
Continuity?

To maximally leverage existing narrow FOV pre-trained models while minimizing 
the impact of various distortions that occur in spherical projections, we propose to 
use different methods to project the spherical images to planar images and feed 
them to finetune the models. A fusion layer is finally built to combine the
transformed optical flow results for the final 360° optical flow.

Equirectangular Projection It can keep both C0 and C1 continuity in the optical 
flow map except for the boundary areas. However, it is not conformal and 
introduces large distortions due to excessively sampling

Tri-Cylindrical Projection Unlike equirectangular projection, cylindrical projections 
preserve angle but are not equal-area. To ensure that every part of the spherical 
surface has an equal contribution, we stack three cylindrical projection images 
together, where each cylinder to project is aligned with one of the X, Y, and Z-axis, 
and use solid angle weights for all the pixels.

Cube-Padding Projection Within each face of the cubemap, the projection is 
angle-preserving but not area preserving, and is suitable for the pre-trained model 
to be further finetuned. But cube map loses the original adjacency information 
along the boundary of the cross. We propose to repeatedly pad the faces to stitch 
the six faces into one picture, keeping the spatial continuity in the projected image.

Optical flow learning for 360° videos remains an interesting and open 
question in this field. As shown below, the existing methods formulated on 
2D regular grids with convolutions that do not inherently deform according to 
distortion or area changes in the equirectangular projection. 

In this research, we were initially motivated to discover good projections for 
optical flow learning for 360° videos. We investigated three different 
projections from the sphere to the plane: cylindrical and cube-map, which 
are conformal within each chart, and equirectangular, which is neither area-
nor angle-preserving. To our surprise, our experiments did not seem to 
indicate that any of our projections is always better than the others, but 
rather that these projections make complex tradeoffs in optical flow accuracy 
that appear to depend jointly on the input image and the mathematical 
properties of each projection.

Motivation

We build the first large-scale panoramic optical flow dataset to support the 
training of neural networks and the evaluation of panoramic optical flow 
estimation methods. We generate ground truth panoramic optical flow maps 
by rendering synthetic 360° videos of dynamic 3D scenes. We built our 
panoramic RGB and optical flow frames using two types of scenes:
City Scene We designed the City scene to resemble the data with similar 
properties as KITTI and Driving. We generated City2000, City200, and 
City100 datasets, containing 2000, 217, and 138 frames, respectively. We 
also generated City100UR (Upright frames) dataset to conduct preliminary 
experiments.

Equirectangular FlyingThings (EFT) Scene We designed the FlyingThings
scene to resemble FlyingChairs and FlyingThings3D. We built EFT2000, 
EFT200, and EFT100 datasets, and each of them contains 2211, 199, and 
99 image pairs.

Panoramic Optical Flow Dataset

Multi-Projection Fusion

Results 

Application

We develop an application that 
utilizes the predicted optical 
flow to propagate edits across 
frames to evaluate our method 
visually.
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Source Ground Truth PWC-Net

Model FlowNet2 PWC-Net PWC-Sph RAFT-12 RAFT-24 RAFT-48
EPE 4.15 3.17 3.80 5.12 4.93 4.72

Table 1. End point errors (EPE) on City100UR using the finetuned models. 
The models are finetuned using Equirectangular projection.
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Table 2. Spherical Distance (SD) and EPE using equirectangular (Equi), cube-
padding (Pad), cylindrical (Cyl) projections and their fusion models.

SD/EPE PWC-Net[1] RAFT[2] TanImg[3] FlowNet2[4] Ours
City100 3.86/9.84 12.10/21.5 1.27/3.69 2.72/10.85 0.82/1.79
EFT100 6.26/15.64 20.21/29.6 4.61/8.06 4.91/14.88 2.64/5.01
Average 5.06/12.74 16.15/25.6 2.94/5.88 3.81/12.87 1.73/3.40
Table 3. Comparison with other methods using Spherical Distance (SD) / EPE.
The SD/EPE of our method is 65.8%/73.3%, 89.3%/86.7%, and 54.6%/73.5% 

lower than PWC, RAFT, FlowNet2 respectively.

SD/EPE Equi (E) Pad (P) Cyl (C) C+P E+P E+C
City100 0.90/2.41 0.92/3.32 1.34/2.64 0.82/2.15 0.75/1.95 0.83/1.79
EFT100 2.98/6.65 2.98/6.25 2.82/5.2 2.77/5.06 2.95/5.84 2.64/5.01
Average 1.94/4.91 1.95/5.68 2.08/5.06 1.80/3.60 1.85/3.89 1.74/3.40
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