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Flowchart of NSGAII
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NSGAII — Elitism

• Elitism: Keep the 
best Parent Child 
individuals from the 
parent and child 
population 
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Pareto optimal front

! Many optimal solutions
! Usual approaches: 
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NSGAII — Elitism
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NSGAII — Crowding Distance

Crowding distance 
• c=a+b 

• Ends have infinite 
crowding distance 
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Pareto optimal front

! Many optimal solutions
! Usual approaches: 

weighted sum strategy, 
ε-constraint modeling, 
Multi-objective GA

! Algorithm requirements: 
" Convergence
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SPEA2

• SPEA2: Improving the Strength Pareto Evolutionary Algorithm 

• Compared to SPEA: 
• Fitness assignment scheme is used, which takes for each 

individual into account how many individuals it dominates and 
it is dominated by.  
• Fitness is NOT based on objective function values  

• Objective function values determine dominance relation  

• A nearest neighbour density estimation technique is 
incorporated which allows a more precise guidance of the 
search process.  

• A new archive truncation method guarantees the 
preservation of boundary solutions. 25
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Flowchart of SPEA2
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Fitness Assignment
• Each individual both dominating and dominated solutions are taken into account 

• Fitness F(i) = Raw fitness R(i) +Density D(i) 

• Nondominated: F(i) <1; dominated: F(i) >=1 

• Raw fitness R(i) 
• Strength value S(i), representing the number of solutions (in both Population 

and Archive) i dominates: 

• Raw fitness R(i): is determined by the strengths of its dominators in both 
archive and population: 

• Density D(i): 
• Additional density information is incorporated to discriminate between 

individuals having identical raw fitness values. 

• k-th nearest neighbour method: the inverse of the distance σik (in objective 
space) to the k-th nearest neighbour (in both archive and population) as the 
density estimate:

27

S(i) = |j|j 2 (Pop+Arch) ^ i � j|

R(i) =
P

j2(Pop+Arch),j�i

S(j)

k =
p

|Pop|+ |Arch|

solutions it dominates:1

S(i) = |{j | j ∈ Pt + P t ∧ i ≻ j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the symbol
≻ corresponds to the Pareto dominance relation. On the basis of the S values, the raw
fitness R(i) of an individual i is calculated:

R(i) =
∑

j∈Pt+P t,j≻i

S(j)

That is the raw fitness is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members are considered in
this context. It is important to note that fitness is to be minimized here, i.e., R(i) =
0 corresponds to a nondominated individual, while a high R(i) value means that i
is dominated by many individuals (which in turn dominate many individuals). This
scheme is illustrated in Figure 1.

Although the raw fitness assignment provides a sort of niching mechanism based on
the concept of Pareto dominance, it may fail when most individuals do not dominate
each other. Therefore, additional density information is incorporated to discriminate
between individuals having identical raw fitness values. The density estimation tech-
nique used in SPEA2 is an adaptation of the k-th nearest neighbor method (Silverman
1986), where the density at any point is a (decreasing) function of the distance to the
k-th nearest data point. Here, we simply take the inverse of the distance to the k-th
nearest neighbor as the density estimate. To be more precise, for each individual i the
distances (in objective space) to all individuals j in archive and population are calcu-
lated and stored in a list. After sorting the list in increasing order, the k-th element
gives the distance sought, denoted as σk

i . As a common setting, we use k equal to the
square root of the sample size (Silverman 1986), thus, k =

√

N + N . Afterwards, the
densityD(i) corresponding to i is defined by

D(i) =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than zero and
that D(i) < 1. Finally, adding D(i) to the raw fitness value R(i) of an individual i
yields its fitness F (i):

F (i) = R(i) + D(i)

The run-time of the fitness assignment procedure is dominated by the density es-
timator (O(M2 log M)), while the calculation of the S and R values is of complexity
O(M2), whereM = N + N .

1This (and the following) formula slightly differs from the one presented in (Bleuler, Brack, Thiele, and
Zitzler 2001), where also individuals which have identical objective values contribute to the strength of an
individual.

7
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 Archive Truncation

• if |Archive|<S, add dominated ones based on the 
fitness values  

• if |Archive|>S, delete crowded ones based on 
density measure

28
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Figure 2: Illustration of the archive truncation method used in SPEA2. On the right, a
nondominated set is shown. On the left, it is depicted which solutions are removed in
which order by the truncate operator (assuming thatN = 5).

4.1 Test Problems and representation of solutions
The test functions are summarized in Tab. 1, where both combinatorial and continuous
problems were chosen.

As combinatorial problems three instances of the knapsack problem were taken
from (Zitzler and Thiele 1999), each with 750 items and 2, 3, and 4 objectives, respec-
tively. For the random choice of the profit and weight values as well as the constraint
handling technique we refer to the original study. The individuals are represented as
bit strings, where each bit corresponds to one decision variable. Recombination of two
individuals is performed by one-point crossover. Point mutations are used where each
bit is flipped with a probability of 0.006, this value is taken using the guidelines derived
in (Laumanns, Zitzler, and Thiele 2001). The population size and the archive size were
set to 250 form = 2, to 300 form = 3, and to 400 form = 4.

In the continuous test functions different problems difficulties arise, for a discussion
we refer to (Veldhuizen 1999). Here, we enhanced the difficulty of each problem by
taking 100 decision variables in each case. For the Sphere Model (SPH-m) and for
Kursawe’s function (KUR) we also chose large domains in order to test the algorithms’
ability to locate the Pareto-optimal set in a large objective space. For all continuous
problems, the individuals are coded as real vectors, where the SBX-20 operator is used
for recombination and a polynomial distribution for mutation (Deb and Agrawal 1995).
Furthermore, the population size and the archive size were set to 100.

The function SPH-m is a multi-objective generalization of the Sphere Model, a
symmetric unimodal function where the isosurfaces are given by hyperspheres. The
Sphere Model has been subject to intensive theoretical and empirical investigations
with evolution strategies, especially in the context of self-adaptation. In a multi-
objective environment a two-variable version of it was used for empirical evaluation
of VEGA (Schaffer 1985), while in (Rudolph 1998) it was used for theoretical con-
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