Introduction to Julia

Hayden Andersen

21st October

What is Julia?

» Julia is a programming
language
» Initially created by Jeff .
Bezanson, Stefan Karpinski,
Viral B. Shah, and Alan
Edelman

» Aims to have the simplicity
of Python, the speed of C,
and the functionality of Lisp

Background and Notable Uses

v

First released in 2012.

Version 1.0 was released in 2018

Won the 2019 James H. Wilkinson Prize for Numerical
Software

Used both at NASA and at CERN
» Used at NASA to model spacecraft separation dynamics -
15000 times faster than MATLAB
» Used at CERN for one of the Large Hadron Collider
experiments
Many major changes over the years - is finally now in a good
place to be used by everyday users!

What makes Julia good?

vVvvyVvVvYyVYyyypy

Built around the concept of multiple dispatch
High performance

Native support for parallelism

Optional typing/duck typing

Strong support for metaprogramming
Support for Unicode

And more!

Ease of Use

Language Features

Performance Improvements

Useful Libraries for Research

Downsides

Questions/Discussion

Ease of Use

REPL

» While Julia is a
compiled language, it
provides a O bocumentation: https
read—eval—print loop pe *2* for help,
(REPL) to
interactively write
code

» Similar to Lisp and
Python

» Allows for on-the-fly
testing of code during
development

Dynamic Typing

» Similar to Python, Julia supports dynamic (or duck) typing

» Optional static typing can improve computation speed and aid
multiple dispatch

» Can write full programs in Julia without using types

» The same name can refer to multiple different types
throughout execution of the code

String Interpolation

» Julia supports C++ style string interpolation
» Instead of format strings, variables and computations can be

directly inserted into the string
‘Using dataset {}, seed {}, and the {} algorithm with
population size {}, {}-tournament selection, {} elitism,

{} crossover and {} mutation’.format(dataset, seed,
algorithm, population, tournament, elitism, crossover,

mutation)

String Interpolation

» Julia supports C++ style string interpolation
» Instead of format strings, variables and computations can be
directly inserted into the string

‘Using dataset {}, seed {}, and the {} algorithm with
population size {}, {}-tournament selection, {} elitism,
{} crossover and {} mutation’.format(dataset, seed,
algorithm, population, tournament, elitism, crossover,

mutation)

"Using dataset $dataset, seed $seed, and the $algorithm
algorithm with population size $population, $(tournament)-
tournament selection, $elitism elitism,

$crossover crossover and $mutation mutation"

Other Usability Bonuses

» Short circuit evaluation
conflicting(rule, v) && (return true)
best isa Nothing || (fitness = best.fitness)

» 1-indexed

» Single line function definitions
addtwo(a) = a + 2

» Easy vectorization of functions
addtwo. (somelist)

Language Features

Multiple Dispatch

v

The main concept/core paradigm behind Julia!

Each function can have an arbitrary number of method
implementations, each operating on different types

Julia decides which method to run as the most specific
method based on parameter types

Methods can be typed as abstract types
Allows for a huge amount of code reuse/code sharing.

After some time really changes your coding style

Multiple Dispatch

» Many languages we are used to use single dispatch (OOP)
Cat bella = Cat(); cat.meowAt(dog)

P It can take some getting used to the style of multiple dispatch
Cat bella = Cat(); meowAt(cat, dog)

» New method definitions can be added at any time - all code
that already used that function now works with the new
method!

» Does not need to be inside the class like it would have to be
for OOP

» | highly recommend watching “The Unreasonable
Effectiveness of Multiple Dispatch”
https://www.youtube.com /watch?v=kc9HwsxE10Y

https://www.youtube.com/watch?v=kc9HwsxE1OY

Interfaces

» Thanks to multiple dispatch, Julia provides some easy to
implement interfaces!

» To make a type iterable, only have to implement
iterate(iter) and iterate(iter, state)

state > s.count ? nothing : (state*state, state+l)

Interfaces

» We can also index a type by implementing getindex (X, i),
setindex! (X, v, i), firstindex(X), and lastindex(X)

eric function with 218 methods)

[S[i] for 1 in I]
ith 218 methods)

) 1
ith 17 methods)

unt
th 14 methods)

Interfaces

julia> struct Squa
count::Int

julia> length(s)

lia> s[s .> 8]
2-element Vector{Inte
]

Metaprogramming

> As with Lisp, Julia represents code as a data structure in the
language itself

» This means we can generate and transform code within the
code itself!

:+, Expr(:call, :*, 4, 2), Expr(:call, :-, 6, :x))

Metaprogramming

» As with Lisp, Julia represents code as a data structure in the
language itself

» This means we can generate and transform code within the
code itself!

(p.args[2]

p.args[2] = Expr(:call, -

+ (6 - x))

val(exp)

val(exp)

Metaprogramming

» As with Lisp, Julia represents code as a data structure in the
language itself

» This means we can generate and transform code within the
code itself!
P This looks a lot like genetic programming!
» This makes sense, with GP’s roots in Lisp
» Can also use metaprogramming to hold arbitrary information -

many libraries use Symbols (eg. :callable) to represent
settings in functions

Parallelism

Julia has inbuilt support for multiple type of parallelism
» LoopVectorization.jl allows for specific lines of code to be
parallelised
» Julia base has support for classic multi-threading
» Loops can be parallelised with @threads

» Built in GPU/CUDA support
» Utilise multiple machines with distributed computing

Unicode

» Full support in both strings and names for Unicode - including
UTF and emoji

» This seems like a small feature, but it has a lot of benefits

» Code can directly relate to mathematical expressions it

implements - no more spelling out Greek letters!
area(c::Circle) =7 * c.r"2

julia> struct Circle
r::Floate4
end

julia> @(c: cle) =m * c.rr2
(generic function with 1 methad)

julia> @(Circle(2))
12.566370614359172

Interface with Other Languages

» Julia has functions and packages to easily call code from other
languages!

» Call C functions with ccall

» Similar libraries exist for others - PyCall jl, RCall jl, and
JavaCall jl are all easy to use

» Helps with the infancy of Julia - just use complex packages
from more mature languages!

Conversions and Promotions

> As with most other languages, Julia automatically converts
data types when it can and needs to
> Assigning to a typed field /variable/array
» Returning from a typed function
» Math: 1 + 1.5 -> 1.0 + 1.5 = 2.5
» Unlike other languages, we can define our own conversions!
convert (: :Type{MyType}, x) = MyType(x)
» For math, types will be promoted to a common type. We can
also define these rules:

promote_rule(::Type{Float64}, ::Type{Float32})
= Float64

Performance Improvements

Performance

> As a compiled language, Julia can achieve much higher
performance than languages it emulates

» No C backend - directly compiles itself
» Unlike Python, for loops perform just as well as vectorisations

» Sample benchmark - square a list — add 3 to all items —
square root — sum:

Single for loop in Julia = 7.059 ms * 4.517 ms
Single for loop in Python = 721.5896 ms

Multiple for loops in Julia = 8.468 ms * 3.799 ms
Multiple for loops in Python = 957.65503 ms

Julia vectorisation = 5.051 ms £+ 3.889 ms
Python (numpy) vectorisation = 4.814175158 ms

Benchmarks

04 *

0l

N benchmark

.
. . ® iteration_pi_sim
. . © matr_multiply
102 . . . ® matri gatisic
. . ® parse_integers
H . ® print_to_file
. ® rearson_fibonae
. reqirson_quicsart
. : 2 . ® userfunc_mandelbrot
. .
.
1wt . : .
:
. .
B H
. . .
: .
.
.
. -
2 . s . . .
100 -
. - .
.
[+ dulia LuallT Rus Go Fo rtrn e JasScript Matlsb Mathentiea Python R Octae

DA® 96

Useful Libraries for Research

Plotting

» There are two “main” plotting libraries for Julia

» Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

Plotting

» There are two “main” plotting libraries for Julia

» Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

function sampleplotting(X, y, pred)
scatter(X[1], y, title = "Simple Linear Regression
example", label="data")
plot! (X[1], pred, label="predictions")
end

Plotting

» There are two “main” plotting libraries for Julia

» Plots.jl provides a simpler interface that is more familiar to
those used to matplotlib

Simple Linear Regression example

@ data
predictions
1.0 -
o0, 29
e '-.'|-
° eog ©
05 - '- s'c
° t-. ®
o 0gf
®
> 98
'..-. '.
0.0 o 0.'.
e
e .
P _-'..
-0.5 s6o®
°
o° ©

Plotting

» There are two “main” plotting libraries for Julia

» Makie.jl provides a more complex interface that is more
powerful than Plots

Plotting

» There are two “main” plotting libraries for Julia

» Makie.jl provides a more complex interface that is more
powerful than Plots

function sampleplotting(X, y, pred)
Makie.scatter(X[1], y, label="data")
lines!(X[1], pred, label="predictions", color=:red)
axislegend ()
current_figure()
end

Plotting

» There are two “main” plotting libraries for Julia

» Makie.jl provides a more complex interface that is more
powerful than Plots

® data
— predictions

0.5

0.0 4

-0.5 1

Machine Learning

» Similar to sklearn in Python, Julia has MLJ jI
> Partially developed at University of Auckland
» Unified interface for many ML packages
>

Slightly more complex to use than sklearn, but after a small
learning curve works just as well

» Has support for sklearn models!

Machine Learning

» Similar to sklearn in Python, Julia has MLJ jI
» Unified interface for many ML packages

» Slightly more complex to use than sklearn, but after a small
learning curve works just as well

» Has support for sklearn models!

» Flux.jl also provides powerful deep learning functionality

Evolutionary Computation

» Of particular interest to this group will be Evolutionary.jl
» Implements algorithms for GA, DE, GP, and more

> Works about as well as DEAP - problems and all

» Initially strange workflow - quick to pick up!

>

Few contributors, so not complete in places

Downsides

Compilation Times

» In order to achieve high performance, the compiler does a lot
of work

» This is very slow

» Improved in recent versions of Julia - now attempts to compile
packages when they are installed through the package
manager

» Still very slow for some packages - the worst I've found is
plotting packages

» In runtime needs to compile each dynamic dispatch method -
JIT

Variable Performance

While Julia can have very good performance, this requires it to be
used in a specific way:

» Code is only fast when it is inside a function

» Global variables slow down computation

» Containers slow down with abstract types
> A Vector{Reall} is much slower than a Vector{Float64}!

v

Fields with abstract types are slow

v

Essentially - the compiler can only do so much!

Very Young Language

» Bugs in core code
» Poor documentation
» Interfaces hard to find information on

P> Parts of the language still very subject to change

Questions/Discussion

	Ease of Use
	Language Features
	Performance Improvements
	Useful Libraries for Research
	Downsides
	Questions/Discussion

