Introduction to Julia

Hayden Andersen

21st October
What is Julia?

- Julia is a programming language
- Initially created by Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman
- Aims to have the simplicity of Python, the speed of C, and the functionality of Lisp
Background and Notable Uses

- First released in 2012.
- Version 1.0 was released in 2018
- Won the 2019 James H. Wilkinson Prize for Numerical Software
- Used both at NASA and at CERN
 - Used at NASA to model spacecraft separation dynamics - 15000 times faster than MATLAB
 - Used at CERN for one of the Large Hadron Collider experiments
- Many major changes over the years - is finally now in a good place to be used by everyday users!
What makes Julia good?

- Built around the concept of **multiple dispatch**
- High **performance**
- Native support for **parallelism**
- Optional typing/duck typing
- Strong support for **metaprogramming**
- Support for **Unicode**
- And more!
Ease of Use

Language Features

Performance Improvements

Useful Libraries for Research

Downsides

Questions/Discussion
Ease of Use
While Julia is a compiled language, it provides a read–eval–print loop (REPL) to interactively write code.

Similar to Lisp and Python.

Allows for on-the-fly testing of code during development.
Dynamic Typing

- Similar to Python, Julia supports *dynamic* (or duck) *typing*
- Optional *static typing* can improve computation speed and aid *multiple dispatch*
- Can write full programs in Julia *without using types*
- The *same name* can refer to *multiple different types* throughout execution of the code
String Interpolation

- Julia supports C++ style string interpolation
- Instead of format strings, variables and computations can be directly inserted into the string

‘Using dataset {}, seed {}, and the {} algorithm with population size {}, {}-tournament selection, {} elitism, {} crossover and {} mutation’.

format(dataset, seed, algorithm, population, tournament, elitism, crossover, mutation)
String Interpolation

- Julia supports C++ style string interpolation
- Instead of format strings, variables and computations can be directly inserted into the string

‘Using dataset {}, seed {}, and the {} algorithm with population size {}, {}-tournament selection, {} elitism, {} crossover and {} mutation’.format(dataset, seed, algorithm, population, tournament, elitism, crossover, mutation)

"Using dataset $dataset, seed $seed, and the $algorithm algorithm with population size $population, $(tournament)-tournament selection, $elitism elitism, $crossover crossover and $mutation mutation"
Other Usability Bonuses

- **Short circuit** evaluation

  ```
  conflicting(rule, v) && (return true)
  best isa Nothing || (fitness = best.fitness)
  ```

- **1-indexed**

- **Single line function definitions**

  ```
  addtwo(a) = a + 2
  ```

- **Easy vectorization** of functions

  ```
  addtwo.(somelist)
  ```
Language Features
Multiple Dispatch

- The main concept/core paradigm behind Julia!
- Each function can have an arbitrary number of method implementations, each operating on different types
- Julia decides which method to run as the most specific method based on parameter types
- Methods can be typed as abstract types
- Allows for a huge amount of code reuse/code sharing.
- After some time really changes your coding style
Multiple Dispatch

- Many languages we are used to use single dispatch (OOP)
 `Cat bella = Cat(); cat.meowAt(dog)`
- It can take some getting used to the style of multiple dispatch
 `Cat bella = Cat(); meowAt(cat, dog)`
- New method definitions can be added at any time - all code that already used that function now works with the new method!
- Does not need to be inside the class like it would have to be for OOP
- I highly recommend watching “The Unreasonable Effectiveness of Multiple Dispatch”
 https://www.youtube.com/watch?v=kc9HwsxE1OY
Interfaces

- Thanks to multiple dispatch, Julia provides some easy to implement interfaces!
- To make a type iterable, only have to implement `iterate(iter)` and `iterate(iter, state)`

```
julia> struct Squares
   count::Int
end

julia> iterate(s::Squares, state=1) = state > s.count ? nothing : (state*state, state+1)
Iterate (generic function with 232 methods)

julia> for i in Squares(4)
   println(i)
   end
1
4
9
16
```
We can also **index** a type by implementing `getindex(X, i)`, `setindex!(X, v, i)`, `firstindex(X)`, and `lastindex(X)`.
Interfaces

```julia
julia> struct SquaresVector <: AbstractVector{Int}
    count::Int
end

julia> size(S::SquaresVector) = (S.count,)
size (generic function with 101 methods)

julia> IndexStyle(::Type{<:SquaresVector}) = IndexLinear()
IndexStyle

julia> getindex(S::SquaresVector, i::Int) = i*i
getindex (generic function with 217 methods)

julia> s = SquaresVector(4)
4-element SquaresVector:
    1
    4
    9
   16

julia> length(s)
4

julia> s[s .> 8]
2-element Vector{Int64}:
    9
   16

julia> s + s
4-element Vector{Int64}:
    2
    8
   18
   32```
Metaprogramming

- As with Lisp, Julia represents code as a data structure in the language itself.
- This means we can generate and transform code within the code itself!

```julia
julia> exp = Expr(:call, :+, Expr(:call, :*, 4, 2), Expr(:call, :-, 6, :x))
 :(4 * 2 + (6 - x))

julia> x = 5
5

julia> eval(exp)
9
```
Metaprogramming

- As with **Lisp**, Julia represents code as a **data structure** in the language itself.
- This means we can **generate** and **transform** code within the code itself!

```julia
julia> exp.args[2] = Expr(:call, :, 10, 5) :
:(10 / 5)

julia> exp
:(10 / 5 + (6 - x))

julia> eval(exp)
3.0

julia> x = 6
6

julia> eval(exp)
2.0
```
Metaprogramming

- As with Lisp, Julia represents code as a data structure in the language itself.
- This means we can generate and transform code within the code itself!
- This looks a lot like genetic programming!
  - This makes sense, with GP’s roots in Lisp.
- Can also use metaprogramming to hold arbitrary information - many libraries use Symbols (eg. :callable) to represent settings in functions.
Parallelism

Julia has inbuilt support for multiple type of parallelism

- LoopVectorization.jl allows for specific lines of code to be parallelised
- Julia base has support for classic multi-threading
  - Loops can be parallelised with @threads
- Built in GPU/CUDA support
- Utilise multiple machines with distributed computing
Unicode

- Full support in both strings and names for Unicode - including UTF and emoji
- This seems like a small feature, but it has a lot of benefits
- Code can directly relate to mathematical expressions it implements - no more spelling out Greek letters!
  \[
  \text{area}(c::\text{Circle}) = \pi \times c.r^2
  \]

``` julia
julia> struct Circle
 r::Float64
end

julia> ⌞(c::Circle)⌟ = \pi \times c.r^2
julia> ⌞(Circle(2))⌟
12.566370614359172
```
Interface with Other Languages

- Julia has functions and packages to easily call code from other languages!
- Call C functions with ccall
- Similar libraries exist for others - PyCall.jl, RCall.jl, and JavaCall.jl are all easy to use
- Helps with the infancy of Julia - just use complex packages from more mature languages!
Conversions and Promotions

- As with most other languages, Julia automatically converts data types when it can and needs to
  - Assigning to a typed field/variable/array
  - Returning from a typed function
  - Math: $1 + 1.5 \rightarrow 1.0 + 1.5 = 2.5$

- Unlike other languages, we can define our own conversions!
  convert(::Type{MyType}, x) = MyType(x)

- For math, types will be promoted to a common type. We can also define these rules:
  promote_rule(::Type{Float64}, ::Type{Float32}) = Float64
Performance Improvements
Performance

- As a **compiled language**, Julia can achieve much higher performance than languages it emulates
- No **C backend** - directly compiles itself
- Unlike Python, **for loops** perform just as well as vectorisations
- Sample benchmark - square a list → add 3 to all items → square root → sum:

  Single for loop in Julia = 7.059 ms ± 4.517 ms
  Single for loop in Python = 721.5896 ms

  Multiple for loops in Julia = 8.468 ms ± 3.799 ms
  Multiple for loops in Python = 957.65503 ms

  Julia vectorisation = 5.051 ms ± 3.889 ms
  Python (numpy) vectorisation = 4.814175158 ms
Benchmarks
Useful Libraries for Research
There are two “main” plotting libraries for Julia

- **Plots.jl** provides a **simpler interface** that is more familiar to those used to **matplotlib**
Plotting

- There are two "main" plotting libraries for Julia
- Plots.jl provides a simpler interface that is more familiar to those used to matplotlib

```julia
function sampleplotting(X, y, pred)
 scatter(X[1], y, title = "Simple Linear Regression example", label="data")
 plot!(X[1], pred, label="predictions")
end
```
Plotting

- There are two “main” plotting libraries for Julia
- `Plots.jl` provides a simpler interface that is more familiar to those used to `matplotlib`
Plotting

- There are two “main” plotting libraries for Julia
- **Makie.jl** provides a more complex interface that is more powerful than Plots

```julia
function sampleplotting(X, y, pred)
 Makie.scatter(X[1], y, label="data")
 lines!(X[1], pred, label="predictions", color=:red)
 axislegend()
 current_figure()
end
```
Plotting

- There are two “main” plotting libraries for Julia
- **Makie.jl** provides a more complex interface that is more powerful than Plots

```julia
function sampleplotting(X, y, pred)
 Makie.scatter(X[1], y, label="data")
 lines!(X[1], pred, label="predictions", color=:red)
 axislegend()
 current_figure()
end
```
Plotting

- There are two “main” plotting libraries for Julia
- **Makie.jl** provides a more complex interface that is more powerful than Plots
Similar to sklearn in Python, Julia has MLJ.jl
- Partially developed at University of Auckland
- Unified interface for many ML packages
- Slightly more complex to use than sklearn, but after a small learning curve works just as well
- Has support for sklearn models!
Similar to `sklearn` in Python, Julia has `MLJ.jl`

Unified interface for many ML packages

Slightly more complex to use than `sklearn`, but after a small learning curve works just as well

Has support for `sklearn` models!

`Flux.jl` also provides powerful deep learning functionality
Evolutionary Computation

- Of particular interest to this group will be **Evolutionary.jl**
- Implements algorithms for **GA, DE, GP, and more**
- Works about as well as **DEAP** - problems and all
- Initially **strange workflow** - quick to pick up!
- Few contributors, so **not complete** in places
Downsides
Compilation Times

- In order to achieve high performance, the compiler does a lot of work
- This is very slow
- Improved in recent versions of Julia - now attempts to compile packages when they are installed through the package manager
- Still very slow for some packages - the worst I’ve found is plotting packages
- In runtime needs to compile each dynamic dispatch method - JIT
Variable Performance

While Julia can have very good performance, this requires it to be used in a specific way:

▶ Code is only fast when it is inside a function
▶ Global variables slow down computation
▶ Containers slow down with abstract types
  ▶ A Vector{Real} is much slower than a Vector{Float64}!
▶ Fields with abstract types are slow
▶ Essentially - the compiler can only do so much!
Very Young Language

- Bugs in core code
- Poor documentation
- Interfaces hard to find information on
- Parts of the language still very subject to change
Questions/Discussion