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Outline

e Structure of standard GP
e Binary classification

e Multiclass classification

— Class translation from the program output

— Multiple outputs
— Probability based GP

e Object detection — Fitness function

e Search techniques

— gradient descent on constants

STGP: 2




COMP422

Standard GP for Binary Classification
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Classification Map

Static Class Boundary Determination

e Boundaries are fixed at locations on the real number line of the
program output

e These boundaries are predefined
e A class is determined from the fixed regions
e Classes are in a fixed order
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Dynamic Class Translation

Centred Dynamic Class Boundary Determination

e Boundaries are dynamically determined based on the centres
of different classes, each of which 1s calculated as the average
output of all the programs for training examples of that class.

e Boundaries are set halfway between adjacent centres.

Program ourput results for all programs on all training patterns
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Dynamic Class Translation

Slotted Dynamic Class Boundary Determination

e Real number line divided into 200 slots in [-25, 25]

e Slots are assigned the class labels during evolution

— the class with the most programs that fall into the slot.

Program output results for al programs on all training patterns
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Multiple Outputs

Program Structure

e A genetic program can produce more than one output value,
each for a class

e A voting strategy (WTA) 1s applied
e Program Structure:
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Multiple Outputs

e Program Evaluation
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Multiple Outputs

e Program Simulation
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Probability GP
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e Fitness function: replace classification accuracy with probabil-

ity

e Fitness Measures: area vs distance

e Areca Measure:
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Probability GP (Continued)

e Distance measure: weighted distribution distance d = 2 —Elg §|

e Standardised distribution distance measure dg = ﬁ

e Fitness function:
Ca
fitness = > M,
i—1

e Classification with multiple programs:
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Object Detection — Fitness Function

e Fitness function is based on detection rate and false alarm rate:
fitness(DR, FAR) =Wy (1 — DR)+ W;* FAR

e One problem: could not reflect the small improvement

(@ (b) (©)

e Second problem: programs are often very long

e A new fitness function:

fit=Ky-(1—DR)+ Ky- FAR+ K3- FAA+ K4 - ProgSize

e Research question: how to set parameter K
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Gradient Descent in GP

e Gradient descent search/hill climbing search 1s widely used in
many techniques, including neural networks.

e Gradient descent search has two “problems’:
— one run only has one potential solution;
— 1t often has the local minuma.

e Gradient descent search can use the heuristics; local minuma 1is
not the 1deal/best solution, but often meets the requirements of
many applications.

e Genetic beam search can solve/improve the local mimuma
problem, but it does not use the heuristic sufficiently.

e Can we combine them together?
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Gradient Descent in GP

e Apply gradient descent locally on the numeric terminals
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Gradient Descent in GP
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Gradient Descent in GP
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e New value of the Numeric terminal

(Oz’>new — Oz + AOZ — OZ — 1)

e This algorithm 1s only locally applied to individual programs.

e Genetic beam search is still globally applied to the evolutionary
process.

e online learning vs offline learning

e cvery generation vs every five generations




