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Outline

• Structure of standard GP

• Binary classification

• Multiclass classification

– Class translation from the program output

– Multiple outputs

– Probability based GP

• Object detection — Fitness function

• Search techniques

– gradient descent on constants
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Standard GP for Binary Classification
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Classification Map

Static Class Boundary Determination

• Boundaries are fixed at locations on the real number line of the

program output

• These boundaries are predefined

• A class is determined from the fixed regions

• Classes are in a fixed order
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Dynamic Class Translation

Centred Dynamic Class Boundary Determination

• Boundaries are dynamically determined based on the centres

of different classes, each of which is calculated as the average

output of all the programs for training examples of that class.

• Boundaries are set halfway between adjacent centres.

Centres

BoundariesClass 3Class 1 Class 2

Class 1
Class 2
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Program ourput results for all programs on all training patterns

Program
Output
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Dynamic Class Translation

Slotted Dynamic Class Boundary Determination

• Real number line divided into 200 slots in [-25, 25]

• Slots are assigned the class labels during evolution

– the class with the most programs that fall into the slot.

(Array[slot][class] += 1)

Class 1

Class 2

Class 3

Slots
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Fixed slot positions

Program output results for all programs on all training patterns

Values in slots



COMP422 STGP: 7

Multiple Outputs

Program Structure

• A genetic program can produce more than one output value,

each for a class

• A voting strategy (WTA) is applied

• Program Structure:
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Multiple Outputs

• Program Evaluation
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Multiple Outputs

• Program Simulation
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Probability GP

• Fitness function: replace classification accuracy with probabil-

ity

• Fitness Measures: area vs distance

Class 2

(a)

Class 1 Class 2

(b)

Class 2
m

m

Class 1

(c)

Class 1

• Area Measure:

P (x) =
exp(−x2

2
)√

2π
A(x) =

∑x
α
i=0 αP (αi)

A(µ, σ, x) = A(
x− µ

σ
)

Ao = 1− A(µ1, σ1,m)−A(µ2, σ2,m)
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Probability GP (Continued)

• Distance measure: weighted distribution distance d = 2× |µ1−µ2|
σ1+σ2

• Standardised distribution distance measure ds =
1

1+d

• Fitness function:

fitness =
C2
n∑

i=1
Mi

• Classification with multiple programs:

Probc =
l∏

i=1
P (µi,c, σi,c, ri)

P (µ, σ, x) =
exp(−(x−µ)2

2σ2
)

σ
√
2π
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Object Detection — Fitness Function

• Fitness function is based on detection rate and false alarm rate:

fitness(DR,FAR) = Wd ∗ (1−DR) +Wf ∗ FAR

• One problem: could not reflect the small improvement

(a) (c)(b)

• Second problem: programs are often very long

• A new fitness function:

fit = K1 · (1−DR) +K2 · FAR +K3 · FAA+K4 · ProgSize

• Research question: how to set parameter Ki
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Gradient Descent in GP

• Gradient descent search/hill climbing search is widely used in

many techniques, including neural networks.

• Gradient descent search has two “problems”:

– one run only has one potential solution;

– it often has the local minuma.

• Gradient descent search can use the heuristics; local minuma is

not the ideal/best solution, but often meets the requirements of

many applications.

• Genetic beam search can solve/improve the local mimuma

problem, but it does not use the heuristic sufficiently.

• Can we combine them together?
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Gradient Descent in GP

• Apply gradient descent locally on the numeric terminals

∆Oi = −α · ∂C
∂Oi

= −α · ∂C
∂y

· ∂y

∂Oi

C =
(y − Y )2

2

∂C

∂y
=

∂((y−Y )2

2 )

∂y
= y − Y

Y = class− numclass+ 1

2
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Gradient Descent in GP

Function f meanings ∂f
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∂a3

(+ a1 a2) a1 + a2 1 1 –

(- a1 a2) a1 − a2 1 -1 –

(* a1 a2) a1 × a2 a2 a1 –
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2 –
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Gradient Descent in GP

α = η · 1
∑N
i ( ∂y

∂Oi
)2

• New value of the Numeric terminal

(Oi)new = Oi +∆Oi = Oi − η · 1
∑N
i ( ∂y

∂Oi
)2

· ∂C
∂Oi

• This algorithm is only locally applied to individual programs.

• Genetic beam search is still globally applied to the evolutionary

process.

• online learning vs offline learning

• every generation vs every five generations


