EFORE DING EPERIMENTS

Qi Chen

Qi.Chen@ecs.vuw.ac.nz

Bing Xue

Bing.Xue@ecs.vuw.ac.nz

Harith Al-Sahaf

Harith.Al-Sahaf@ecs.vuw.ac.nz

Outline

- Experiment Settings
- Parameter Settings
- Results
- Codes and Programs
- Grid Computing

Experiment Settings

- Baseline and Benchmark methods: select appropriate models for comparison
 - Task relevant: feature learning, classification, regression, clustering, ...
 - Baseline methods: simple, well-established methods, provide a reference point
 - Original method: to demonstrate the improvement over the predecessor
 - State-of-the-art methods: currently achieve the best performance on a specific task, also consider
 - ✓ time of publication: more likely to be more recent publications, a general rule of thumb, 2-3 years old can be considered "old"
 - ✓ publication venue, top-tier journal and conference

Experiment Settings

- Benchmark Datasets: use datasets commonly used for benchmarking, number of datasets: generally more than 10
- Training and Test Sets
 - Which method to create training and test sets
 - Hold-out/training-test split: with a splitting ratio of 80:20 or 70:30
 - K-fold cross-validation (sampling without replacement)
 - Bootstrap (sampling with replacement)
 - Splitting seed
 - Stratified splitting to maintain class-ratio

Experiment Settings (continue)

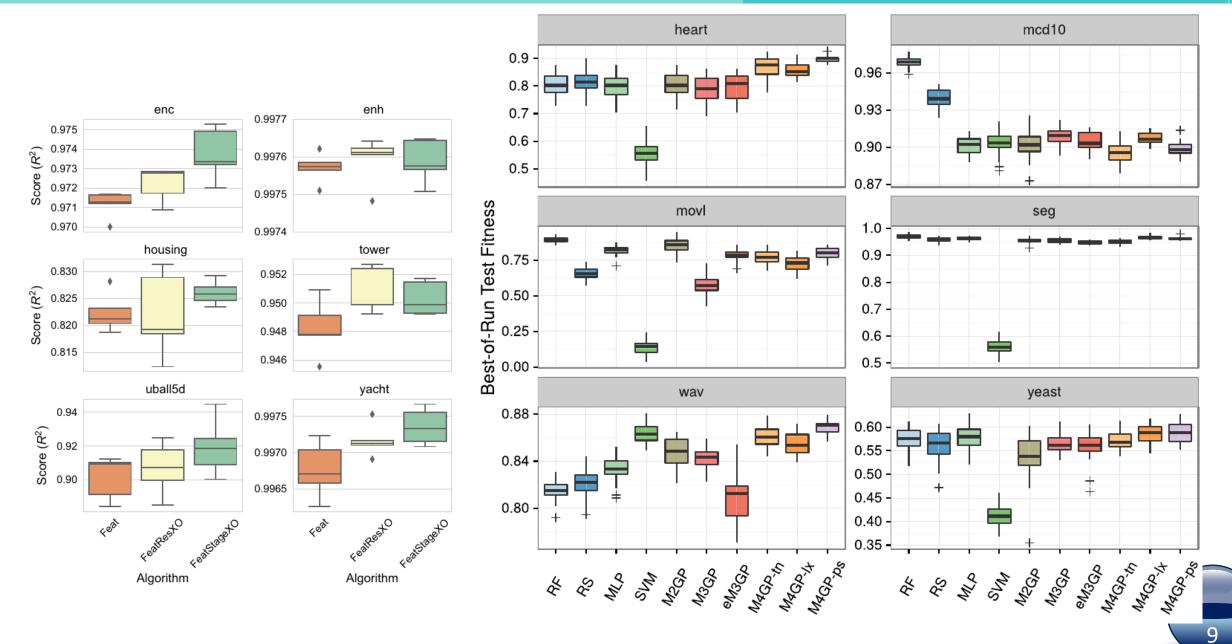
- Number of runs:
 - at least 30 runs (using 30 different seeds) => WHY?
 - or 50 runs unless your experiment is too time-consuming.
- Performance evaluation:
 - Measure: error rate, accuracy.
 - What to report if you have (10-fold cross-validation x 30 runs) results?

Random Seeds For EC methods

- DO record your random seeds to make sure you can re-produce the same results later if needed
 - Do NOT use clock time as the random seed
- Use the same random seeds to compare two different versions of the same approach:
 - E.g. two different GP algorithms: GP1 and GP2, run both of them for 50 times. Please make sure you use the same 50 random seeds for GP1 and GP2 to let them have the same starting points for fair comparisons.
 - It is not necessary to use the same random seeds if you compare GP with PSQ

Parameter Settings

- Start with commonly used parameter settings from the literature, or settings recommended by good papers.
 - Do not randomly pick up some parameters values unless you have good reasons to use them.
- Figure out what the parameter values exactly mean
- Parameter tuning: one aspect at a time


Results

- Please record all useful results
 - Eg, the *gbest* in PSO, the best program from GP, the training, testing performances in each run (you may further check with your supervisors)
 - Evolutionary plots on the training and test sets: performance of the best individuals at every generation
 - Computational (training) time of each run: first generation to the last generation
 - not include test process
 - Model Size, #feature ...
 - Evolved Models

Table 3 Comparison of best-of-run median test accuracy for the benchmark problems. The best result is highlighted in bold. Significant (p < 0.01 according to a pairwise Wilcoxon rank-sum test with Holm correction) improvements with respect to each method is denoted by a - j according to the method labels.

Method	Heart	IM-3	IM-10	Movl	Seg	Vowel	Wav	Yeast
^a RF	$^{d}80.2$	94.8	^{bcde} 96.9 fghij	^{bcde} 89.4 fghij	^{bcde} 97.3 fgij	^{bcde} 89.4	81.5	^{de} 57.5
^b RS	^d 81.5	92.8	^{cde} fghij 93.9	$_{f}^{d}$ 65.7	$_{gj}^{d}$ 96.0	_g 82.8	82.2	^d 56.6
^c MLP	^d 80.2	95.9	90.2	$_{fghj}^{bd}82.5$	$_{gj}^{de}$ 96.3	_g 82.5	$_{g}^{ab}$ 83.3	^{de} 58.0
d SVM	55.6	93.8	90.4	14.4	55.8	81.8	$_{fgh}^{abce}$ 86.3	41.1
^e M2GP	d 80.2	93.8	90.2	bcd fghij85.9	$_{g}^{d}$ 95.6	$_{g}^{cd}$ 85.9	^{abc} _g 84.9	^d 53.8
fM3GP	^d 79.0	95.4	^c _{ij} 91.0	^d 57.1	^d 95.6	$_{g}^{abcde}93.8$	g^{ab} 84.3	d 56.2
geM3GP	^d 80.9	93.3	_j 90.3	$_{\mathit{fh}}^{\mathit{bd}}78.6$	^d 94.7	78.6	81.2	d 56.2
^h M4GP-lx	$_{fg}^{abcde}85.2$	^{abcde} 97.9	_{ij} 90.7	$_f^{bd}$ 73.1	$_{fgj}^{bde}$ 96.6	$_{fg}^{abcde}$ 95.6	$_{fg}^{abc}$ 85.3	$_{g}^{de}$ 58.9
ⁱ M4GP-ps	abcde 90.1	$_{fg}^{abcde}$ 97.9	89.8	$_{\mathit{fh}}^{\mathit{bd}}80.1$	$_{gj}^{de}$ 96.1	abcde 97.5 fghj	$_{fghj}^{abce}$ 87.1	$_{fg}^{de}$ 58.9
^j M4GP-tn	abcde fg 87.7	$_{fg}^{abcde}$ 97.9	89.6	$_{\mathit{fh}}^{\mathit{bd}}76.9$	^d 95.1	$_{fg}^{abcde}96.0$	$_{fg}^{abce}86.0$	^d 56.8

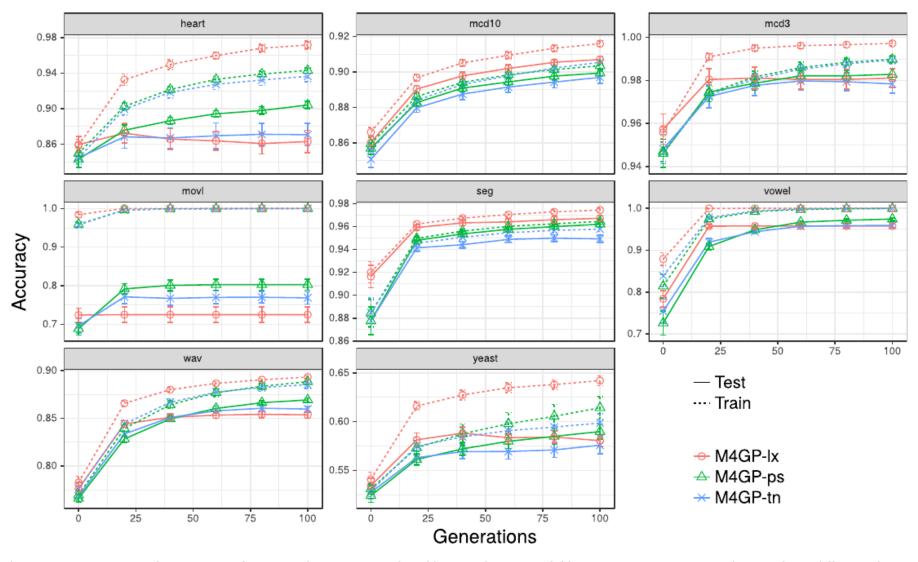


Fig. 5. Mean convergence characteristics of M4GP on the training set (dotted lines) and test set (solid lines) over 100 generations. Shapes indicate different selection methods. Error bars denote the confidence intervals.

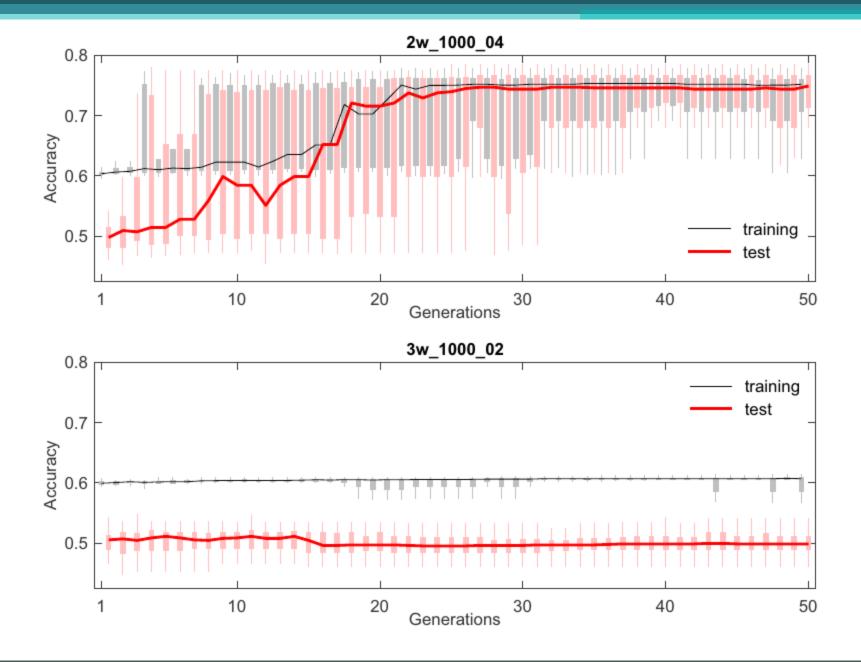
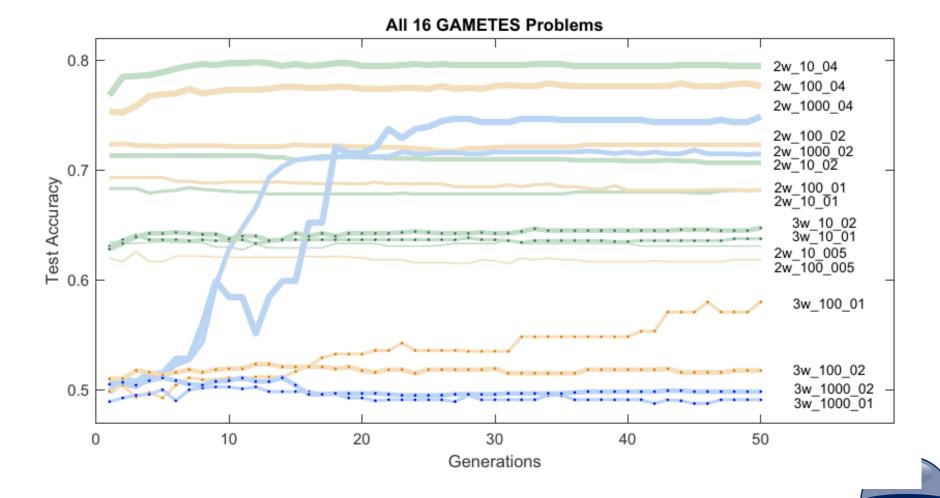
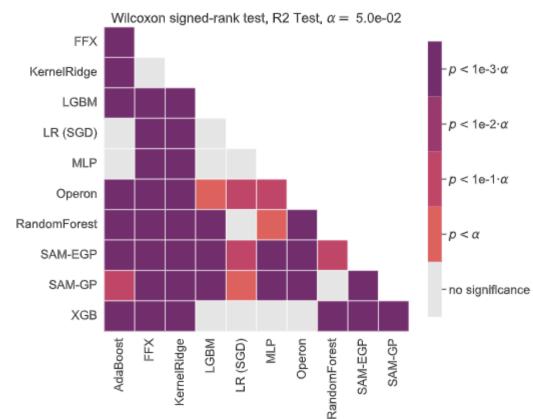
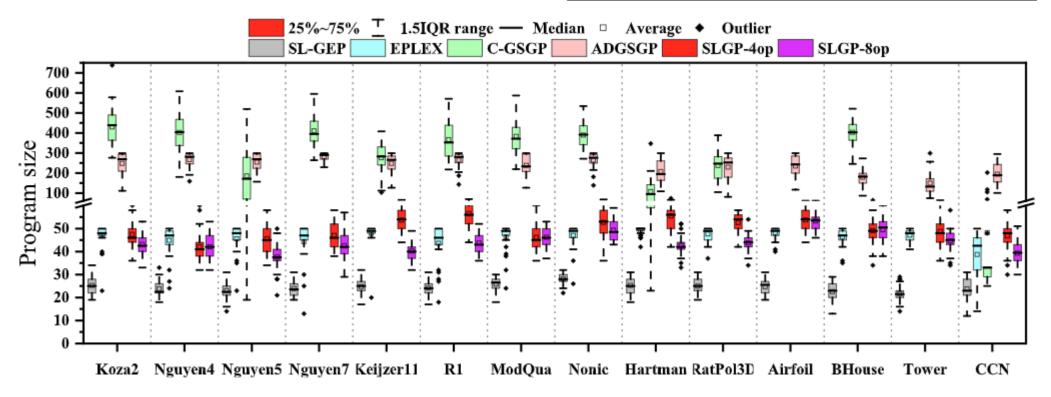




Fig. 8 Evolution of test accuracy on all the GAMETES problems. Lines are green/yellow/blue for 10/100/1000-feature problems; lines are thicker for higher signal-to-noise ratios; lines are dotted for the three-way problems. The names of the problems on the right appear by the same order as the lines

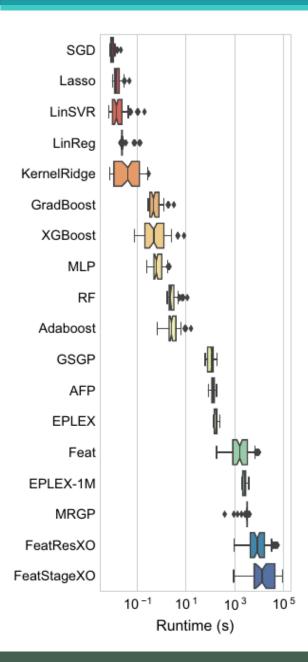
Statistical significance test results

	SGP_E	IGP	IGP_E	FIGP	FIGP_E	SGP_E	IGP	IGP_E	FIGP	FIGP_E
	SGF_E	IGF	547_no2	rigr	FIGF_E	SGF_E		3_BNG_lov		FIGF_E
SGP	3.08e-1	9.03e-1	3.71e-1	4.60e-4	8.86e-5	7.15e-1	1.85e-2	3.93e-1	3.81e-1	3.73e-9
	3.066-1					7.13e-1				
SGP_E		3.18e-1	6.70e-2	4.97e-5	1.22e-5		2.09e-2	7.61e-1	1.98e-1	8.01e-8
IGP			2.29e-1	1.37e-2	5.01e-3			2.02e-3	1.98e-1	1.19e-6
IGP_E				1.64e-2	3.74e-3				2.62e-2	9.31e-9
FIGP			502 : 1		3.49e-1			2.5		1.30e-8
~~-		503_wind					195_auto_price			
SGP	2.89e-1	4.18e-4	6.85e-1	7.61e-3	3.85e-7	5.59e-9	1.72e-3	3.09e-1	9.31e-9	1.99e-6
SGP_E		2.37e-3	1.91e-1	3.64e-2	1.86e-9		2.05e-7	1.68e-6	1.86e-9	1.86e-9
IGP			7.98e-4	8.24e-1	1.37e-4			2.56e-3	1.30e-8	8.33e-7
IGP_E				4.60e-4	1.86e-9				1.30e-8	2.32e-4
FIGP					4.67e-3					3.86e-7
		583_	_fri_c1_100	0_50		588_fri_c4_1000_100				
SGP	1.84e-1	6.36e-2	9.19e-1	3.22e-3	4.18e-4	2.62e-2	2.53e-1	4.40e-1	2.02e-3	3.09e-1
SGP_E		4.84e-4	3.64e-2	8.86e-5	2.76e-6		2.83e-4	1.29e-1	1.68e-6	2.62e-4
IGP			1.14e-1	2.13e-1	2.37e-3			2.34e-2	2.62e-2	5.03e-1
IGP_E				5.01e-3	1.40e-5				1.60e-5	9.20e-2
FIGP					2.21e-1					9.30e-3
	4544_GeographicalOriginalofMusic					505_tecator				
SGP	1.24e-1	2.67e-1	1.29e-1	3.73e-9	1.70e-4	1.30e-7	1.30e-2	9.61e-2	8.00e-3	9.31e-9
SGP_E		6.70e-1	9.68e-1	1.86e-8	5.01e-3		3.82e-1	6.20e-3	1.19e-1	5.77e-2
IGP _			8.71e-1	3.73e-9	1.72e-3			3.39e-1	7.77e-1	5.49e-2
IGP_E				1.86e-9	1.11e-4				5.43e-1	1.70e-4
FIGP				2,000	5.15e-6				21.00	1.21e-2

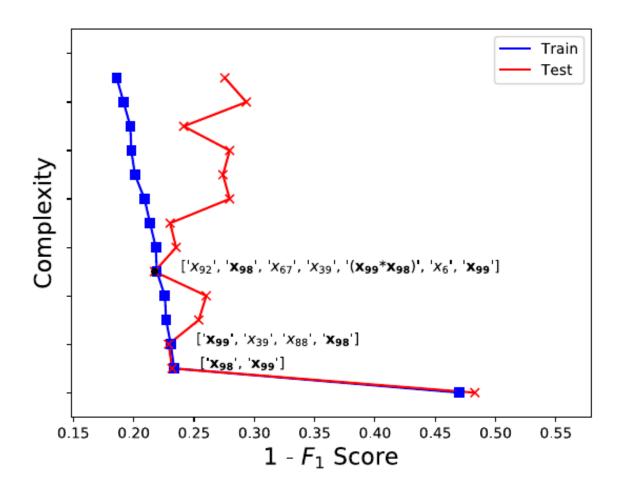


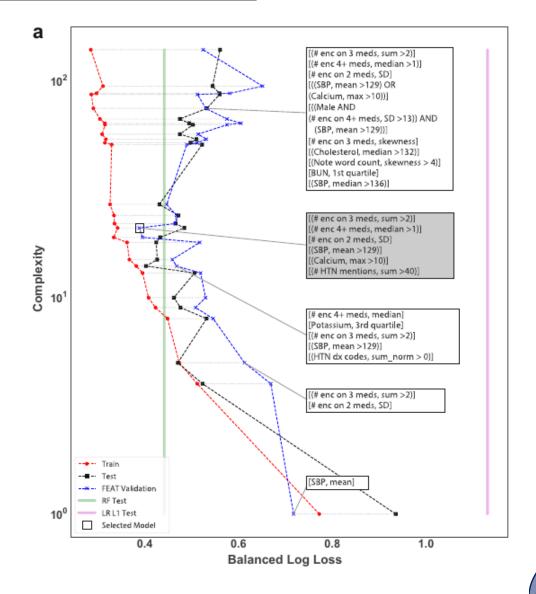
Model Size, #feature ...

AVERAGE FEATURE SUBSET SIZE OBTAINED BY VGS-MOEA AND ITS TWO VARIANTS


Data Set	VGS-MOEA-NAR	VGS-MOEA-NGO	VGS-MOEA
COIL20	$94.40 \pm 36.32(+)$	$160.20 \pm 44.34(+)$	59.03 ± 25.91
SRBCT	$155.13 \pm 25.56(+)$	$200.07 \pm 41.58(+)$	29.33 ± 21.57
PCMAC	368.13 ± 138.28(+)	343.23 ± 109.86(+)	50.33 ± 10.67
lymphoma	$326.33 \pm 70.82(+)$	$407.10 \pm 70.59(+)$	70.70 ± 47.53
GLIOMA	412.80 ± 100.16(+)	558.87 ± 117.29(+)	23.97 ± 26.06
BASEHOCK	465.20 ± 151.87(+)	475.87 ± 153.12(+)	65.57 ± 19.56
TOX_171	570.53 ± 166.54(+)	$776.63 \pm 208.77(+)$	102.07 ± 72.61
Brain1	495.63 ± 204.95(+)	685.07 ± 138.21(+)	36.47 ± 31.56
leukemia	436.30 ± 68.84(+)	552.97 ± 132.53(+)	24.17 ± 18.69

Computational Time


TABLE V
COMPUTATION TIME (IN MINUTES)


Dataset	CSO	ccso
Vehicle	3.44	4.41
WallRobot	92.12	88.08
German	4.07	4.66
GuesterPhase	375.01	303.71
Ionosphere	1.21	1.90
Chess	71.28	37.68
Movementlibras	1.11	1.42
Hillvalley	5.04	4.78
Musk1	1.81	1.75
USPS	240.33	220.13
Madelon	26.59	25.35
Isolet	11.92	15.80
MultipleFeatures	18.80	20.43
Gametes	14.93	13.58
QAR	14.64	22.51
QOT	308.07	270.56
COIL20	12.05	11.20
ORL	2.03	1.94
Bioresponse	68.61	77.73
RELATHE	28.34	29.86
GLIOMA	0.51	0.96
BASEHOCK	55.81	58.67
Gisette	464.45	487.06
Brain1	0.93	1.71

Fronts

Results

- Keep the results of the standard algorithm
- Do keep all the original results from each run.
- Perform statistical significance tests: T-test; Wilcoxon test; Friedman test
- Do NOT delete results unless they use too much memory, or they are wrong

Codes and Programs

- Backup different versions of your codes using
 - Version control: Gitlab, bitbucket
- Make clear documentation of your codes
- Make clear README documentation
- Organise your files: a single directory for a project, containing all of the data, code, and results for your project
- Following best programming practices: choose file/method/variable name carefully, avoid hard coding, ...

THANK

Questions?