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Present Day Evolutionary Optimizers ™™™

* Existing EAs often start a search from scratch or at “Ground Zero” knowledge state.

* Itassumes all search problems are independent and so search capability does not
grow or evolve along with the problem to be solved.

e But problems seldom exist in isolation and hence humans do not search from scratch.

* Common information exist between tasks/problems which can be effective for
problem-solving when they are properly harnessed.

(a) Landscape of Rastrigin’s function (b) Landscape of Sphere’s function  (c) Task 1 and Task 2 in 1 dimension
(Task 1) (Task 2)

The solutions found along the optimization process of Sphere function can potentially be
utilized to aid the optimization of the more complex Rastrigin's function.
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Evolutionary Optimization + Transfer Learning

Evolutionary Transfer Optimization (ETO)

A paradigm that integrates EA solvers with knowledge learning and transfer across
related domains for better optimization performance.

The design of new knowledge learning and transfer approaches is necessary for
developing advanced ETO algorithmes.

There are three issues to be considered in ETO, e.g., transferability, transfer component
and transfer algorithm.
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Evolutionary Transfer Optimization (ETO)

Optimization in Uncertain Environment Homogeneous ETO

/V Knowledge transfer across
2 Multi-Task Optimization problems sharing the same
_ search space
Evolutionary I
Transfer 3
Optimization

(ETO)

Complex Optimization Applications

Heterogenous ETO

Multi/Many-Objective Optimization

\ Knowledge transfer across
problems possessing
Machine Learning Applications different search spaces

* K.C.Tan, L. Feng and M. Jiang, “Evolutionary Transfer Optimization - A New Frontier in Evolutionary Computation
Research”, IEEE Computational Intelligence Magazine, submitted.
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ETO for Optimization in Uncertain Environment

* The optimization problems may need to be solved in the presence of uncertainties,
such as noise or approximations in function evaluation, dynamic changes of decision
variables and/or fithess functions, and robustness.

QY

owledge Learing * How to design robust and
incremental transfer learning
methods for positive knowledge
transfer while the evolutionary
search progresses online?

Search
Experiences

1 (@)

Local Optimal Solution

atl‘l
Global Optimal Solution - Global Optimal Solution & How to design ETO approaches
at f atly . . . .
' - considering data imbalance in
ETO for solving a problem in uncertain environment knowledge learning and transfer?

* M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. Yen, “Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms”, IEEE Trans. on

Evolutionary Computation, 22(4), pp. 501-514, 2018.

* A.Simoes and E. Costa, “Improving Memory Usage in Evolutionary Algorithms for Changing Environments”, IEEE Congress on Evolutionary
Computation, pp. 276—283, 2007.

* |. Hatzakis and D. Wallace, “Dynamic Multi-Objective Optimization with Evolutionary Algorithms: A Forward-Looking Approach”, The 8th
Annual Conf. on Genetic and Evolutionary Computation, pp. 1201-1208, 2006.
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ETO for Multi-task Optimization
* Multi-task optimization focuses on solving multiple self-contained tasks simultaneously.
By transferring useful knowledge across tasks online, the solving of one problem may
lead to the related problem being solved automatically.

Optimized Optimized Optimized
Solution for| (Solution for| ® ® @ .1 sion for
Output: Task 1 Task 2 ask

o oY e e How to evaluate correlation between
L Transfer L] L.
. R_° tasks to ensure positive knowledge
eproduction Reproduction .
- :el::tion :election oo tra nSfer In ETO?

* How to design ETO methods capable of
solving many tasks simultaneously (with
better performance and yet faster)?

Input: *

Task 1 Task 2 Task n

P S
w\/ —u "

[llustration of Multi-task optimization

* M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary Multitasking with Dynamic Resource Allocating Strategy”, IEEE Trans. on Evolutionary
Computation, 23(5), pp. 858-869, 2019.

* J.Ding, C. Yang, Y. Jin, and T. Chai, “Generalized Multitasking for Evolutionary Optimization of Expensive Problems”, IEEE Trans. on
Evolutionary Computation, 23(1), pp. 44-58, 2019.

* A.Gupta, Y. Ong, and L. Feng, “Multifactorial Evolution: Toward Evolutionary Multitasking”, IEEE Trans. on Evolutionary Computation, 20(3),
pp. 343-357, 2016.
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ETO for Complex Optimization Applications

* Many real-world applications involve complex optimization problems. By learning and
transferring useful knowledge from related and simpler problem domains, ETO can
help to deal with complex optimization problems.

Related Problems:

vence2 _ -~
€50

* How to construct simple and
related problems in ETO to
improve the solving of a given
complex problem?

"0 0
Continuous problem with simpler  Vehicle routing with simpler customer Approximated surrogate models
search space distribution

Knowledge Transfer

'V{#V"

408 8B o8 o

0T " ‘)
~ =
P

(a) Non-convex optimization problem (b) NP-hard optimization problem (c) Optimization problem with may (d) Computational expensive optimization
local optima problem

Examples of complex optimization problems

* A.Chaabani and L. Said, “Transfer of Learning with the Coevolutionary Decomposition-Based Algorithm-II: A Realization on the Bi-level
Production-distribution Planning System”, Applied Intelligence, 49(3), pp. 963-982, 2019.

* L. Feng, Y. Ong, M. Lim, and I. Tsang, “Memetic Search with Interdomain Learning: A Realization Between CVRP and CARP”, IEEE Trans. on
Evolutionary Computation, 19(5), pp. 644-658, 2015.

* R.Santana, A. Mendiburu, and J. Lozano, “Structural Transfer Using EDAS: An Application to Multi-Marker Tagging SNP Selection”, IEEE
Congress on Evolutionary Computation, pp. 1-8, 2012.
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ETO for Multi/Many-Objective Optimization

* Multi-objective problem (MOP) involves more than one objective function to be
optimized simultaneously, e.g., when optimal decisions need to be taken in the presence

of trade-offs between two or more conflicting objectives.

 ETO can be applied to solve multi- and many-objective optimization problems by
transferring useful knowledge across the problems.

Knowledge Transfer Approaches

Non-Optimal Pareto Solution
on-Optima Transfer

f2 1 Solutions f2 ‘
f \ Surrogate
\ l% Modeling I%
Evolutionary
\ Multi-tasking
l \(Pareto Front Y

* How to define useful information in
the transferred solutions and how
such information are related to the
multiple objectives across problems?

=

Optimal Solutions

® >

MOP 1 fl Another Related MOP fl

[llustration of knowledge transfer across MOPs

* J.Lin, H. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization”, IEEE Trans. on

Cybernetics, in press, 2020.
* C.Yang, J. Ding, Y. Jin, and T. Chai, "Offline Data-Driven Multiobjective Optimization: Knowledge Transfer Between Surrogates and Generation

of Final Solutions," IEEE Trans. on Evolutionary Computation, 24(3), pp. 409-423, June 2020.
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ETO for Machine Learning Applications

 ETO methods can be used in machine learning applications by leveraging on useful
knowledge across learning problem domains, which can lead to more efficient
performance of classification and feature selection etc.

Class A Minimize error,
misclassification error Y

4 o 0.5
‘so° .
°® ..‘ .

All Features

. Feature Selection

Minimize misclassification error s .

Classifier

o % o ° Training Data -1
i’. . o 20 d Select Features by Maximizing
Class B .o Y I — | The Learning Performance

(a) Classification problem (b) Regression problem (c) Feature selection

Examples of classification, regression, and feature selection problems

* How to design ETO algorithms capable of leveraging on big data technologies
and advanced hardware (e.g., graphics processing units) to address today’s ever-
growing range and scale of demands in machine learning applications?
* T. Weiand J. Zhong, “A Preliminary Study of Knowledge Transfer in Multi-Classification Using Gene Expression Programming”, Frontiers in
Neuroscience, 13, pp.1396, 2020.

* B. Xue, M. Zhang, W. Browne, and X. Yao, “A Survey on Evolutionary Computation Approaches to Feature Selection”, IEEE Trans. on
Evolutionary Computation, 20(4), pp. 606-626, 2016.
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* L. Zhoy, L. Feng, K. C. Tan, J. Zhong, Z. Zhu, K. Liu, and C. Chen, "Towards Adaptive Knowledge Transfer in Multifactorial Evolutionary
Computation", IEEE Trans. on Cybernetics, in press, 2020.

e J.Lin, HL. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization", IEEE Trans. on
Cybernetics, in press, 2020.

* L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, and K. C. Tan, "Explicit Evolutionary Multitasking for Combinatorial Optimization: A
Case Study on Capacitated Vehicle Routing Problem", IEEE Trans. on Cybernetics, in press, 2020.

* L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, and K. Qin, "Solving Generalized Vehicle Routing Problem With Occasional Drivers via
Evolutionary Multitasking", IEEE Trans. on Cybernetics, in press, 2019.

* L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. Ong, K. C. Tan, and A. Qin, “Evolutionary Multitasking via Explicit Autoencoding”, IEEE Trans. on
Cybernetics, 49(9), pp. 3457-3470, 2018.

* A.Gupta, Y. Ong, L. Feng, and K. C. Tan, "Multiobjective Multifactorial Optimization in Evolutionary Multitasking", IEEE Trans. on Cybernetics,
47(7), pp. 1652-1665, 2016.
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Implicit & Explicit Evolutionary Multitasking

(G
Unified Representation

)
N

N

General Solver

e \/7
N R T
Specific Problem %/g ;\ ("/g\“ ?,x /*‘N\
Representation: )< - \\g/> /EE (wteee

L &4 40 J
el o 2o 2o 2o 1o N

(a) Knowledge transfer occurs implicitly
via genetic crossover.

a k2
oP1 w—»‘ P \

\/

Denoising
Autoencoder
Initialization | Initialization I
Y Y
Reproduction M Reproduction
Selection l Selection

G:l...nl .

Knowledge
b % Transfer ‘Gz\ b

Reproduction Reproduction

Selection Selection

l Multiple populations l

No No

Terminate Condition Satisfied?

Terminate Condition Satisfied?

Evolutionary Evolutionary
Solver 1 Solver 2

(b) Knowledge transfer occurs explicitly via
additional transfer approach.
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Implicit Knowledge Transfer

e (Case study on Vehicle Routing Problems (VRPs) with heterogeneous capacity, time
window and occasional driver (VRPHTO).

* As both regular drivers and occasional drivers are considered for providing services,
VRPHTO contains more constraints than a capacitated VRP.

e The objective of VRPHTO: Minimize the total cost involved without violating any
constraint.

* L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, and K. Qin, "Solving Generalized Vehicle Routing Problem With Occasional Drivers via
Evolutionary Multitasking", IEEE Trans. on Cybernetics, in press, 2019.
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The Algorithm

e To solve VRPHTOs via evolutionary multi-tasking with a single solver, the following issues

should be considered:

* How to integrate multiple VRPHTOs with different properties into a unified search space?

* How to evaluate a chromosome in the unified search space for a specific task?

* How to determine the elitism of chromosomes whose performance vary among different

VRPHTO tasks?

Algorithm 1: Pseudo Code of the proposed EMA.

1 Initialize a population P of size N, with a permutation-based unified representation;

/ Unified Representation

=N .

General Solver

/ e LT -
AN 7
8

3
4
5
6

Specific Problem L\—, & Z ’?\:\ / >
Representation: /\i & | & ) /2\ \'N"‘ eee o

‘ 11
12

L4 Jd 0
- ﬁ@@".’. z

14

2 Evaluate each chromosome i on all the tasks, and obtain its factorial cost f;, factorial rank r;, scalar fitness @;

and skill factor 7; accordingly;
for Restart:= 1 to N,, do

while (Number of task evaluations < TE ) do
Select two parents p, and p,, in P via binary tournament;
Generate two offspring ¢, and ¢, where routing information exchange is performed with a
predefined probability.
Conduct split procedure on ¢ and evaluate ¢ on a particular task.
Add ¢, and ¢}, to the offspring population C;
if the number of solutions in C, i.e., n, is equal to N, then
Concatenate P and C to form an intermediate population /;
Update the scalar fitness @; and skill factor 1; of every chromosome in /;
Preserve the fittest N, chromosomes in / that are selected by chromosome evaluation, as the next
generation in P;

if Restart < N,, then
L Restart by regenerating all the chromosomes in P, while preserving the N, best ones.
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Permutation-based Representation

O Random-key representation: O Permutation-based Representation:
* Based on sorting scheme D, : Dimension of the i task
* Cannot represent VRP solutions effectively *  Dpax : Dimension of the unified search space

Dpmax =max{D;},i=1,..., K

Solution 1: A Unified Solution:
| » Dmax = 10 =
0.15{0.74(0.33|10.82|0.28 1 (102 |83 |6 |7 |[4]9]S5
Same Sorting Scheme:¢ D;=5
\)
5 2 3 1 4 1 2 3 4 5
Solution 2: T Solution for T;:

0.2310.82|0.67(0.95|0.51
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Routing information exchange

Routing Information Exchange ] ! | ]
1. if(ty == tp) or rand < rmp then P 112]3]16[4|5 P 612/4]3|5]|1
2. Crossover(p,, - i i i |
ver@a o) i I ! I

Offspring ¢ and cj; 253|641 ~12]6]4]3]5]1
3 else Cl: 4 f : A 2. 7% t | 2
4. Mutate(p,) — Offspring c,; o | .
5 Mutate(p,) — Offspring cp; Py 2 5| 1 Py 11 2 6
6. endif An example of order crossover (OX)

. . swa
Offspring Generation

P:12|5|3|6| 4|1 C:12|6|3|5|4]|1

» Crossover operator: Order crossover

 Mutation operator: Swap mutation An example of swap mutation (SW)
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Empirical Study
Generation of VRPHTO Benchmarks

* Denote the n regular types as RTy, RT,, -+, RT,, with the capacity arranged in an ascending order.

* Randomly select BJ regular types to generate occasional types.

* The time window of occasional driver is randomly generated within the length of ﬂ L E] that
lies in the time window of the depot, i.e., [E, L].
R1A (12 Problems) R2A (11 Problems)
V-Type Capacity Fix Cost variable VW V-Type | Capacity | Fix Cost variable i
Cost Ve Vi Cost Ve Vi
A 30 50 1 0 230 A 300 450 1 1000
B 50 80 1 0 230 B 400 700 1 1000
C 80 140 1 0 230 C 600 1200 1 1000
D 120 250 1 0 230 D 1000 2500 1 0 1000
E 200 500 1 0 230 Al 300 225 1.5 186 596
B1 50 65 1.5 80 191 B1 400 575 1.5 554 917
C1 80 110 1.5 29 113 / / / / / /
Time window of the depot [0, 230] Time window of the depot [0, 1000]
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Empirical Study
Generation of Multi-tasking VRPHTO Benchmarks

Multi-taskin
g P1 P2 P3 P4 P5 P6 P7 P8 PO | P10 | P11 | P12 P13 P14
Problems
R101A | R103A [ R105A | R107A [ R109A | R111A | C101A | C103A |C105A| C107A | RC101A [RC103A | RC105A |RC107A
VRPHTO
+ + + + + + + + + + + + + +
Instances
R102A | R104A [ R106A | R108A [ R110A | R112A | C102A | C104A |C106A| C108A | RC102A [ RC104A | RC106A | RC108A
Multi-taskin
g P15 | P16 | P17 | P18 | P19 | P20 | P21 | P22 | P23 | P24 | P25 | P26 P27
Problems
R201A | R203A [ R205A | R207A | R209A | C201A | C203A | C205A |C207A|RC201A | RC203A | RC205A | RC207A
VRPHTO + + + + + + + + + + + + +
Instances
R202A | R204A [ R206A | R208A | R210A | C202A | C204A | C206A | C208A | RC202A | RC204A | RC206A | RC208A

e 27 multi-tasking VRPHTO problem sets are obtained by pairing the instances in order
within the same VRPHTO category.
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EMA SEA
Problem | HVRPTWOD

Ave.Cost B.Cost Std.Dev | Ave.Cost B.Cost Std.Dev

p1 R101A 4313.16 = 4293.64 10.10 4316.88 4293.64 12.30

R102A 4100.83 = 4081.19 13.50 4104.31 4086.61 11.80

P4 R107A 3856.19 = 3835.71 12.00 3858.50 3839.70 12.40

R108A 3736.52 = 3714.18 10.90 3741.90 3720.39 12.10

pg C103A 5543.79 = 5488.79 47.90 5539.57 5490.09 37.80

C104A 5098.19 = 5034.15 36.90 5108.92 5039.83 29.70

EMA achieved superior or competitive performance against SEA on 37 out of
i a total of 54 VRPHTO instances in terms of the averaged cost. i

o RC104A 455324~ | 4527.84 12.90 4560.20 4525.66 20.40
e C203A 521046~ | 5210.45 0.00 5210.47 5210.45 0.10
C204A 520495~ | 5204.86 0.20 5205.28 5204.86 0.60
- R203A 2949.74~ | 2864.29 63.10 2966.87 2861.57 55.50
R204A 2505.06 ~ | 2412.65 32.80 2519.87 2502.35 7.50
. R209A 280159+ | 2615.27 65.00 2833.46 2808.98 12.60
R210A 2877.76 ~ | 2843.57 13.50 287250 | 2735.90 45.10
e RC203A 3307.27=~ | 3270.96 21.40 3311.12 3278.12 18.30
RC204A 304294~ | 3030.65 10.70 3045.65 3029.99 15.20
. RC207A 3067.49=~ | 3050.27 8.10 3069.79 3054.51 12.40
RC208A 272210~ | 2716.96 2.90 272211 2716.96 2.20
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. SEA} -
Speed up (Fitness) SpeedUp = —LeskEvalution
Instances EMATask Evalution
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8
o 1.64 1.86 2.09 1.77 1.72 1.63 1.48 2.00
(3772.40) | (3754.48) | (3736.56) | (3718.64) | (3700.72) | (3682.79) | (3664.87) | (3646.95)
1.56 1.66 1.94 1.57 13 25 2.46 1.31
C108A : :
(6144. , 30.94) | (5895.39)
EMA achieved a faster convergence for most stages
1.64 . . ) 38 1.80
RC107A of the evolution in different instances.
(4927. o o - R 14.92) | (4679.53)
T 2.47 1.06 1.39 1.00 1.29 1.14 1.18 0.88
(2785.61) | (2752.39) | (2719.17) | (2685.95) | (2652.74) | (2619.52) | (2586.30) | (2553.09)
e 1.57 1.09 1.00 1.42 3.08 3.31 3.91 2.13
(5517.12) | (5479.11) | (5441.09) | (5403.08) | (5365.06) | (5327.05) | (5289.03) | (5251.02)
) 1.48 1.20 1.53 1.44 1.16 1.98 1.93 2.87
(3505.92) | (3481.57) | (3457.22) | (3432.87) | (3408.52) | (3384.17) | (3359.82) | (3335.47)
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Implicit Knowledge Transfer

Results and Analysis
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Effective Knowledge Transfer
EMT/ET

e Each solution in EMT possesses the same probability of undergoing knowledge transfer.
Poor solutions may lead to negative transfer in ETO.

 How to identify useful solutions for positive knowledge transfer?

* Black dots denote the population at the X, ® Fopulation
current generation. s Positive-transfer solution

in last generation

e Red star represents a solution which °
achieved positive transfer in the last
generation.

A
. ® ®
* The neighbors of the red star (denoted as PY
A and B) will be selected as the transferred °
solutions at the current generation.

X1

The transferred solutions across tasks are selected based on those
solutions achieving a positive transfer in the last generation.

e J.Lin, HL. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization", IEEE Trans. on
Cybernetics, in press, 2020.
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> Evolutionary Transfer Multi-task Optimization
Effective Knowledge Transfer
Results and Analysis
e Baseline solvers: NSGAIl, SPEA2, two recent multi-tasking algorithms (EMEA and MFEA).

* Baseline strategies:

* Selecting some non-dominated solutions in each task as the transferred solutions.

* Randomly selecting the transferred solutions in each task.

Problem | Task EMT/ET EMEA MFEA SPEA2 NSGA-II

T1 [O0E-04(2.11E-04) | 1.67E-04(1.85E-04) | 1.60E-03(3.50E-03) | 3.59E-03(6.18E-03) -

CIHS ™ [.77E-04(2.04E-04) | 1.80E-04(1.94E-04) | 5.90E-03(9.10E-03) - 3.90E-03(5.20E-03)
T1 1.73E-04(1.94E-04) | 1.73E-04(4.41E-04) | 1.78E-04(4.72E-04) | 9.64E-04(4.63E-02) -

CIMS T2 | 1.70E-04(3.16E-04) 9.97E-04(0.0148) 2.04E-04(6.02E-04) - 9.00E-04(1.08E-02)
T1 1.70E-04(1.88E-04) | 1.73E-04(1.92E-04) | 1.89E-04(1.03E-04) | 1.17E-02(7.35E-02) -

CILS T2 [.74E-04(1.92E-04) | 1.72E-04(1.90E-04) | 1.84E-04(1.96E-04) = 8.96E-04(1.03E-03)
T1 1.70E-04(1.88E-04) | 7.12E-04(2.60E-03) | 2.59E-02(5.06E-02) | 2.58E-03(3.96E-03) -

PIHS T2 1.67E-04(7.21E-04) | 3.12E-02(1.57E-01) 5.84E-01(1.12) - T.05E-01(1.94E-01)
T1 1.74E-04(2.81E-04) | S.82E-04(2.80E-03) | 2.40E-03(4.70E-03) | 3.78E-02(7.15E-02) -

PIMS T2 | 1.71E-04(2.06E-09) 6.8369(7.527) 7(10.461) - 2. T4E+00(4.37TE+00)
Tl 1.71E-04(1.89E-04) | 2.32E-04(3.44E-04) | 9.01E-04(1.60E-03) | 7.80E-04(1.98E-03) -

PILS T2 | 3.11E-04(1.34E-03) | 3.53E-02(6.01E-02) | 6.27E-02(821E-02) - 2.00E-01(2.01E-01)
TI | L47E+00(1.48E+00) | 1.49E+00(1.49E+00) | 2.03E+00(2.83E+00) | 2.81E+00(9.19E+00) -

NIHS ™ [77E-04(1.88E-04) | 1.72E-04(1.86E-04) | 3.20E-03(8.30E-03) - T.60E-03(2.60E-03)
TI [48E-01(1.55E-01) | IL.GOE-OI(1.64E-01) | 9.90E-02(L.53E-01) | 7.06E-02(6.22E-01) -

NIMS T2 T.41E-04(1.50E-04) | 1.42E-04(1.55E-04) | 3.31E-04(1.80E-02) . 0.300E-03(4.29E-02)
Ti 6.43E-04(7.53E-04) | 6.83E-04(7.56E-04) 0.27E-04(1.6E-03) | 5.26E-04(5.60E-04) -

NILS T2 | 451E-04(1.11E-02) | 6.42E-01(6.42E-01) | 6.43E-01(6.44E-01) - 2.02E-01(2.03E-01)

The Smallest and average values (shown in the brackets) of IGD obtained by EMT/ET, EMEA, MFEA, SPEA2, NSGA-|
on the nine MTO benchmarks.

* Y.Yuan, Y. Ong, L. Feng, A. Qin, A. Gupta., B. Da, Q. Zhang, K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary Multitasking for Multiobjective

Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results”, Technical Report, 2016.
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Effective Knowledge Transfer
Results and Analysis
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The objective space of CILS-task1,generation=66
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(b) Effects of transferred solutions for CILS
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Explicit Multi-tasking for CVRP

Learning of Mapping across Capacitated Vehicle Routing Problems (CVRPs)

Represent two CVRPs by two matrices, i.e., P; and Py (dXng and dXn; matrix; where d is the

number of features for representing the location of a customer, and ng and n; is the number
of customers in P; and P, respectively).

CVRP1

o ° o Learning of © ° O o * Theproblem of finding customers from P to
P O —— | Moo |0 4 represent customers in Py can be formulated
o o l © o o0 as the learning of an ngXn; transformation
l Mz Mot l matrix M, so that P, X M = Py,
l |
oo |l e ] | e MR = Pl + IDOMIL,
o LN e where the first term is the reconstruction

l /o \ error and the second term is the weighted [4

Solution | - [Knowledeg| | Knowedge norm-based regularization.
Optimized solution Selection Learning Transfer Optimized solution
of CVRP1 of CVRP2

Explicit Knowledge Transfer for solving CVRPs

* L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, and K. C. Tan, "Explicit Evolutionary Multitasking for Combinatorial Optimization: A
Case Study on Capacitated Vehicle Routing Problem", IEEE Trans. on Cybernetics, in press, 2020.
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Explicit Multi-tasking for CVRP

» Solution Selection: Select the best Q number of optimized solutions from the source
CVRP domain based on the objective value to be transferred to the target CVRP domain.

* Knowledge Learning: To capture the useful information embedded in each of the
selected solutions, which can be transferred across different CVRPs.

* Construct an ngXng distance matrix DM.

* The new estimated customer representations P/”" can be obtained via multi-

dimensional scaling with DM.
Optimized CVRP solution:

{0, V1, V3, 13,0, V4, U5, v¢,0, V7, vg,0}

"0 a2 p B PP P
© 0 o PP P B P
% o 0 B B P B P
5B B 0 o 20 B P
5B P oo 0 o PP
5B B 20 a 0 B P
5 p B P PP O

5 B B B B P o 0)

The rule for setting @ and  (a << B ) is that the vehicle assignment and service order in the selected solution
can be accurately obtained when applying clustering and pair-wise distance sorting with DM
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Explicit Knowledge Transfer i
Explicit Multi-tasking for CVRP

* Knowledge Transfer:

With the learned sparse customer mapping of M, and M5 across CVRP domains
and the new CVRP customer representation, the knowledge transfer across CVRPs

can be performed by simple operation of matrix multiplication.

The approximated customers of P; is obtained via Pfew= Pjew x M;,. To obtain
the transferred CVRP solution for P, K-means clustering with random initialization
is conducted on P/€" to derive the customer assignments of vehicles.

for i < Q do

Set s; = s;, and Estimate P{*V as discussed in
Section 1II-B2;

Obtain|P}°Y via P{*V x Mj2;
Perform K-means and pair-wise distance sorting
with P7*V to generate CVRP solution for p;;
Insert the generated solution into the population to
undergo natural selection;

i=i+1;

for i < Q do

Set s; = s;, and Estimate P{°" as discussed in
Section 1II-B2:

Obtain| PV via P{*" x Myy;
Perform K-means and pair-wise distance sorting
with P}V to generate CVRP solution for py;
Insert the generated solution into the population to
undergo natural selection;

i=i+1;
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Explicit Knowledge Transfer
lllustrating Example

@ o o Lo *
@ \@/ /7 Q ———————————— i 0 —06 0 +05 @
(/] 05, 04-T"0 0 0
10 %05 o0 0
© 323 o to 11 * 0 0
* * M'i 0i0 0 11 0 0
10 10 0 05 0
© @ % g 2’ 10/ g@ 0 061 O@%
6/ 0 0 0
() 6
Source \ 1 Target
v N\
0« B B B B « 12
Z 2 g a g ’ Zﬁa Vs Matrix
=) @ B =) v =
B B a0 p g pB 4 o
5 B B B o a p| MDS Ve Multiplication
B B B B a0 B v
a 20 B B B B O
New V7 k /

representation
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Empirical Study

e Comparison Algorithms

* Two memetic algorithms (with different local search) as single task VRP solvers, i.e., EAI1 and EA2

* Single task solver with random solution injection, i.e., EAI+R and EA2+R

* Proposed explicit evolutionary multi-tasking algorithm, i.e., EEMTA

* Existing evolutionary multi-tasking algorithm, i.e., PMFEA

e Benchmarks

Instance | Customer Number | Vehicle Capacity | Vehicle Number
A-n54-k7 54 100 7
A-n62-k8 62 100 8
A-n80-k10 80 100 10
B-n50-k7 50 100 1
B-n64-k9 64 100 9
B-n78-k10 18 100 10
P-n50-k8 50 120 8
P-n60-k10 60 120 10
P-n76-k5 16 280 5

High-similarity, medium-similarity, and low-similarity
multi-tasking CVRP pairs are constructed by randomly
and independently deleting 10%, 30%, and 50%

customers from the CVRP instances, respectively.

* http://neo.lcc.uma.es/vrp/known-best-results/

Configurations

» Parameters for the proposed EEMTA:

* aand Bin DM: a =10 and 6 = 1000

* Number of solutions for transfer: Q =5

* Gen. interval for knowledge transfer: G=5

Population size:
* EA1, EA2, EA1+R, EA2+R, and EEMTA: 50
* PMFEA: 100

Maximum generations: 100
Independent runs: 20
Local search settings:

Local search in EA1 and EA1+R: Replace,
single-insertion, and two-swap.
Local search in EA2 and EA2+R: Replace.
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A-n80-k10-h-t1 B-n78-k10-h-t1 P-n76-k5-h-t1
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EEMTA has faster convergence than both the single-task and »
the multitasking PMFEA on high-similarity multi-tasking CVRPs
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Convergence trace of EEMTA versus PMFEA and single-task EAs on representative
high-similarity multitasking CVRPs.
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transferred solutions, it will be given tag value 1, otherwise O.

Tracking of best solutions along the evolutionary search. If the best solution is generated from the
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OUTLINE 03 Evolutionary Transfer Dynamic Optimization

* M. lJiang, Z. Wang, L. Qiu, S. Guo, X. Gao, and K. C. Tan, "A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer
Learning", IEEE Trans. on Cybernetics, in press, 2020.

* L. Feng, W. Zhou, W. Liu, Y. Ong, and K. C. Tan, “Solving Dynamic Multi-objective Problem via Autoencoding Evolutionary Search”, IEEE Trans.
on Cybernetics, submitted, 2020.

* M. lJiang, Z. Wang, S. Guo, X. Gao, and K. C. Tan, “Individual-based Transfer Learning for Dynamic Multi-objective Optimization”, IEEE Trans. on
Cybernetics, submitted.

* M. Jiang, G. Chi, G. Pan, S. Guo, and K. C. Tan, “Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains”, IEEE Trans. on

Robotics, submitted.
* W.Zhoy, L. Feng, K. C. Tan, M. Jiang, and V. Liu, “Evolutionary Search with Multi-View Prediction for Dynamic Multi-objective Optimization”,

IEEE Trans. on Cybernetics, submitted.



Evolutionary Transfer Dynamic Optimization kagm

City University of Hong Kong
B AH WERR
Professional - Creative

rofession re
For The World

Evolutionary Transfer Dynamic Optimization

Dynamic multi-objective optimization problems (DMOPs):
Minimize F(x,t) = [f;(x,t), ..., fn(x,t)]', subjectto x e X

t represents time index:

17
e=—|-|

ne LT
where T is the generation counter, T is the number of
generations for which t remains the same, and n; is the .
number of distinct steps in t. T determines the frequency of
change and n; determines the severity of change in a problem.
A smaller value of n; means larger change, whereas a smaller
value of T means more frequent occurrence of changes.

__________________________________

Robot gait is optimized based on the ‘:
changing terrain so that objective I
functions such as stability and speed i
. are optimized. )

__________________________________

L

Stability

SR =X
2,9 ~ oz
98 oo

Design example of robot gait
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Evolutionary Transfer Dynamic Optimization

* Evolutionary algorithms (EAs) have been widely applied to solve dynamic multi-
objective optimization problems.

* Prediction-based EA methods estimate some solutions based on change patterns
observed in past search experience to guide the search in subsequent environments.

* |In DMOPs, the changing POFs may lead to
different distributions of the training and ‘
predicted samples. The POFs may be Non- ; \
IID within two consecutive environments. : :

POFs POFs

* Transfer learning (TF) can help to address
the Non-IID issue in DMOPs by exploiting
knowledge in past environment to generate ~ Non Independent and Identical Distributed

a good initial population for Prediction- (Non-IID) problem: Training samples and test
based EAs samples subject to different distributions.

* S.Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, and N. Krasnogor, “Benchmark Problems for CEC’2018 Competition on Dynamic Multiobjective
Optimisation”, IEEE CEC’2018 Competition, 2018.
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Individual-based Transfer Learning

* Individual-based Transfer Learning for Dynamic Multi-objective Optimization (IT-DMOEA):
Exploring the current environment to obtain a set of good solutions for knowledge transfer.

* Pre-search Strategy: Obtain a high-quality
population as training samples to guide the search ‘
direction to reduce effect of negative transfer.

* Individual Transfer: Reuse information from past
environment and the guided population to produce

Example of negative transfer

a good initial population. 4% '

Gwde transfer dlrectlon
% 9
@

Guided population  Initial population

(a) Environment 1 (b) Environment 2

* M. lJiang, Z. Wang, S. Guo, X. Gao, and K. C. Tan, “Individual-based Transfer Learning for Dynamic Multi-objective Optimization”, IEEE Trans. on
Cybernetics, submitted.
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IT-DMOEA: Pre-Search Strategy 2R

Pre-search strategy obtains a high-quality population (guided population) as training
samples to reduce the possibility of negative transfer.

» Reference vectors: A set of uniform reference vectors R; fo A
are generated. For each reference vector, two individuals
(in red) with the minimum PBI values are selected.

* Crossover: Individuals on neighboring reference vectors
are mated to form a population pool.

* Mutation: Individuals are mutated with Gaussian
variation and added to the population pool.

* For each reference vector, two individuals are selected

from the population pool to generate a guided population. Z*T - ~ f
fi l
R,(0,1)
o uniform reference vector
o o /
* Penalty boundary intersection (PBI) is used for the
R»(0.5,0.5) selection of two individuals (for each reference vector)
® in order to maintain a good balance of convergence
o ® and diversity in the population.
(5L - 5
2T Ry(1,0) fo
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IT-DMOEA: Indi

e The idea of individual transfer,
individual is a strong indiy

* Sample-based classifier.

* Ensemble of weak classi

Adjusting weights repeatedly can
gradually make weak classifiers
more accurate in classifying
solutions of the target domain.
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ts are reduced if
als from the source
are misclassified.

Weights are increased if

. . ‘ 2 individuals from the target
® O O ° "()jomam are misclassified.
. . . Step 1 n @ L] Step2| m . Step 3 SVM h,,
The historical population g hyperplane o> I ® 0 ©
(source domain) O O O »° ’
hyperplane

Guided population
(target domain)

OI

The weak classifier
h is trained with the
guided population
and historical
population

~

O . Non-dominated individua
@ [P Dominated individuals

According to the error of ¢

h{, the weights of individua%)
are adjusted, and a pe :
weak classifier i A strong classifier hg

is assembled with the

weak classifiers.
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IT-DMOEA: Forming Initial Population

* The strong classifier hy then identifies individuals that are randomly generated in the
current environment as strong or weak individuals. Those Individuals that have been
identified as non-dominated will be selected to form an initial population to drive the
evolution towards the newly changed Pareto front.

Random individuals
Initial population

00 Trained strong classifier

@O
...—> hy=)Y h —Q @
@00 ' Z

@ 0
@00 o
@ Non-dominated individuals #»

| R T |
@ Dominated individuals 1 N\ | lL®
®
|
|
|
|

l

P
Pre — Search 1'—) TraAdaboost @ > : Z hy —|—<5>>

|
|
| By
|
|
|
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IT-DMOEA: Experimental Study

MIGD

MEAN AND STANDARD DEVIATION VALUES OF MIGD METRIC OBTAINED BY COMPARED ALGORITHMS FOR DIFFERENT

DYNAMIC TEST SETTINGS
Problems  7¢, 7y PPS MDP MOEA/D-SVR Tr-DMOEA MOEA/D-KF SGEA T-DMOEA
10,10 0.0711£5.68E-3(+)  0.0773+£6.79E-4(+)  0.0469+523E-3(=)  03331+2.19E-2(+)  0.0483+3.58E-3(+)  0.0886:£1.08E-2(+) | 0.0461-+4.68E-3 ° N t I G D N I G D
DF11 10,5 0.0733+1.90E-3(+)  0.0787+7.61E-4(+)  0.04514327E-3(-)  0.3797+5.13B-2(+)  0.051142.94E-3(=)  0.0977+1.45E-2(+) | 0.0506+3.09E-3 e g ative
510 0.074949.11E-3(+)  0.0849£1.01E-3(+)  0.0453F3.66E-3(-)  0.417842.94E-2(+)  0.0604+2.91E-2(+)  0.11924£137E-2(+) | 0.0495+3.58E-3
10,10 0.8513£837E-2(-)  0.6769+£123E-2(+)  0.5851+526E-2(-)  1.1900£1.64E-5(=)  0.6468+5.90E-2(-)  0.248042.98E-2(-) | 1.1915:2.66E-1 d f 1
DF12 10,5 0.819349.67E-2(-)  0.6766+1.06E-2(+)  0.5444+5.19E-2(-)  1.1933+129E-5(=)  0.5809+2.49E-2(-)  0.2895+3.06E-2(-) | 1.197442.75E-1 Eva I u ate t h e de g ree orn ega t ve
510 0.8618+6.61E-2(-)  0.3552+1.05E-2(-)  0.5927+345E-2(-)  1.1923+1.65E-5(=)  0.6866:4.74E-2(-)  03953+4.32E-2(-) | 1.2037+2.72E-1

transfer:

10,10 0.2414£2.49E-3(+)  1.3416+341E+0(+)  0.2345+287E-3(+)  2.73124+1.09E+1(+)  0.236445.20E-3(+) 0.1587+£1.91E-2(+) | 0.0668+1.40E-3
DFI3 10,5 0.26604+2.30E-3(+)  1.3526£3.64E+0(+)  0.2351£2.57E-3(+)  2.6262+£1.08E+1(+)  0.2478+3.42E-3(+) 0.1900£1.49E-2(+) | 0.0702+1.25E-3
5.10 0.23384+2.52E-3(+)  1.3573£3.50E+0(+)  0.2454+£3.96E-3(+)  2.8032£1.14E+1(+)  0.241442.13E-3(+) 0.2735+£3.40E-2(+) | 0.0693+1.13E-3

10,10 0.0329+£6.76E-3(+)  0.9623+2.05E+0(+)  0.0332+£6.65E-3(+)  1.8257+6.69E+0(+)  0.0358+5.93E-3(+)  0.0555+6.89E-3(+) | 0.0150+2.00E-3
DF14 10.5 0.0339+2.95E-3(+)  0.9556+1.98E+0(+)  0.0368+4.41E-3(+)  1.6727+5.57E+0(+)  0.0351+5.95E-3(+)  0.0781£1.01E-2(+) | 0.0198+2.35E-3

5,10 0.0400+6.41E-3(+) 0.9730+2.18E+0(+)  0.0361+£9.98E-4(+) 1.8333+6.06E+0(+)  0.0466+3.19E-3(+) 0.0838+1.01E-2(+) 0.027643.36E-3 - ( tr — rnd)
NIGD E IGDE — IGD]

10,10 2.327248.15E+0(+)  0.0768+1.99E-2(-)  2.1466+£1.80E+0(+)  2.6592£1.98E+0(+) 2.7516+4.27E+0(+)  2.5827+1.88E+0(+) 0.1092+7.19E-2
F5 10,5 24299+£1.39E+1(+)  0.1252+1.82E-2(-)  2.3276:1.31E+0(+)  2.8026£3.26E+0(+)  24003+2.52E+0(+)  2.4366+1.85E+0(+) 0.1888+3.34E-2

510  3.8499+4.96E+0(+)  0.6815+£337E-1(+)  2.6935+1.35E+0(+)  3.6919%+1.63E+0(+) 3.0477+221E+0(+)  4.53524+8.15E+0(+) | 0.0884£8.25E-3 teT d
10,10 1.472348.97E-1(+)  0.0509£1.06E-3(-)  1.8716+9.12E-1(+)  1.30954835E-1(+)  1.3247+3.86E-1(+)  1.282646.51E-1(+) | 0.2804£5.10E-2 S. t . I G D tr > I G D m
F6 105 1.5399+244B+0(+)  0.4274£1.04E-1(+)  14738+4.62E+0(+)  1.23494527E-1(+)  1.91164230+00(+)  1.252943.994E-1(+) | 0.2251£8.25E-2 t t ’
510  1.4189+839E-1(+)  12831£5.07E-1(+)  2.0589+2.38E+0(+) 240942 71E+0(+) 22788£1.67E+0(+)  2.3230£8.53E-1(+) | 0.3039+3.04E-2
10,10 1208942.03E+0(+)  0.0734+8.87E-3(-)  1.3380+7.74E-1(+)  13270+5.77E-1(+)  1.6307+1.05B+0(+)  1.1449+1.98E-1(+) | 0.2436+7.19E-2
7 105 14417+584B+0(+)  0.2224+4.75E-2(+)  14501£221E+0(+)  1.42954332E-1(+)  1.5664:1.77E+0(+)  1.256643.59E-1(+) | 0.0766-+2.46E-3 tr ™md :
510 1789742.02E+0(+)  1.2676+451E-1(+)  1.7304£1.55E+0(+)  3.159348.77E-1(+)  1.9415+8.07E-1(+)  2.6158+1.19E+0(+) | 0.0941+2.06E-3 w h ere I G D t an d I G D t IS th e
10,10 0.3216+6.11E-2(+)  0.4479+£247E-2(+)  0.5578=+1.01E-1(+)  0.7875£8.01E-2(+)  02171+5.94E-3(-)  0.8432+£646E-2(+) | 0.3157£7.93E-2 .
8 10,5 04917+1.21E-2(+)  04334+1.93B-2(+)  0.7866+3.72E-1(+)  0.7331+8.94E-2(+)  0.2393+2.18E-2(-)  0.8125+2.51E-2(+) | 0.3076+3.30E-2 | G D Va | ue o bta ine d by th e
500  0.534942.50E-2(+)  0.5831£7.23E-2(+)  0.6813£1.05E-1(+)  1.0615+4.13E-1(+)  0.3266+1.16E-2(-)  1.3390:£1.69E-1(+) | 0.3536:1.38E-3
10,10 0.9658+6.26E-1(+)  0.1478+3.61E-2(-)  1.5411+8.39E-1(+)  14721£594E-1(+)  0.8209+5.96E-1(+)  1.3766+630E-1(+) | 0.22211.27E-3 tra N Sfe rre d p 0] p u | at I0ONn an d th e
Fo 10,5 09949+2.62E+0(+)  0.176942.62E-2(-)  1.6188+£5.61E-1(+)  1.4594+4.75E-1(+)  0.72254234E-1(+)  1.357943.91E-1(+) | 0.2079+3.30E-3
510 17503+129B+0(+)  0.6782+£347E-1(+)  2.7898+4.17E+0(+)  2.6079%1.14E+0(+)  1.70666.89E-1(+)  3.0071+2.05E+0(+) | 0.1797+3.34E-3 ran d om p o) p u | atl on at t| me t
’
10,10 3.522147.01E+0(+)  L177941.96E+0(+) 21921 1.87E+0(+)  2.732742.60E+0(+)  2.9650-£578E+0(+)  4.1148+1.84E+1(+) | 0.1252+1.56E-3
Fl0 10,5 1.888942.72E+0(+)  0.1690+2.10E-2(-)  1.9292:49.45E-1(+)  14407+6.08E-1(+)  0.6933:£1.57E-1(-)  1.64514£9.44E-1(+) | 0.9813+2.10E-3 respe Ct | ve |
510  3.5543+7.53E+0(+)  0.6153£301E-1(+)  4.5335+221E+1(+) 2.7845+320E+0(+) 1.9263+£146E+0(+)  3.1591+7.60E+0(+) | 0.0785+4.45E-3 p y

+=/- 47/0/13 4711112 36/4/20 43/4/3 42/2/16 46/0/14

e The experimental results suggest that IT-DMOEA can obtain solutions with good
convergence and diversity for many of the benchmark functions.
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IT-DMOEA: Experimental Study
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Relationship between the severity of change and NIGD in
the initial populations obtained by various methods.
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Examples of averaged IGD values for various methods.

* The proposed IT-RM-MEDA (IT-DMOEA with RM-MEDA method) tends to have the smallest

NIGD values which suggests that it is effective

in preventing negative transfer generally.

50
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IT-DMOEA: Experimental Study on Run Time =~ %%

The results show that the runtime of the proposed IT-DMOEA
is the fastest on most of the benchmark functions.
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* Itis often desired to find and track the Pareto optimal solutions rapidly in DMOPs.

* Dynamic evolutionary multi-objective algorithm via manifold transfer learning (MMTL-
DMOEA) combines a memory mechanism with a manifold transfer learning of sample

geodesic flow (SGF).

Time O

° Manifold transfer

>

’
’

»

’

P S

R

Se._o

Elite solutions

MMTL-DMOEA

[ ]
Predicted solutions

Initial solutions

M. Jiang, Z. Wang, L. Qiu, S. Guo, X. Gao, and K. C. Tan, "A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer
Learning", IEEE Transacts on Cybernetics, in press, 2020.
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MMTL-DMOEA: Memory S

@ 1 eﬁ.

>
Memory

. 3] &%

Elite solutions

Fitness prediction

Retrieving of Solutions

Saving of Solutions * Once any environment change is detected,

» Solutions from past environments are fitness values of individuals from memory are
stored in external memory. predicted.
* When the external memory overflows, the * Non-dominated solutions are selected as the

earliest stored individuals are replaced. elite solutions.
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MMTL-DMOEA: Manifold Transfer BEER

latent space

@ ¢(0) #o2 ¢(04) B(1) © O O
X ¢(0.6) X

0 +o T 0Ll oo e
O

Geodesic flow } O O O O
Elite solutions\A /\ - Trzi/sformed solutions

x from source domain I:> Manifold transfer I:> x' in the target domain
* Construct the geodesic flow:

©
©

XY
oo
XX

Predicted solutions
¢(k) = Psulr(k) - RSUZE(k)

¢(0) = P; and ¢(1) = Pr, P, Py is the covariance matrices (produced by PCA) of elite solutions and
good random solutions, respectively; Uy, U, are orthogonal matrices; I'(k) and X (k) are diagonal
matrices; R is the orthogonal complement of F; k determines the number of points on the manifold.

* Transform elite solutions:
X = xT¢(k);k €(0,1)

Find predicted solutions: The transformed latent space is like the target domain, e.g., the predicted
solution x' is like x on the geodesic flow ¢ (+),

x' = argmin ||x""$() — x|
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MMTL-DMOEA: Experimental Study R

MMTL-DMOEA has excellent IGDs and rapid convergence in
tracking the Pareto-optimal fronts for DMOPs.
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04 » Evolutionary Transfer Optimization Application
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Gait Generation & Optimization

* Robot gait refers to the periodic movement of legged robot joints. Gait optimization
is to generate the optimal control trajectory of a robot under different internal and
external constraints.

* |t can be solved as a multi-objective
problem by defining multiple designated
objective functions, e.g. speed, stability,
energy efficiency etc.

* In many situations, different gait optimization is needed under different external
constraints and environments.

: Selected Initial population
* : Optimized population

Transfer learning can help to obtain
high-quality gait movements efficiently
in a new environment by re-using/
transfer knowledge from optimal gaits
in previous environments.

*
£

Stability(-)

.
.~ MOP(EAS)

*
.

]
AS

*
Py F PR
1 Velocity(-)

Knowledge

(Optimized gait parameters)

flat ground E

S Task mountain E
(Source Task) (Target Task)
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From the perspective of transfer learning, the gaits trained in simple and complex
environments can be regarded as the source and target domain, respectively. These
two tasks are ‘similar’ in that they both attempt to generate a gait that optimizes

performance in a specific environment.

(Source Task)

mountain E4
(Target Task)

Stability(-)

Velocity('f

flat ground E

v
’ ©, :Individual gait

\siquence

Stability(")

Fq(Xy)
T

\

Step 3

Transfer Component Analysis

/(v}\p{iﬂ)l’w
:.:: L) 9

o(Fy (x)) ¥ 2reminlleF1) -l |

>
>

[10)]

Velocity(-)

>

>4

Stability(-)

-

Fxp) R KR

: Random sampling populatio;
: Selected Initial population
bE Optimized population

*

/.I
POP, ,” MOP(EAs)
¥ Step 5
Y *

@ EAs

Velocity(-)

select initial population

The Latent Space

Step 4

Apply the
(©| optimized gaits

Step 6

sequence
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Experimental Results
* Four different experimental environments are studied.

-

(a) Source environment EO (b) Target environment E1 (c) Target environment E2 (d) Target environment E3

» Convergence trace

25 22
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mberferstons * Convergence traces of different
4 B algorithms under various environments.
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Experimental Results

The robot walking in E1 environment

> Evolutionary Transfer Optimization Application

RlatData-EAS

(c) Tr-Go

(a ande |
* The trade-off graphs
NSGA-II RM-MEDA MOPSO

2 20}em 0 |
N R e e The trade-off graphs under
" ooy C " oy R A different environment of E1,

U ;W;\ B Ty g o :E?iﬂm‘ " "‘\:"“".%-E R E2, and E3. Each algorithm is
E28° \:10 I i e ya;. . evaluated under three settings:
(RS- s e . AN random sampling (in red),

L "oy T ey direct use of samples from EO
cai i \h‘;’”“ e “w: -:i%*”:* a | %«:@ (in bIack? and ’Fhe proposed Tr-
i S - - @;:.%'w;_%:;: 3" ..,é?‘% Go algorithm (in green).
‘ |

Velocity Velocity Velocity
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Future Research Topics

e ETO for Large-scale Optimization

Solving large-scale optimization problems via transfer and learning
from related/smaller and/or solved problems (such as via cooperative
coevolution etc.).

Designing ETO algorithms capable of solving large-scale problems in a
knowledge space having a much smaller search space.

* ETO for Multi-form Optimization

Designing algorithms capable of automatically generate and configure
different formulations of a problem.

Efficient allocation of computational resources for conducting
evolutionary search on different problem formulations.
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Future Research Topics

e ETO in Complex Data Environment

e Designing ETO algorithms capable of positive knowledge transfer
from from noisy data and across problem domains where the data
appears in a sequential order.

* Designing ETO algorithms for problems having imbalance data
(with/without labels) or data with property changes rapidly in
uncertain environments.

 Theoretical Study of ETO

e Study on how and when knowledge in source problem can help to
improve the search in a target task.

* Defining useful representation of knowledge that.can.be transferred
across heterogeneous problem domains. EB @

e R -

O]
B[]
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Conclusions

ETO is an emerging paradigm that integrates EA solvers with knowledge learning
and transfer across related domains to achieve efficient and better optimization
performance.

ETO has been applied to multi-task and dynamic optimization. Enhanced

optimization performance can be achieved with knowledge learning and transfer
across problems.

ETO has been applied to robot gait optimization by transferring knowledge across
environments. Knowledge transfer along the evolutionary search can further
improve the gait optimization performance in dynamic environments.

As one of the emerging research areas in Computational Intelligence, there are
many challenges and open research questions in ETO.
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