. It has the effect  of narrowing the search, 

gradually changing from an exploratory to an exploitative mode.
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Visualizing PSO
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Constriction PSO
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constriction 

factor

χ

Typically, k is set to 1, and c1=c2=2.05; and the constriction coefficient      is 0.7298 

(Clerc and Kennedy 2002).

χ

Clerc and Kennedy (2000) suggested a general PSO, where a constriction 

coefficient     is applied to both terms of the velocity formula. The 

Constriction Type 1’’ PSO is equivalent to the inertia weighted PSO:

χ

with             ,              .where                                         
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If           and k is in [0,1], then the swarm is guaranteed to converge. k controls the 

balance between exploration and exploitation.

4≥ϕ
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Acceleration coefficients
c1>0, c2=0: independent hill-climbers; local search by each particle.

c1=0, c2>0: swarm is one stochastic hill-climber.

c1=c2>0: particles are attracted towards the average of pi and pg.

c2>c1: more beneficial for unimodal problems.

c1>c2: more beneficial for multimodal problems.

low c1 and c2: smooth particle trajectories.

high c1 and c2: more acceleration, abrupt movements.

Adaptive acceleration coefficients have also been proposed. For example 

to have c1 and c2 decreased over time.
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Particle Trajectory

Consider the Parabola 1D function,                  , defined in [-20, 20]. We 

have two cases:

2)( xxf =

To answer this question, we can study a simplified PSO, and look at 

scenarios where the swarm is reduced to only one or two particles. This 

simplified PSO assumes:
� No stochastic component;

� One dimension;
� Pre-specified initial position and velocity.

Question: How important are the interactions between particles in a PSO?

1) The first two positions are on the same side of the minimum (Initial position x= -20, v=3.2)

2) The first two positions frame the minimum (initial position x=-2, v=6.4).

)()( 21 xpcxpcvv gi −+−+←w

vxx +←

In the following examples, we assume w=0.7, c1=c2=0.7. Note that even with 

just one particle, we actually know two positions, x and pi.

Acknowledgement: this 
example was taken from 

Clerc’s recent book “Particle 
Swarm Optimization, with 

some modifications.
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Particle Trajectory (one particle)
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Case 1: The first two positions are on the 
same side of the minimum. 

Since personal best is always equal to x, the 

particle is unable to reach the minimum 
(premature convergence).

Case 2: The first two positions frame the 
minimum.

The particle oscillates around the minimum; 

the personal best is not always equal to x, 
resulting in a better convergence behaviour.
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Particle Trajectory (one particle)

Case 1: The first two positions are on the 

same side of the minimum.

Phase space graph showing v reaches to 0 

too early, resulting premature convergence

Case 2: The first two positions frame the 

minimum.

Phase space graph showing v in both 

positive and negative values (spiral 
converging behaviour)
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Particle Trajectory (two particles)

m2

m1

2

1

Graph of influence. In this case, we have two explorers and two 
memories. Each explorer receives information from the two memories, 
but informs only one (Clerc, 2006).
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Particle Trajectory (two particles)
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Now we have two particles (two explorers and two memories). The starting positions for 

the two particles are the same as in Case 1 and 2. But now the particles are working 
together (Clerc, 2006). 

Note, however, here, memory 2 is always better than memory 1, hence the course of 

explorer 2 is exactly the same as seen in the previous Case 2 (Figure on the right-hand 
side). On the other hand, explorer 1 will benefit from the information provided by memory 2, 

ie., it will end up converging (Figure on the left) .
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Particle Trajectory (two particles)
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Two explorers and two memories. This is the more general case where each explorer is 

from time to time influenced by the memory of the other, when it is better than its own.  
Convergence is more probable, though may be slower.
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Particle Trajectory (two particles)

Two explorers and two memories. Particle trajectories in the Phase space. The two 

particles help each other to enter and remain in the oscillatory process that allows 
convergence towards the optimum.
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Convergence Aspects

� Formal proofs have been provided by Van den Bergh 
(2002), Trelea (2003), and Van den Bergh and 
Engelbrecht (2006) that particles converge to an 
equilibrium.

� In the limit, for the gbest PSO,

� This shows that particles converge to a single point.
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Problem with PSO

� But, this does not mean that this weighted average of 
personal best and global best is a local minimum, as 
proven in Van den Bergh’s PhD thesis (2002).

� In fact, particles may prematurely converge to a stable 
state.

� The original PSO is not a local optimizer, and there is no 
guarantee that the solution found is a local minimum.
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Potential Dangerous Property

� What happens when 

� Then the velocity update depends only on 

� If this condition persists for a number of iterations,

gii ppx
���

==

ivw
�

0→ivw
�
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What is the solution?

� Prevent the condition from occurring

� How?

� Let the global best particle perform a local search as is done in 
the GCPSO of Van den Bergh and Engelbrecht.

� Use mutation to break the condition.
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Fully Informed Particle Swarm (FIPS)
Previous velocity equation shows that that a particle tends to converge 

towards a point determined by       , which is a weighted average of its 

previous best      and the neighbourhood’s best     .       can be further 

generalized to any number of terms:
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N denotes the neighbourhood, and       the best previous position found by 

the k-th particle in N. If the size of N equals 2,               and              then the 

above is a generalization of the canonical PSO.
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A significant implication of the above generalization is that it allows us to 

think more freely employing terms of influence other than just  and      .gp
�

ip
�
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Essential particle swarm(1)

Kennedy (2006) describes PSO in the following form:

New Position = Current Position +

Persistence +

Social Influence.

If we substitute                               in FIPS, we have:1,,, −−= tititi xxv
���

Persistence Social influence

Persistence indicates the tendency of a particle to persist in moving in the 

same direction it was moving previously.
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Essential particle swarm(2)
The social influence term can be further expanded:

New Position = Current Position +

Persistence +

Social Central Tendency +

Social Dispersion

Social central tendency can be estimated, for example by taking the mean of 

previous bests relative to the particle’s current position (still open-ended 

questions)

Social dispersion may be estimated by taking the distance of a particle’s 

previous best to any neighbor’s previous best; or by averaging pair-wise 

distances between the particle and some neighbors.

Some distributions such as Gaussian, double-exponential and Cauchy 

were used by Kennedy (2006).
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Bare Bones PSO

What if we drop the velocity term? Is it necessary?

Kennedy (2003) carried out some experiments using a PSO variant, which 

drops the velocity term from the PSO equation.

2/)( gdid pp +
|| gdid pp −

This bare bones PSO produces normally distributed random numbers

around the mean                     (for each dimension d), with the standard 

deviation of the Gaussian distribution being                   .

pi pg

If pi and pg were kept constant, a 

canonical  PSO samples the search 

space following a bell shaped 

distribution centered exactly 

between the pi and pg. 
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Binary PSO (1)

� PSO was originally developed to optimize continuous-
valued parameters.

� Kennedy and Eberhart proposed a binary PSO to 
optimize binary-valued parameters.

� Here position vectors are binary vectors, and the velocity 
vectors are still floating-point vectors.

� However, velocities are used to determine the probability 
that an element of the position vector is bit 0 or bit 1.

7/05/2012 42

Binary PSO (2)

� Position update changes to:

where
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Angle Modulated PSO

� Developed by Pampara, Engelbrecht and Franken to optimize binary-
valued parameters by evolving a bitstring generating function,

� The task is then to find values for a,b,c and d, where these values are 
floating-points.

� A binary-valued problem is therefore solved by using the standard 
PSO to values for the 4 floating point variables, and then to use the 
generating function above to produce a bitstring. This bitstring is then 
evaluated using the fitness function

dcaxbaxxg +×−××−= )))(2cos()(2sin()( ππ
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Producing the bitstring

� Sample the generating function at regular intervals. If the 

output is positive, record bit 1; otherwise record bit 0.
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Some PSO variants
� Tribes (Clerc, 2006) – aims to adapt population size, so that it does not have to be set 

by the users; Tribes have also been used for discrete, or mixed (discrete/continuous) 
problems.

� ARPSO (Riget and Vesterstorm, 2002) – uses a diversity measure to alternate 
between 2 phases;

� Dissipative PSO (Xie, et al., 2002) – increasing randomness; 

� PSO with self-organized criticality (Lovbjerg and Krink, 2002) – aims to improve 

diversity;

� Self-organizing Hierachicl PSO (Ratnaweera, et al. 2004);

� FDR-PSO (Veeramachaneni, et al., 2003) – using nearest neighbour interactions;

� PSO with mutation (Higashi and Iba, 2003; Stacey, et al., 2004)

� Cooperative PSO (van den Bergh and Engelbrecht, 2005) – a cooperative approach

� DEPSO (Zhang and Xie, 2003) – aims to combine DE with PSO;

� CLPSO (Liang, et al., 2006) – incorporate learning from more previous best particles.

7/05/2012 46

Test functions

Note: Demos on some test functions using a PSO.
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Communication topologies (1)

Two most common models: 

� gbest: each particle is influenced by the best found from the entire swarm.

� lbest: each particle is influenced only by particles in local neighbourhood.
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Communication topologies (2)
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4 Graph of influence of a 

swarm of 7 particles. For 

each arc, the particle origin 

influence (informs) the end 

particle (Clerc, 2006)

This graph of influence can 

be also expanded to include 

previous best positions (i.e., 

memories).
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Communication topologies (3)

Global Island model Fine-grained
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Communication topologies (4)

Which one to use?

Balance between exploration and exploitation…

gbest model propagate information the fastest in the population; while the 

lbest model using a ring structure the slowest. For complex multimodal 

functions, propagating information the fastest might not be desirable. 

However, if this is too slow, then it might incur higher computational cost.

Mendes and Kennedy (2002) found that von Neumann topology (north, 

south, east and west, of each particle placed on a 2 dimensional lattice) 

seems to be an overall winner among many different communication

topologies. 
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Speciation and niching
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Speciation and niching

The definition of a species is still debatable. 

Most researchers believe either the morphological species concept 
(ie., members of a species look alike and can be distinguished from

other species by their appearance), or the biological species concept 
(a species is a group of actually or potentially interbreeding individuals 
who are reproductively isolated from other such groups). Both 

definitions have their weaknesses. 

Biological species concept: a species is a group of actually or 

potentially interbreeding individuals who are reproductively isolated 
from other such groups.
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Speciation and niching

The notion of The notion of speciesspecies::
�� A population is classified into groups according to their similaA population is classified into groups according to their similarity measured rity measured 

by Euclidean distance.  by Euclidean distance.  

�� The definition of a species also depends on another parameter The definition of a species also depends on another parameter rrss ,,which which 

denotes the radius measured in Euclidean distance from the centedenotes the radius measured in Euclidean distance from the center of the a r of the a 

species to its boundary.species to its boundary.

�� Kennedy (2000) proposed a Kennedy (2000) proposed a kk--means clustering technique;means clustering technique;

�� ParsopoulosParsopoulos and and VrahitisVrahitis (2001) used a stretching function;(2001) used a stretching function;

�� Brits et al. (2002) proposed a Brits et al. (2002) proposed a NichePSONichePSO;;

�� PetrowskiPetrowski (1996) introduced a clearing procedure, and subsequently, Li, e(1996) introduced a clearing procedure, and subsequently, Li, et al. t al. 

(2002) introduced a species conserving genetic algorithm (SCGA) (2002) introduced a species conserving genetic algorithm (SCGA) for for 

multimodal optimization.multimodal optimization.

�� Li (2004) developed SPSO based on Li (2004) developed SPSO based on PetrowskiPetrowski’’ss clearing procedure. clearing procedure. 

�� Many other Many other nichingniching methods developed for Evolutionary Algorithms, such as methods developed for Evolutionary Algorithms, such as 

Crowding methodCrowding method, , fitnessfitness--sharingsharing, etc.  , etc.  
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Speciation-based PSO
f

x

s2

s1

s3

2rs

p

An example of how to determine the species seeds from the population at each 

iteration. s1, s2, and s3 are chosen as the species seeds. Note that p follows s2.

7/05/2012 55

Speciation-based PSO

Step 1: Generate an initial population with randomly generated particles;

Step 2: Evaluate all particle individuals in the population;

Step 3: Sort all particles in descending order of their fitness values (i.e., from 

the best-fit to least-fit ones);

Step 4: Determine the species seeds for the current population;

Step 5: Assign each species seed identified as the        to all individuals 

identified in the same species;

Step 6: Adjusting particle positions according to the PSO velocity and position 

update equation (1) and (2);

Step 7: Go back to step 2), unless termination condition is met.

g
p
�

7/05/2012 56

Multimodal problems
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Multimodal functions
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Simulation runs

Refer to Li (2004) 

for details.
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Niching parameters
Difficulty in choosing the niching parameters such as the species radius r . For 

example, for Shubert 2D, there is no value of r that can distinguish the global 

optima without individuals becoming overly trapped in local optima.

Some recent works in handling this problem (Bird & Li, 2006a; Bird & Li, 2006b).
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Niching parameters

A PSO algorithm using the ring topology can operate as a niching algorithm by using 
individual particles’ local memories to form a stable network retaining the best 

positions found so far, while these particles explore the search space more broadly. 
See Li (Feb., 2010).
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Optimization in a dynamic environment

Many real-world optimization problems are dynamic and require 

optimization algorithms capable of adapting to the changing 

optima over time.

In contrast to optimization towards a static optimum, in a dynamic 

environment the goal is to track as closely as possible the dynamically 
changing optima.

E.g., Traffic conditions in a city 

change dynamically and 

continuously. What might be 

regarded as an optimal route at 

one time might not be optimal in 

the next minute.
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Optimization in a dynamic environment

Three peak multimodal environment, before (above left) and after (above 

right) movement of optima. Note that the small peak to the right of the figure 

becomes hidden and that the highest point switches optimum (Parrott and Li, 

2006). 
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Why PSO?
� With a population of candidate solutions, a PSO algorithm can maintain  

useful information about characteristics of the environment.

� PSO, as characterized by its fast convergence behaviour,  has an in-built 

ability to adapt to a changing environment.

� Some early works on PSO have shown that PSO is effective for locating 

and tracking optima in both static and dynamic environments.

Following questions must be addressed: 

1) How to detect a change that has actually occurred?

2) What response strategies are appropriate to use once a change is detected?

3) How to handle the issue of ‘outdated memory’ issue as particles’ personal bests 

become invalid once environment has changed?

4) How to handle the trade-off issue between convergence (in order to locate optima) and 
diversity (in order to relocate changed optima)?
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Related work
� Tracking the changing optimum of a unimodal parabolic function (Eberhart

and Shi, 2001).

� Carlisle and Dozier (2002) used a randomly chosen sentry particle to 

detect if a change has occurred.

� Hu and Eberhart (2002) proposed to re-evaluate the global best particle 

and a second best particle.

� Carlisle and Dozier (2002) proposed to re-evaluate all personal bests of all 

particles when a change has been detected.

� Hu and Eberhart (2002) studied the effects of re-randomizing various 

proportions of the swarm.

electron

neutron

proton

� Blackwell and Bentley (2002) introduced 

charged swarms. 

� Blackwell and Branke (2004, 2006) 

proposed an interacting multi-swarm PSO 

(using quantum particles) as a further 

improvement to the charged swarms.
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Set the scope

Assumption: 

Here we assume that changes are only slight in a dynamic environment. It 

would be beneficial to use knowledge about the old environment to help 

search in the new environment.

� Speciation-based PSO is able to identify peaks and converge onto these 

peaks in parallel and adaptively.

� It can be further enhanced by other techniques (eg., quantum swarms) to 

better track changing optima.

Many complex scenarios are possible:

� Small and continuous changes;

� Large, random and infrequent changes;

� Large and frequent changes.
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SPSO with quantum particles

|s|

|sq|

In this quantum swarm model, a swarm is made up of neutral (ie., conventional 

and quantum particles. Quantum particles are positioned as a cloud centered

around the     , providing a constant level of particle diversity within a species (Li 

et al., 2006).
g

p
�
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SPSO with quantum particles

a)

b)

dp

dp

dp=0 dp=0

To see if a species has converged, 

we check if the particle diversity, 

dp, of a species is smaller than a 

threshold.

To regain diversity, all particles 

except the species seed in the 

converged species are replaced by 

the same quantity of particles, 

centered around the species seed, 

with 50% as neutral particles and 

the remaining 50% as quantum 

particles.
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Local sampling

Different sampling distributions can be employed to produce the quantum 

`cloud’.  Local sampling around the center of a species (or other points) can be 

carried out immediately after a change is detected in the environment. 
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Test functions for dynamic optimization

Jürgen Branke’s Moving peak test functions - The moving peak benchmark 

(MPB) is widely used in the EC community. A few recent PSO works also 

adopted it (Clerc, 2006; Blackwell and Branke, 2004; Li et al., 2006). For more 

information, refer to:

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

Morrison and De Jong’s DF1 function generator – one of the early dynamic 

test function generator proposed (Morrison, 2005). A few authors have used it 

(Parrott and Li, 2006).

A few other dynamic test functions have also been proposed in recent years.

A demonstration run of SPSO tracking the global peak in a 10 peaks dynamic 

environment (Moving peaks Scienario2). Refer to (Li, et al. 2006) for details.
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Multiobjective optimization

Many real-world problems involve multiple 

conflicting objectives, which need to be optimized 

simultaneously. The task is to find the best possible 

solutions which still satisfy all objectives and 

constraints. This type of problems is known as 

multiobjective optimization problems.

"The great decisions of human life have as a rule far more to do with the instincts 

and other mysterious unconscious factors than with conscious will and well-

meaning reasonableness. The shoe that fits one person pinches another; there is 

no recipe for living that suits all cases. Each of us carries his own life-form - an 

indeterminable form which cannot be superseded by any other."

Carl Gustav Jung, Modern Man in Search of a Soul, 1933, p. 69
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Multiobjective optimization
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Concept of domination

A solution vector x is said to dominate the other solution vector y if the 

following 2 conditions are true:

� The solution x is no worse than y in all objectives; 

� The solution x is strictly better than y in at least one objective.  

f2

f1

(minimize)

(minimize)

0

1

4

5

3

2

Solution 1 and 3 are non-dominated with each other.

Non-dominated front 6

Pareto-optimal front

Solution 6 dominates 2, but not 4 or 5.
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PSO for Multiobjective Optimization
Two major goals in multiobjective optimization:

� To obtain a set of non-dominated solutions as closely as possible to the 

true Pareto front;

� To main well-distributed solutions along the Pareto front.

1) How to choose pg (i.e., a leader) for each particle? The PSO needs to find 

diverse solutions along the Pareto front, not just a single point. This requires that 
particles are allocated with different leaders.

2) How to identify non-dominated particles with respect to all particles’ current 

positions and personal best positions? And how to retain these solutions 

during the search process? One strategy is to combine all particles’ personal bests 

and current positions, and then extract the non-dominated solutions from the 
combined population.

3) How to maintain particle diversity so that a set of well-distributed solutions 

can be found along the Pareto front? Some classic niching methods (e.g., 

crowding or sharing) can be adopted for this purpose.

Several issues have to be taken into consideration:
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PSO algorithms for MO

MOPSO (Coello et al., 2002) – dominance comparison for each particle with its 

personal best; diversity is maintained using a grid-based approach.

Aggregation approaches (Parsopoulos and Vrahatis, 2002) – 3 different aggregation 
functions used.

Fieldsend and Sigh (2002) – use “dominated tree” to store non-dominated solutions.

Dynamic neighbourhood (Hu and Eberhart, 2002, 2003) – One objective optimized at a 
time, later enhanced with an “extended memory”. 

Sigma method (Mostaghim & Teich, 2003) – a method to better choose local guides.

Non-dominated Sorting PSO (Li, 2003) – dominance comparison for all particles 
including personal bests; non-dominated sorting is used, similar to NSGA II.

Some earlier PSO models using different techniques:

Recently a survey by Sierra and Coello shows that there are currently 25 

different PSO algorithms for solving MO problems (Sierra and Coello, 2006).
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Better dominance comparison for PSO

f2

f1

)( 1
t

PF

)( 1
1

+t
XF

)(
1

2
+t

XF

)( 2
t

PF

Dominance relationships among 4 particles, including the personal bests of 

two particles, and their potential offspring, assuming minimization of f1 and f2. 

Extracting non-dominated solutions from combined current positions and their 

personal bests are more effective than just a single comparison between a 

particle and its personal best alone. 
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NSPSO Algorithm
The basic idea:

� Instead of comparing solely on a particle's personal best with its potential 

offspring, the entire population of N particles' personal bests and N of these 

particles' offspring are first combined to form a temporary population of 2N
particles. After this, domination comparisons among all the 2N individuals in 

this temporary population are carried out. 

� Sort the entire population in different non-domination levels (as in NSGA II).  

This type of sorting can then be used to introduce the selection bias to the 

individuals in the populations, in favour of individuals closer to the true 

Pareto front. 

� At each iteration step, we choose only N individuals out of the 2N to the 

next iteration step, based on the non-domination levels, and two niching

methods. 
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Non-dominated Sorting PSO

f2

Front 1

Front 2

Front 3

Front 4

True Pareto-

optimal front 

1

2

1

3

76

5

4

9

8

10

f1

Selection pressure towards the true Pareto-optimal front.
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Niching techniques

f2

f1

A

B

A will be preferred over B, since A has a smaller niche count than B.

Selection pressure
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Selecting better guides

f2

f1

A

B

Particles in the “less-crowded’ area of the non-dominated front is more likely to be 
chosen as        (ie., leader) for particles in the population, eg., A is more likely than B. gp

�

…
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User preferences based MOPSO

� When handling “many” objective problems, the well-known non-
dominated sorting algorithm (eg., NSGA II) is no longer effective.

� Some solutions to this problem:

� to incorporate preference information by a decision maker (DM) to 
guide an algorithm to focus its search on the preferred regions of 
the Pareto-front.

� to modify the non-dominance concepts, or define more effective 
selection schemes.

� Some ideas from MCDM literature can be borrowed, eg., reference 
point methods, reference direction, light beam, etc.

� These new generation of EMO algorithms can help scale better 
with increasing number of objectives, and at the same time keep 
the computational cost down.
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Reference point & Light beam method

− solution point

z2

original reference point

z

1

__

z’

preferred region

z

1

w

w
2

f1

2f

− middle point

− RP

zc

light beam

r

zv

z

f1

2f

preferred region

− AP

The classical reference point method (left) and light beam search method (right).
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Distance metric based EMO
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User preferences based MOPSO
Choose the swarm leader based on a distance measure, and search only in the 

preferred regions of the Pareto-front, specified either by a) reference points, or b) 
light beams. See Wickramasinghe and Li (2009).

Reference point method Light beam method
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Cooperative coevolutionary PSO 

� CCEAs by Potter and De Jong (1994): a n dimensional problem is 
decomposed into n subcomponents, one for each variable. Two 
variants, CCGA-1 and CCGA-2. Only 30 dimensions tested;

� FFPCC by Liu, et al. (2001), problems up to 1000 dimensions; poor 
performance on non-separable problems;

� CPSO by van den Bergh and Engelbrecht (2004): a n-dimensional 
problem is decomposed into K subcomponents; 30 dimensions 
(rotated and unrotated) tested.

� Several recent work on CCEAs for handling large scale global 
optimization problems.

� Recent surge of interests in handling large scale global 
optimization (LSGO) problems, eg., CEC’08 and CEC’10 
competitions on LSGO.
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Research questions on CCPSO

� Can we develop more effective CCPSO 
algorithms especially for solving high 
dimensional non-separable optimisation 
problems?

� Can we generalize the two proposed strategies 
by Yang et al. (2008), random grouping and 
adaptive weighting, to the CCPSO algorithms?

� Can we further improve the performance of the 
CPSO proposed by van den Bergh and 
Engelbrecht?
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CPSO

b(j, z) = (P1.ŷ, P2.ŷ,…, Pj-1.ŷ, z, Pj+1.ŷ,…, PK.ŷ)
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CPSO

Context vector ŷ is a concatenation of all P1.ŷ, P2.ŷ,…, PK.ŷ.

Two variants: CPSO-SK and CPSO-HK.

P1 P2 PK

…
P1.ŷ

P2.ŷ

PK.ŷ

...
....

...
....

.. ..

n dimensions

s dims
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Random grouping
� Issue: since it is not always known in advance how 

these K subcomponents are related, it is possible that 
such a static grouping method places some interacting 
variables into different subcomponents.

� Solution: Randomly decompose the n-dimensional 
object vector into K subcomponents at each iteration. 
The probability of placing two interacting variables into 
the same subcomponent becomes higher, over an 
increasing number of iterations.

� Given a fixed computational budget, it might not be 
cost effective to run the adaptive weighting scheme.
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CCPSO2
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Constraint handling

Non-stationary penalty functions (Parsopoulos and Vrahatis, 2002):
A penalty function is used, and the penalty value is dynamically modified during a 
run. This method is problem dependent, however, its results are generally 

superior to those obtained through stationary functions.

Preservation of feasible solutions (Hu and Eberhart, 2002):

During initialization, all particles are repeatedly initialized until they satisfy all 

constraints; when calculating personal best and global best, only those positions 
in feasible space are counted. 

Based on closeness to the feasible region (Toscano and Coello, 2004):

If both particles compared are infeasible, then the particle that has the lowest 

value in its total violation of constraints wins.

The most common approach for solving constrained problems is the use of a 

penalty function. The constrained problem is transformed into an unconstrained 

one, by penalizing the constraints and creating a single objective function.
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Constraint handling

A preferred approach is to use a multiobjective approach where the concept of 

“dominance” can be used to identify better solutions which are non-dominated 

with respect to the current population. The user is no longer required to specify 

any weight coefficient.

One major disadvantage of using penalty function, in which case all constraints 

must be combined into a single objective function (this is also called weighted-

sum approach), is that a user must specify a weight coefficient for each 

constraint. However, finding optimal weight coefficients is no easy task.

Another useful technique described by Clerc (2006) is “confinement by

dichotomy”, which makes use of an iterative procedure to find points that are 

close to the boundaries defined by constraints.
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More information
Particle Swarm Central: http://www.particleswarm.info

Visitors’ hits since 12 June 2006 (updated daily).
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