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• Existing EAs often start a search from scratch or at “Ground Zero” knowledge state.
• It assumes all search problems are independent and so search capability does not 

grow or evolve along with the problem to be solved.
• But problems seldom exist in isolation and hence humans do not search from scratch.
• Common information exist between tasks/problems which can be  effective for 

problem-solving when they are properly harnessed.

(a) Landscape of Rastrigin’s function 
(Task 1)

Introduction

Present Day Evolutionary Optimizers

(b) Landscape of Sphere’s function 
(Task 2)

(c) Task 1 and Task 2 in 1 dimension

The solutions found along the optimization process of Sphere function can potentially be 
utilized to aid the optimization of the more complex Rastrigin's function.



• Evolutionary Transfer Optimization (ETO)

A paradigm that integrates EA solvers with knowledge learning and transfer across 
related domains for better optimization performance.

• The design of new knowledge learning and transfer approaches is necessary for 
developing advanced ETO algorithms.

• There are three issues to be considered in ETO, e.g., transferability, transfer component 
and transfer algorithm.

Introduction

Evolutionary Optimization + Transfer Learning

Year

D
oc

um
en

ts
Documents by year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
60

70

80

90

100

110

120

130

140

150

Copyright © 2020 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Scopus - Search with “Evolutionary 
Transfer Optimization”.

ET
O

 P
ap

er
s

Year



• K. C. Tan, L. Feng and M. Jiang, “Evolutionary Transfer Optimization - A New Frontier in Evolutionary Computation 
Research”, IEEE Computational Intelligence Magazine, submitted.
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Evolutionary Transfer Optimization (ETO)

Knowledge transfer across 
problems possessing 
different search spaces

Knowledge transfer across 
problems sharing the same 
search space

Optimization in Uncertain Environment1

Multi-Task Optimization2

Complex Optimization Applications3

Multi/Many-Objective Optimization4

Machine Learning Applications5

Evolutionary 
Transfer 
Optimization 
(ETO)

Homogeneous ETO

Heterogenous ETO



• The optimization problems may need to be solved in the presence of uncertainties, 
such as noise or approximations in function evaluation, dynamic changes of decision 
variables and/or fitness functions, and robustness.

• M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. Yen, “Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms”, IEEE Trans. on 
Evolutionary Computation, 22(4), pp. 501–514, 2018.

• A. Simoes and E. Costa, “Improving Memory Usage in Evolutionary Algorithms for Changing Environments”, IEEE Congress on Evolutionary 
Computation, pp. 276–283, 2007.

• I. Hatzakis and D. Wallace, “Dynamic Multi-Objective Optimization with Evolutionary Algorithms: A Forward-Looking Approach”, The 8th 
Annual Conf. on Genetic and Evolutionary Computation, pp. 1201–1208, 2006.

Introduction

ETO for solving a problem in uncertain environment

• How to design robust and 
incremental transfer learning 
methods for positive knowledge 
transfer while the evolutionary 
search progresses online?

• How to design ETO approaches 
considering data imbalance in 
knowledge learning and transfer?

ETO for Optimization in Uncertain Environment



• How to evaluate correlation between 
tasks to ensure positive knowledge 
transfer in ETO?

• How to design ETO methods capable of 
solving many tasks simultaneously (with 
better performance and yet faster)?

• M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary Multitasking with Dynamic Resource Allocating Strategy”, IEEE Trans. on Evolutionary 
Computation, 23(5), pp. 858-869, 2019.

• J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized Multitasking for Evolutionary Optimization of Expensive Problems”, IEEE Trans. on 
Evolutionary Computation, 23(1), pp. 44-58, 2019.

• A. Gupta, Y. Ong, and L. Feng, “Multifactorial Evolution: Toward Evolutionary Multitasking”, IEEE Trans. on Evolutionary Computation, 20(3), 
pp. 343-357, 2016.

Introduction

ETO for Multi-task Optimization
• Multi-task optimization focuses on solving multiple self-contained tasks simultaneously. 

By transferring useful knowledge across tasks online, the solving of one problem may 
lead to the related problem being solved automatically.

Illustration of Multi-task optimization



• A. Chaabani and L. Said, “Transfer of Learning with the Coevolutionary Decomposition-Based Algorithm-II: A Realization on the Bi-level 
Production-distribution Planning System”, Applied Intelligence, 49(3), pp. 963-982, 2019.

• L. Feng, Y. Ong, M. Lim, and I. Tsang, “Memetic Search with Interdomain Learning: A Realization Between CVRP and CARP”, IEEE  Trans. on 
Evolutionary Computation, 19(5), pp. 644-658, 2015.

• R. Santana, A. Mendiburu, and J. Lozano, “Structural Transfer Using EDAS: An Application to Multi-Marker Tagging SNP Selection”, IEEE 
Congress on Evolutionary Computation, pp. 1-8, 2012. 
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• Many real-world applications involve complex optimization problems. By learning and 
transferring useful knowledge from related and simpler problem domains, ETO can 
help to deal with complex optimization problems.

• How to construct simple and 
related problems in ETO to 
improve the solving of a given 
complex problem?

Examples of complex optimization problems

ETO for Complex Optimization Applications



• J. Lin, H. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization”, IEEE Trans. on 
Cybernetics, in press, 2020.

• C. Yang, J. Ding, Y. Jin, and T. Chai, "Offline Data-Driven Multiobjective Optimization: Knowledge Transfer Between Surrogates and Generation 
of Final Solutions," IEEE Trans. on Evolutionary Computation, 24(3), pp. 409-423, June 2020.

Introduction

ETO for Multi/Many-Objective Optimization

Illustration of knowledge transfer across MOPs

• Multi-objective problem (MOP) involves more than one objective function to be 
optimized simultaneously, e.g., when optimal decisions need to be taken in the presence 
of trade-offs between two or more conflicting objectives.

• ETO can be applied to solve multi- and many-objective optimization problems by 
transferring useful knowledge across the problems. 

• How to define useful information in 
the transferred solutions and how 
such information are related to the 
multiple objectives across problems? 



• T. Wei and J. Zhong, “A Preliminary Study of Knowledge Transfer in Multi-Classification Using Gene Expression Programming”, Frontiers in 
Neuroscience, 13, pp.1396, 2020.

• B. Xue, M. Zhang, W. Browne, and X. Yao, “A Survey on Evolutionary Computation Approaches to Feature Selection”, IEEE Trans. on 
Evolutionary Computation, 20(4), pp. 606-626, 2016.

Introduction

ETO for Machine Learning Applications
• ETO methods can be used in machine learning applications by leveraging on useful 

knowledge across learning problem domains, which can lead to more efficient 
performance of classification and feature selection etc.

• How to design ETO algorithms capable of leveraging on big data technologies 
and advanced hardware (e.g., graphics processing units) to address today’s ever-
growing range and scale of demands in machine learning applications?

Examples of classification, regression, and feature selection problems
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• L. Zhou, L. Feng, K. C. Tan, J. Zhong, Z. Zhu, K. Liu, and C. Chen, "Towards Adaptive Knowledge Transfer in Multifactorial Evolutionary 
Computation", IEEE Trans. on Cybernetics, in press, 2020.

• J. Lin, HL. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization", IEEE Trans. on 
Cybernetics, in press, 2020.

• L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, and K. C. Tan, "Explicit Evolutionary Multitasking for Combinatorial Optimization: A 
Case Study on Capacitated Vehicle Routing Problem", IEEE Trans. on Cybernetics, in press, 2020.

• L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, and K. Qin, "Solving Generalized Vehicle Routing Problem With Occasional Drivers via 
Evolutionary Multitasking", IEEE Trans. on Cybernetics, in press, 2019.

• L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. Ong, K. C. Tan, and A. Qin, “Evolutionary Multitasking via Explicit Autoencoding”, IEEE Trans. on 
Cybernetics, 49(9), pp. 3457-3470, 2018.

• A. Gupta, Y. Ong, L. Feng, and K. C. Tan, "Multiobjective Multifactorial Optimization in Evolutionary Multitasking", IEEE Trans. on Cybernetics, 
47(7), pp. 1652-1665, 2016.



(a) Knowledge transfer occurs implicitly 
via genetic crossover.

(b) Knowledge transfer occurs explicitly via 
additional transfer approach.

Implicit & Explicit Evolutionary Multitasking

Multiple populations 

Evolutionary Transfer Multi-task Optimization
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• Case study on Vehicle Routing Problems (VRPs) with heterogeneous capacity, time 
window and occasional driver (VRPHTO).

• As both regular drivers and occasional drivers are considered for providing services, 
VRPHTO contains more constraints than a capacitated VRP.  

• The objective of VRPHTO:  Minimize the total cost involved without violating any 
constraint.

Regular drivers

Each type of vehicle has a distinct capacity, cost 
(fix cost + variable cost) and vehicle time window.  

Occasional drivers

Implicit Knowledge Transfer

• L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, and K. Qin, "Solving Generalized Vehicle Routing Problem With Occasional Drivers via 
Evolutionary Multitasking", IEEE Trans. on Cybernetics, in press, 2019.

Evolutionary Transfer Multi-task Optimization



Implicit Knowledge Transfer
The Algorithm

• To solve VRPHTOs via evolutionary multi-tasking with a single solver, the following issues 
should be considered:
• How to integrate multiple VRPHTOs with different properties into a unified search space?

• How to evaluate a chromosome in the unified search space for a specific task?

• How to determine the elitism of chromosomes whose performance vary among different 
VRPHTO tasks?

Evolutionary Transfer Multi-task Optimization



0.15统一编码的解 0.74 0.33 0.82 0.28

0.23统一编码的解 0.82 0.67 0.95 0.51

5 2 3 1 4

p Random-key representation:

Implicit Knowledge Transfer
Permutation-based Representation 

Solution 1:

Solution 2:

Same Sorting Scheme:

p Permutation-based Representation: 

• 𝐷! : Dimension of the 𝑖"# task

• 𝐷$%& : Dimension of the unified search space    

• 𝐷$%& = max{𝐷!}, 𝑖 = 1, . . . , 𝐾

1 10 8 3 7 96 4 52

𝐷'() = 10

1 10 8 3 7 96 4 52

𝐷! = 5

1 3 4 52

𝐷! = 5

A Unified Solution:

Solution for 𝑇!:

• Based on sorting scheme

• Cannot represent VRP solutions effectively

Evolutionary Transfer Multi-task Optimization



Routing Information Exchange

1. if (𝝉𝒂 == 𝝉𝒃) or 𝒓𝒂𝒏𝒅 < 𝒓𝒎𝒑 then

2. 𝐂𝐫𝐨𝐬𝐬𝐨𝐯𝐞𝐫 𝒑𝒂, 𝒑𝒃 →

Offspring 𝒄𝒂 and 𝒄𝒃;

3. else

4. 𝐌𝐮𝐭𝐚𝐭𝐞 𝒑𝒂 → Offspring 𝒄𝒂;

5. 𝐌𝐮𝐭𝐚𝐭𝐞 𝒑𝒃 → Offspring 𝒄𝒃;

6. endif

Offspring Generation

• Crossover operator:  Order crossover

• Mutation operator:  Swap mutation

2 3 6 4 15P: 2 3 5 4 16C:

swap

An example of swap mutation (SW)

An example of order crossover (OX)

1 3 6 4 52P 1:

6 2 4 3 15P 2:

3 6 4
C 1:

152

6 4 3 5 12P 2:

1 2 3 6 54P 1:

4 3 5C 2:
162

Implicit Knowledge Transfer
Routing information exchange 

Evolutionary Transfer Multi-task Optimization



Generation of VRPHTO Benchmarks

• Denote the n regular types as 𝑅𝑇*, 𝑅𝑇+, ⋯ , 𝑅𝑇, with the capacity arranged in an ascending order.

• Randomly select ,+ regular types to generate occasional types.

• The time window of occasional driver is randomly generated within the length of -./
0
, -./

1
that 

lies in the time window of the depot, i.e., [E, L].

Implicit Knowledge Transfer
Empirical Study 

R1A (12 Problems) R2A (11 Problems)

V-Type Capacity Fix Cost
Variable 

Cost

VTW
V-Type Capacity Fix Cost

Variable 
Cost

VTW

Ve Vl Ve Vl

A 30 50 1 0 230 A 300 450 1 0 1000

B 50 80 1 0 230 B 400 700 1 0 1000

C 80 140 1 0 230 C 600 1200 1 0 1000

D 120 250 1 0 230 D 1000 2500 1 0 1000

E 200 500 1 0 230 A1 300 225 1.5 186 596

B1 50 65 1.5 80 191 B1 400 575 1.5 554 917

C1 80 110 1.5 29 113 / / / / / /

Time window of the depot [0, 230] Time window of the depot [0, 1000]

Evolutionary Transfer Multi-task Optimization



• 27 multi-tasking VRPHTO problem sets are obtained by pairing the instances in order 
within the same VRPHTO category.

Generation of Multi-tasking VRPHTO Benchmarks

Multi-tasking 
Problems

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

VRPHTO 
Instances

R101A R103A R105A R107A R109A R111A C101A C103A C105A C107A RC101A RC103A RC105A RC107A

+ + + + + + + + + + + + + +

R102A R104A R106A R108A R110A R112A C102A C104A C106A C108A RC102A RC104A RC106A RC108A

Multi-tasking 
Problems

P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27

VRPHTO 
Instances

R201A R203A R205A R207A R209A C201A C203A C205A C207A RC201A RC203A RC205A RC207A

+ + + + + + + + + + + + +

R202A R204A R206A R208A R210A C202A C204A C206A C208A RC202A RC204A RC206A RC208A

Implicit Knowledge Transfer
Empirical Study 

Evolutionary Transfer Multi-task Optimization



Problem HVRPTWOD EMA SEA
Ave.Cost B.Cost Std.Dev Ave.Cost B.Cost Std.Dev

P1
R101A 
R102A

4313.16 ≈ 
4100.83 ≈

4293.64 
4081.19

10.10 
13.50

4316.88 
4104.31

4293.64 
4086.61

12.30
11.80

P4
R107A 
R108A

3856.19 ≈ 
3736.52 ≈

3835.71 
3714.18

12.00 
10.90

3858.50 
3741.90

3839.70 
3720.39

12.40
12.10

P8
C103A 
C104A

5543.79 ≈ 
5098.19 ≈

5488.79 
5034.15

47.90 
36.90

5539.57
5108.92

5490.09 
5039.83

37.80
29.70

P10
C107A 
C108A

5890.59 + 
5831.13 ≈

5812.59 
5793.08

51.10 
44.90

5914.91 
5859.83

5812.59 
5793.08

32.30
54.70

P12
RC103A 
RC104A

4781.20 ≈ 
4553.24 ≈

4742.57 
4527.84

25.20 
12.90

4782.48 
4560.20

4725.38 
4525.66

18.50
20.40

P16
C203A 
C204A

5210.46 ≈ 
5204.95 ≈

5210.45 
5204.86

0.00 
0.20

5210.47 
5205.28

5210.45 
5204.86

0.10
0.60

P20
R203A 
R204A

2949.74 ≈ 
2505.06 ≈

2864.29 
2412.65

63.10 
32.80

2966.87 
2519.87

2861.57
2502.35

55.50
7.50

P23
R209A 
R210A

2801.59 + 
2877.76 ≈

2615.27
2843.57

65.00 
13.50

2833.46 
2872.50

2808.98 
2735.90

12.60
45.10

P25
RC203A 
RC204A

3307.27 ≈ 
3042.94 ≈

3270.96
3030.65

21.40 
10.70

3311.12 
3045.65

3278.12 
3029.99

18.30
15.20

P27
RC207A 
RC208A

3067.49 ≈ 
2722.10 ≈

3050.27
2716.96

8.10 
2.90

3069.79 
2722.11

3054.51 
2716.96

12.40
2.20

Implicit Knowledge Transfer
Results and Analysis

EMA achieved superior or competitive performance against SEA on 37 out of 
a total of 54 VRPHTO instances in terms of the averaged cost.

Evolutionary Transfer Multi-task Optimization



Instances
Speed up (Fitness) 𝑺𝒑𝒆𝒆𝒅𝑼𝒑 = 𝑺𝑬𝑨𝑻𝒂𝒔𝒌 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏

𝒊

𝑬𝑴𝑨𝑻𝒂𝒔𝒌 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏
𝒊

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

R112A 1.64 
(3772.40)

1.86 
(3754.48)

2.09
(3736.56)

1.77 
(3718.64)

1.72 
(3700.72)

1.63 
(3682.79)

1.48 
(3664.87)

2.00
(3646.95)

C108A 1.56 
(6144.28)

1.66 
(6108.72)

1.94 
(6073.16)

1.57 
(6037.61)

2.13 
(6002.05)

2.25
(5966.50)

2.46 
(5930.94)

1.31
(5895.39)

RC107A 1.64 
(4927.24)

1.77 
(4891.85)

1.74 
(4856.46)

1.54 
(4821.08)

1.54 
(4785.69)

2.32 
(4750.30)

2.38
(4714.92)

1.80
(4679.53)

R204A
2.47 

(2785.61)
1.06 

(2752.39)
1.39 

(2719.17)
1.00 

(2685.95)
1.29 

(2652.74)
1.14 

(2619.52)
1.18 

(2586.30)
0.88

(2553.09)

C202A
1.57 

(5517.12)
1.09 

(5479.11)
1.00 

(5441.09)
1.42 

(5403.08)
3.08 

(5365.06)
3.31

(5327.05)
3.91

(5289.03)
2.13

(5251.02)

RC203A
1.48 

(3505.92)
1.20 

(3481.57)
1.53 

(3457.22)
1.44 

(3432.87)
1.16 

(3408.52)
1.98 

(3384.17)
1.93 

(3359.82)
2.87

(3335.47)

EMA achieved a faster convergence for most stages 
of the evolution in different instances.

Implicit Knowledge Transfer
Results and Analysis

Evolutionary Transfer Multi-task Optimization



C107A C108A RC107A RC108A

• Better optimization performance can be obtained by EMT as compared to SEA if 
similar problems are paired to be solved simultaneously.

Implicit Knowledge Transfer
Results and Analysis

(a) (b)

Evolutionary Transfer Multi-task Optimization



• Black dots denote the population at the 
current generation.

• Red star represents a solution which 
achieved positive transfer in the last 
generation.

• The neighbors of the red star (denoted as 
A and B) will be selected as the transferred 
solutions at the current generation.

• Each solution in EMT possesses the same probability of undergoing knowledge transfer. 
Poor solutions may lead to negative transfer in ETO.

• How to identify useful solutions for positive knowledge transfer?

Effective Knowledge Transfer
EMT/ET

• J. Lin, HL. Liu, K. C. Tan, and F. Gu, "An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization", IEEE Trans. on 
Cybernetics, in press, 2020.

The transferred solutions across tasks are selected based on those 
solutions achieving a positive transfer in the last generation.

Evolutionary Transfer Multi-task Optimization



The Smallest and average values (shown in the brackets) of IGD obtained by EMT/ET, EMEA, MFEA, SPEA2, NSGA-II 
on the nine MTO benchmarks.

Effective Knowledge Transfer
Results and Analysis

• Baseline solvers:  NSGAII, SPEA2, two recent multi-tasking algorithms (EMEA and MFEA). 
• Baseline strategies: 

• Selecting some non-dominated solutions in each task as the transferred solutions.

• Randomly selecting the transferred solutions in each task.

• Y. Yuan, Y. Ong, L. Feng, A. Qin, A. Gupta., B. Da, Q. Zhang, K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary Multitasking for Multiobjective 
Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results”, Technical Report, 2016.

Evolutionary Transfer Multi-task Optimization



(a) Convergence trace (b) Effects of transferred solutions for CILS

Effective Knowledge Transfer
Results and Analysis

Evolutionary Transfer Multi-task Optimization



• The problem of finding customers from 𝑃2 to 
represent customers in 𝑃" can be formulated 
as the learning of an 𝑛2×𝑛" transformation 
matrix 𝑀, so that 𝑃2 ×𝑀 = 𝑃",

where the first term is the reconstruction 
error and the second term is the weighted 𝑙*
norm-based regularization.

• L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, and K. C. Tan, "Explicit Evolutionary Multitasking for Combinatorial Optimization: A 
Case Study on Capacitated Vehicle Routing Problem", IEEE Trans. on Cybernetics, in press, 2020.

Explicit Knowledge Transfer
Explicit Multi-tasking for CVRP

min
3

𝑃2×𝑀 − 𝑃" 4 + 𝐷⨀𝑀 5#,

Explicit Knowledge Transfer for solving CVRPs

• Learning of Mapping across Capacitated Vehicle Routing Problems (CVRPs)

• Represent two CVRPs by two matrices, i.e., 𝑃6 and 𝑃" (𝑑×𝑛2 and 𝑑×𝑛" matrix; where 𝑑 is the 
number of features for representing the location of a customer, and 𝑛2 and 𝑛" is the number 
of customers in 𝑃2 and 𝑃", respectively).

Evolutionary Transfer Multi-task Optimization



• Knowledge Learning:  To capture the useful information embedded in each of the 
selected solutions, which can be transferred across different CVRPs.

• Construct an 𝑛%×𝑛& distance matrix 𝐷𝑀.
• The new estimated customer representations Psnew can be obtained via multi-

dimensional scaling with 𝐷𝑀.

• Solution Selection:  Select the best Q number of optimized solutions from the source 
CVRP domain based on the objective value to be transferred to the target CVRP domain.

Optimized CVRP solution:
{0, 𝒗𝟏, 𝒗𝟐, 𝒗𝟑,0, 𝒗𝟒, 𝒗𝟓, 𝒗𝟔,0, 𝒗𝟕, 𝒗𝟖,0}

Explicit Knowledge Transfer
Explicit Multi-tasking for CVRP

𝒗𝟐

The rule for setting 𝛼 and 𝛽 (𝛼 << 𝛽 ) is that the vehicle assignment and service order in the selected solution 
can be accurately obtained when applying clustering and pair-wise distance sorting with 𝐷𝑀

Evolutionary Transfer Multi-task Optimization



• Knowledge Transfer:

Explicit Knowledge Transfer
Explicit Multi-tasking for CVRP

• With the learned sparse customer mapping of M12 and M21 across CVRP domains 
and the new CVRP customer representation, the knowledge transfer across CVRPs 
can be performed by simple operation of matrix multiplication.

• The approximated customers of Pt is obtained via Ptnew= Psnew × M12. To obtain 
the transferred CVRP solution for Pt , K-means clustering with random initialization 
is conducted on Ptnew to derive the customer assignments of vehicles. 

Evolutionary Transfer Multi-task Optimization



Explicit Knowledge Transfer 
Illustrating Example

7

1
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Matrix
Multiplication

M

𝑣,
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𝑣.
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𝑣0
𝑣1
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1
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𝛼
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𝛽
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representation

0.5
0
0
0
0
0
0.6

0.4
0.5
0
0
0
0
0

0
0
1.1
0
0
0
0

0
0
0
1.1
0.1
0
0

0
0
0
0
0.5
0
0

0
0
0
0
0
1
0

M :

71 = + 10.6 * 0.5 *

Evolutionary Transfer Multi-task Optimization



• Comparison Algorithms
• Two memetic algorithms (with different local search) as single task VRP solvers, i.e., EA1 and EA2
• Single task solver with random solution injection, i.e., EA1+R and EA2+R
• Proposed explicit evolutionary multi-tasking algorithm, i.e., EEMTA
• Existing evolutionary multi-tasking algorithm, i.e., PMFEA

• Benchmarks

Explicit Knowledge Transfer
Empirical Study

High-similarity, medium-similarity, and low-similarity 
multi-tasking CVRP pairs are constructed by randomly 
and independently deleting 10%, 30%, and 50% 
customers from the CVRP instances, respectively.

• http://neo.lcc.uma.es/vrp/known-best-results/

• Configurations
• Parameters for the proposed EEMTA:
• α and β in DM: α = 10 and β = 1000
• Number of solutions for transfer: Q = 5
• Gen. interval for knowledge transfer: G = 5

• Population size: 
• EA1, EA2, EA1+R, EA2+R, and EEMTA: 50
• PMFEA: 100

• Maximum generations: 100
• Independent runs: 20
• Local search settings:
• Local search in EA1 and EA1+R: Replace, 

single-insertion, and two-swap.
• Local search in EA2 and EA2+R: Replace.

Evolutionary Transfer Multi-task Optimization



Explicit Knowledge Transfer
Results and Analysis

Convergence trace of EEMTA versus PMFEA and single-task EAs on representative 
high-similarity multitasking CVRPs.

Evolutionary Transfer Multi-task Optimization

EEMTA has faster convergence than both the single-task and 
the multitasking PMFEA on high-similarity multi-tasking CVRPs



Tracking of best solutions along the evolutionary search. If the best solution is generated from the 
transferred solutions, it will be given tag value 1, otherwise 0.

Explicit Knowledge Transfer
Results and Analysis

Evolutionary Transfer Multi-task Optimization

The transferred solutions across CVRPs successfully lead to 
the finding of best solutions along the evolutionary search
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Evolutionary Transfer Dynamic Optimization

Design example of robot gait

slope

St
ab

ili
ty

Speed

ground

POF2 POF1

Robot gait is optimized based on the 
changing terrain so that objective 
functions such as stability and speed 
are optimized.

• Dynamic multi-objective optimization problems (DMOPs):

Minimize 𝐹 𝒙, 𝑡 = [𝑓' 𝒙, 𝑡 , … , 𝑓((𝒙, 𝑡)]), subject to 𝒙 ϵ 𝑋
• t represents time index:

𝑡 =
1
𝑛*

𝜏
𝜏*

where 𝜏 is the generation counter, 𝜏3 is the number of 
generations for which t remains the same, and 𝑛4 is the 
number of distinct steps in t. 𝜏3 determines the frequency of 
change and 𝑛4 determines the severity of change in a problem. 
A smaller value of 𝑛4 means larger change, whereas a smaller 
value of 𝜏3 means more frequent occurrence of changes.
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Evolutionary Transfer Dynamic Optimization

• Evolutionary algorithms (EAs) have been widely applied to solve dynamic multi-
objective optimization problems.

• Prediction-based EA methods estimate some solutions based on change patterns 
observed in past search experience to guide the search in subsequent environments.

Non Independent and Identical Distributed 
(Non-IID) problem:  Training samples and test 
samples subject to different distributions.

• In DMOPs, the changing POFs may lead to 
different distributions of the training and 
predicted samples. The POFs may be Non-
IID within two consecutive environments.

• Transfer learning (TF) can help to address 
the Non-IID issue in DMOPs by exploiting 
knowledge in past environment to generate 
a good initial population for Prediction-
based EAs.

POFsPOFs

• S. Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, and N. Krasnogor, “Benchmark Problems for CEC’2018 Competition on Dynamic Multiobjective
Optimisation”, IEEE CEC’2018 Competition, 2018.



• Individual-based Transfer Learning for Dynamic Multi-objective Optimization (IT-DMOEA): 
Exploring the current environment to obtain a set of good solutions for knowledge transfer.

Evolutionary Transfer Dynamic Optimization

Individual-based Transfer Learning

• Pre-search Strategy: Obtain a high-quality 
population as training samples to guide the search 
direction to reduce effect of negative transfer.

• Individual Transfer:  Reuse information from past 
environment and the guided population to produce 
a good initial population. 

Guided population Initial population

Guide transfer direction

Example of negative transfer

(a) Environment 1 (b) Environment 2

• M. Jiang, Z. Wang, S. Guo, X. Gao, and K. C. Tan, “Individual-based Transfer Learning for Dynamic Multi-objective Optimization”, IEEE Trans. on 
Cybernetics, submitted.
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IT-DMOEA: Pre-Search Strategy
• Pre-search strategy obtains a high-quality population (guided population) as training 

samples to reduce the possibility of negative transfer.

Mating

Mating Reference vector

𝑧∗
𝑓,

𝑓-
𝑅,

𝑅-

𝑅.

• Reference vectors: A set of uniform reference vectors Ri
are generated. For each reference vector, two individuals 
(in red) with the minimum PBI values are selected.

• Crossover:  Individuals on neighboring reference vectors 
are mated to form a population pool.

• Mutation:  Individuals are mutated with Gaussian 
variation and added to the population pool.

• For each reference vector, two individuals are selected 
from the population pool to generate a guided population.

• Penalty boundary intersection (PBI) is used for the 
selection of two individuals (for each reference vector) 
in order to maintain a good balance of convergence 
and diversity in the population.



Step 4

• The idea of individual transfer is to use a set of weak classifiers to determine whether an 
individual is a strong individual.
• Sample-based classifier.
• Ensemble of weak classifiers.

IT-DMOEA: Individual Transfer

SVM ℎ*

The historical population
(source domain)

Guided population
(target domain)

hyperplane

hyperplane

SVM ℎ+

SVM ℎ,Step 1 Step 2 Step 3

Non-dominated individuals

Dominated individuals

Weights are reduced if 
individuals from the source 
domain are misclassified. 

Weights are increased if 
individuals from the target 
domain are misclassified. 

Evolutionary Transfer Dynamic Optimization

The weak classifier 
ℎ* is trained with the 
guided population 
and historical 
population 

According to the error of 
ℎ*, the weights of individuals 
are adjusted, and a new 
weak classifier is trained.

Adjusting weights repeatedly can 
gradually make weak classifiers 
more accurate in classifying 
solutions of the target domain. 

A strong classifier ℎ?
is assembled with the 
weak classifiers.



IT-DMOEA: Forming Initial Population

• The strong classifier ℎ+ then identifies individuals that are randomly generated in the 
current environment as strong or weak individuals. Those Individuals that have been 
identified as non-dominated will be selected to form an initial population to drive the 
evolution towards the newly changed Pareto front.

Initial population
Random individuals

Non-dominated individuals

Dominated individuals

Trained strong classifier 

Evolutionary Transfer Dynamic Optimization



MIGD

Evolutionary Transfer Dynamic Optimization

IT-DMOEA: Experimental Study

• The experimental results suggest that IT-DMOEA can obtain solutions with good
convergence and diversity for many of the benchmark functions.

• Negative IGD (NIGD)
Evaluate the degree of negative 
transfer:

𝑁𝐼𝐺𝐷 =?
"∈A

(𝐼𝐺𝐷""B − 𝐼𝐺𝐷"B,C)

𝑠. 𝑡. 𝐼𝐺𝐷""B > 𝐼𝐺𝐷"B,C,

where 𝐼𝐺𝐷""B and 𝐼𝐺𝐷"B,C is the 
IGD value obtained by the 
transferred population and the 
random population at time t, 
respectively.

T-DMOEA



Evolutionary Transfer Dynamic Optimization

Tr-RM-MEDA IT-RM-MEDA IT-RM-MEDA!"

IT-DMOEA: Experimental Study

• The proposed IT-RM-MEDA (IT-DMOEA with RM-MEDA method) tends to have the smallest 
NIGD values which suggests that it is effective in preventing negative transfer generally.

Relationship between the severity of change and NIGD in 
the initial populations obtained by various methods. 

Examples of averaged IGD values for various methods.
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IT-DMOEA: Experimental Study on Run Time 

The results show that the runtime of the proposed IT-DMOEA 
is the fastest on most of the benchmark functions.



MMTL-DMOEA

Evolutionary Transfer Dynamic Optimization

MMTL-DMOEA

• It is often desired to find and track the Pareto optimal solutions rapidly in DMOPs.
• Dynamic evolutionary multi-objective algorithm via manifold transfer learning (MMTL-

DMOEA) combines a memory mechanism with a manifold transfer learning of sample 
geodesic flow (SGF).

Save 

Manifold transfer

Merge
Memory

Retrieve

Time 0

Time t-1
Time t

Elite solutions Predicted solutions

Initial solutions

• M. Jiang, Z. Wang, L. Qiu, S. Guo, X. Gao, and K. C. Tan, "A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer 
Learning", IEEE Transacts on Cybernetics, in press, 2020.
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MMTL-DMOEA: Memory

Saving of Solutions

• Solutions from past environments are 
stored in external memory.

• When the external memory overflows, the 
earliest stored individuals are replaced.

Retrieving of Solutions 

• Once any environment change is detected, 
fitness values of individuals from memory are 
predicted.

• Non-dominated solutions are selected as the 
elite solutions.

1

2 3

Fitness prediction

Memory

Elite solutions



Manifold transfer 

Evolutionary Transfer Dynamic Optimization

MMTL-DMOEA: Manifold Transfer 

Geodesic flow

Elite solutions Transformed solutions

𝜙 0 𝜙 1
𝜙 0.8𝜙 0.6

𝜙 0.2
𝜙 0.4

latent space

• Construct the geodesic flow:
𝜙 𝑘 = 𝑃2𝑈*𝛤 𝑘 − 𝑅2𝑈+𝛴 𝑘

𝜙(0) = 𝑃2 and 𝜙(1) = 𝑃A, 𝑃2, 𝑃A is the covariance matrices (produced by PCA) of elite solutions and 
good random solutions, respectively; 𝑈*, 𝑈+ are orthogonal matrices; 𝛤 𝑘 and 𝛴 𝑘 are diagonal 
matrices; 𝑅2 is the orthogonal complement of 𝑃2; k determines the number of points on the manifold.

𝑥 from source domain 𝑥D in the target domain

• Transform elite solutions:
𝑥E = 𝑥A𝜙 𝑘 , 𝑘 ∈ (0,1)

• Find predicted solutions: The transformed latent space is like the target domain, e.g., the predicted
solution 𝑥D is like 𝑥E on the geodesic flow 𝜙 T ,

𝑥D = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑥DA𝜙(T) − 𝑥E||

𝑥E𝑥

Predicted solutions
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Evolutionary Transfer Dynamic Optimization

MMTL-DMOEA: Experimental Study

Run Time Performance (Unit: Seconds)
FDA1 FDA2 FDA3 FDA4 FDA5 dMOP1 dMOP2 dMOP3

Tr-MOEA/D 42.54 45.27 57.71 132.59 115.52 80.23 73.53 75.55
MMTL-MOEA/D 6.23 5.4 5.09 10.06 9.94 7.05 7.74 5.63

Speed Improvement 6.82 8.38 11.33 13.18 11.62 11.38 95.00 13.42

MMTL-DMOEA has excellent IGDs and rapid convergence in 
tracking the Pareto-optimal fronts for DMOPs.
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Evolutionary Transfer Optimization Application

Gait Generation & Optimization

• Robot gait refers to the periodic movement of legged robot joints. Gait optimization 
is to generate the optimal control trajectory of a robot under different internal and 
external constraints.

• It can be solved as a multi-objective 
problem by defining multiple designated 
objective functions, e.g. speed, stability, 
energy efficiency etc.

Transfer learning can help to obtain 
high-quality gait movements efficiently 
in a new environment by re-using/ 
transfer knowledge from optimal gaits 
in previous environments.

Knowledge

(Optimized gait parameters)

• In many situations, different gait optimization is needed under different external 
constraints and environments. 



Evolutionary Transfer Optimization Application

• From the perspective of transfer learning, the gaits trained in simple and complex 
environments can be regarded as the source and target domain, respectively. These 
two tasks are ‘similar’ in that they both attempt to generate a gait that optimizes 
performance in a specific environment. 

Tr-GO

Gait Generation & Optimization

Step 1 

Step 2

Step 3

Step 4

Step 5

Step 6

Transfer Component Analysis 



(a) Source environment E0

• Four different experimental environments are studied.

Evolutionary Transfer Optimization Application

(b) Target environment E1 (c) Target environment E2 (d) Target environment E3

• Convergence traces of different 
algorithms under various environments. 
The blue dashed line (benchmark) is 
the result achieved by Tr-GO after the 
first 10 generations of evolution. 

• Convergence trace 

Experimental Results

E1

E2

E3



• The robot walking in E1 environment

(a) Random-EA (b) PlatData-EA (c) Tr-Go 

• The trade-off graphs

• The trade-off graphs under 
different environment of E1, 
E2, and E3. Each algorithm is 
evaluated under three settings: 
random sampling (in red), 
direct use of samples from E0 
(in black) and the proposed Tr-
Go algorithm (in green).

Evolutionary Transfer Optimization Application

(a) (b)

E1

E2

E3

Experimental Results

NSGA-II RM-MEDA MOPSO
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Future Research Topics

• ETO for Large-scale Optimization

• Solving large-scale optimization problems via transfer and learning 
from related/smaller and/or solved problems (such as via cooperative 
coevolution etc.).

• Designing ETO algorithms capable of solving large-scale problems in a 
knowledge space having a much smaller search space.

• ETO for Multi-form Optimization

• Designing algorithms capable of automatically generate and configure 
different formulations of a problem.

• Efficient allocation of computational resources for conducting 
evolutionary search on different problem formulations.

Future Research Topics



Future Research Topics

• ETO in Complex Data Environment

• Designing ETO algorithms capable of positive knowledge transfer 
from from noisy data and across problem domains where the data 
appears in a sequential order.

• Designing ETO algorithms for problems having imbalance data 
(with/without labels) or data with property changes rapidly in 
uncertain environments.

Future Research Topics

• Theoretical Study of ETO

• Study on how and when knowledge in source problem can help to 
improve the search in a target task.

• Defining useful representation of knowledge that can be transferred 
across heterogeneous problem domains.



Conclusions

• ETO is an emerging paradigm that integrates EA solvers with knowledge learning 
and transfer across related domains to achieve efficient and better optimization 
performance. 

• ETO has been applied to multi-task and dynamic optimization. Enhanced 
optimization performance can be achieved with knowledge learning and transfer 
across problems.

• ETO has been applied to robot gait optimization by transferring knowledge across 
environments. Knowledge transfer along the evolutionary search can further 
improve the gait optimization performance in dynamic environments.

• As one of the emerging research areas in Computational Intelligence, there are 
many challenges and open research questions in ETO.
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