
1/39

Introduction to Julia

Hayden Andersen

21st October

2/39

What is Julia?

▶ Julia is a programming
language

▶ Initially created by Jeff
Bezanson, Stefan Karpinski,
Viral B. Shah, and Alan
Edelman

▶ Aims to have the simplicity
of Python, the speed of C,
and the functionality of Lisp

3/39

Background and Notable Uses

▶ First released in 2012.

▶ Version 1.0 was released in 2018

▶ Won the 2019 James H. Wilkinson Prize for Numerical
Software

▶ Used both at NASA and at CERN
▶ Used at NASA to model spacecraft separation dynamics -

15000 times faster than MATLAB
▶ Used at CERN for one of the Large Hadron Collider

experiments

▶ Many major changes over the years - is finally now in a good
place to be used by everyday users!

4/39

What makes Julia good?

▶ Built around the concept of multiple dispatch

▶ High performance

▶ Native support for parallelism

▶ Optional typing/duck typing

▶ Strong support for metaprogramming

▶ Support for Unicode

▶ And more!

5/39

Ease of Use

Language Features

Performance Improvements

Useful Libraries for Research

Downsides

Questions/Discussion

6/39

Ease of Use

7/39

REPL

▶ While Julia is a
compiled language, it
provides a
read–eval–print loop
(REPL) to
interactively write
code

▶ Similar to Lisp and
Python

▶ Allows for on-the-fly
testing of code during
development

8/39

Dynamic Typing

▶ Similar to Python, Julia supports dynamic (or duck) typing

▶ Optional static typing can improve computation speed and aid
multiple dispatch

▶ Can write full programs in Julia without using types

▶ The same name can refer to multiple different types
throughout execution of the code

9/39

String Interpolation

▶ Julia supports C++ style string interpolation

▶ Instead of format strings, variables and computations can be
directly inserted into the string

‘Using dataset {}, seed {}, and the {} algorithm with

population size {}, {}-tournament selection, {} elitism,

{} crossover and {} mutation’.format(dataset, seed,

algorithm, population, tournament, elitism, crossover,

mutation)

"Using dataset $dataset, seed $seed, and the $algorithm

algorithm with population size $population, $(tournament)-

tournament selection, $elitism elitism,

$crossover crossover and $mutation mutation"

9/39

String Interpolation

▶ Julia supports C++ style string interpolation

▶ Instead of format strings, variables and computations can be
directly inserted into the string

‘Using dataset {}, seed {}, and the {} algorithm with

population size {}, {}-tournament selection, {} elitism,

{} crossover and {} mutation’.format(dataset, seed,

algorithm, population, tournament, elitism, crossover,

mutation)

"Using dataset $dataset, seed $seed, and the $algorithm

algorithm with population size $population, $(tournament)-

tournament selection, $elitism elitism,

$crossover crossover and $mutation mutation"

10/39

Other Usability Bonuses

▶ Short circuit evaluation
conflicting(rule, v) && (return true)

best isa Nothing || (fitness = best.fitness)

▶ 1-indexed

▶ Single line function definitions
addtwo(a) = a + 2

▶ Easy vectorization of functions
addtwo.(somelist)

11/39

Language Features

12/39

Multiple Dispatch

▶ The main concept/core paradigm behind Julia!

▶ Each function can have an arbitrary number of method
implementations, each operating on different types

▶ Julia decides which method to run as the most specific
method based on parameter types

▶ Methods can be typed as abstract types

▶ Allows for a huge amount of code reuse/code sharing.

▶ After some time really changes your coding style

13/39

Multiple Dispatch

▶ Many languages we are used to use single dispatch (OOP)
Cat bella = Cat(); cat.meowAt(dog)

▶ It can take some getting used to the style of multiple dispatch
Cat bella = Cat(); meowAt(cat, dog)

▶ New method definitions can be added at any time - all code
that already used that function now works with the new
method!

▶ Does not need to be inside the class like it would have to be
for OOP

▶ I highly recommend watching “The Unreasonable
Effectiveness of Multiple Dispatch”
https://www.youtube.com/watch?v=kc9HwsxE1OY

https://www.youtube.com/watch?v=kc9HwsxE1OY

14/39

Interfaces

▶ Thanks to multiple dispatch, Julia provides some easy to
implement interfaces!

▶ To make a type iterable, only have to implement
iterate(iter) and iterate(iter, state)

15/39

Interfaces

▶ We can also index a type by implementing getindex(X, i),
setindex!(X, v, i), firstindex(X), and lastindex(X)

16/39

Interfaces

17/39

Metaprogramming

▶ As with Lisp, Julia represents code as a data structure in the
language itself

▶ This means we can generate and transform code within the
code itself!

18/39

Metaprogramming

▶ As with Lisp, Julia represents code as a data structure in the
language itself

▶ This means we can generate and transform code within the
code itself!

19/39

Metaprogramming

▶ As with Lisp, Julia represents code as a data structure in the
language itself

▶ This means we can generate and transform code within the
code itself!

▶ This looks a lot like genetic programming!
▶ This makes sense, with GP’s roots in Lisp

▶ Can also use metaprogramming to hold arbitrary information -
many libraries use Symbols (eg. :callable) to represent
settings in functions

20/39

Parallelism

Julia has inbuilt support for multiple type of parallelism

▶ LoopVectorization.jl allows for specific lines of code to be
parallelised

▶ Julia base has support for classic multi-threading
▶ Loops can be parallelised with @threads

▶ Built in GPU/CUDA support

▶ Utilise multiple machines with distributed computing

21/39

Unicode

▶ Full support in both strings and names for Unicode - including
UTF and emoji

▶ This seems like a small feature, but it has a lot of benefits

▶ Code can directly relate to mathematical expressions it
implements - no more spelling out Greek letters!
area(c::Circle) = π * c.r^2

22/39

Interface with Other Languages

▶ Julia has functions and packages to easily call code from other
languages!

▶ Call C functions with ccall

▶ Similar libraries exist for others - PyCall.jl, RCall.jl, and
JavaCall.jl are all easy to use

▶ Helps with the infancy of Julia - just use complex packages
from more mature languages!

23/39

Conversions and Promotions

▶ As with most other languages, Julia automatically converts
data types when it can and needs to
▶ Assigning to a typed field/variable/array
▶ Returning from a typed function
▶ Math: 1 + 1.5 -> 1.0 + 1.5 = 2.5

▶ Unlike other languages, we can define our own conversions!
convert(::Type{MyType}, x) = MyType(x)

▶ For math, types will be promoted to a common type. We can
also define these rules:

promote_rule(::Type{Float64}, ::Type{Float32})

= Float64

24/39

Performance Improvements

25/39

Performance

▶ As a compiled language, Julia can achieve much higher
performance than languages it emulates

▶ No C backend - directly compiles itself

▶ Unlike Python, for loops perform just as well as vectorisations

▶ Sample benchmark - square a list → add 3 to all items →
square root → sum:

Single for loop in Julia = 7.059 ms ± 4.517 ms

Single for loop in Python = 721.5896 ms

Multiple for loops in Julia = 8.468 ms ± 3.799 ms

Multiple for loops in Python = 957.65503 ms

Julia vectorisation = 5.051 ms ± 3.889 ms

Python (numpy) vectorisation = 4.814175158 ms

26/39

Benchmarks

27/39

Useful Libraries for Research

28/39

Plotting

▶ There are two “main” plotting libraries for Julia

▶ Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

function sampleplotting(X, y, pred)

scatter(X[1], y, title = "Simple Linear Regression

example", label="data")

plot!(X[1], pred, label="predictions")

end

28/39

Plotting

▶ There are two “main” plotting libraries for Julia

▶ Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

function sampleplotting(X, y, pred)

scatter(X[1], y, title = "Simple Linear Regression

example", label="data")

plot!(X[1], pred, label="predictions")

end

29/39

Plotting

▶ There are two “main” plotting libraries for Julia

▶ Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

30/39

Plotting

▶ There are two “main” plotting libraries for Julia

▶ Makie.jl provides a more complex interface that is more
powerful than Plots

function sampleplotting(X, y, pred)

Makie.scatter(X[1], y, label="data")

lines!(X[1], pred, label="predictions", color=:red)

axislegend()

current_figure()

end

30/39

Plotting

▶ There are two “main” plotting libraries for Julia

▶ Makie.jl provides a more complex interface that is more
powerful than Plots

function sampleplotting(X, y, pred)

Makie.scatter(X[1], y, label="data")

lines!(X[1], pred, label="predictions", color=:red)

axislegend()

current_figure()

end

31/39

Plotting
▶ There are two “main” plotting libraries for Julia

▶ Makie.jl provides a more complex interface that is more
powerful than Plots

32/39

Machine Learning

▶ Similar to sklearn in Python, Julia has MLJ.jl

▶ Partially developed at University of Auckland

▶ Unified interface for many ML packages

▶ Slightly more complex to use than sklearn, but after a small
learning curve works just as well

▶ Has support for sklearn models!

33/39

Machine Learning

▶ Similar to sklearn in Python, Julia has MLJ.jl

▶ Unified interface for many ML packages

▶ Slightly more complex to use than sklearn, but after a small
learning curve works just as well

▶ Has support for sklearn models!

▶ Flux.jl also provides powerful deep learning functionality

34/39

Evolutionary Computation

▶ Of particular interest to this group will be Evolutionary.jl

▶ Implements algorithms for GA, DE, GP, and more

▶ Works about as well as DEAP - problems and all

▶ Initially strange workflow - quick to pick up!

▶ Few contributors, so not complete in places

35/39

Downsides

36/39

Compilation Times

▶ In order to achieve high performance, the compiler does a lot
of work

▶ This is very slow

▶ Improved in recent versions of Julia - now attempts to compile
packages when they are installed through the package
manager

▶ Still very slow for some packages - the worst I’ve found is
plotting packages

▶ In runtime needs to compile each dynamic dispatch method -
JIT

37/39

Variable Performance

While Julia can have very good performance, this requires it to be
used in a specific way:

▶ Code is only fast when it is inside a function

▶ Global variables slow down computation
▶ Containers slow down with abstract types

▶ A Vector{Real} is much slower than a Vector{Float64}!

▶ Fields with abstract types are slow

▶ Essentially - the compiler can only do so much!

38/39

Very Young Language

▶ Bugs in core code

▶ Poor documentation

▶ Interfaces hard to find information on

▶ Parts of the language still very subject to change

39/39

Questions/Discussion

	Ease of Use
	Language Features
	Performance Improvements
	Useful Libraries for Research
	Downsides
	Questions/Discussion

