

The Development of a Control System

for an Autonomous Mobile Robot

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science in

Physics and Electronic Engineering

at the

University of Waikato

by

Christopher Peter Lee-Johnson

2004

Abstract iii

Abstract

The Mobile Autonomous Robotic Vehicle for Indoor Navigation (MARVIN) is the

subject of a number of graduate research projects in the University of Waikato’s

Mechatronics Group. This thesis details the development of a control system for

MARVIN’s two-wheeled differential drive system that autonomously regulates its

position, heading and velocity based on feedback from odometers, infrared

rangefinders and tactile sensors. The completed control system operates in

conjunction with a navigation system that was developed concurrently with this

project. Together, they provide the most sophisticated autonomous behaviour

currently implemented on a robot at the Mechatronics Group.

Acknowledgements v

Acknowledgements

I wish to express my gratitude to the following people for their help during the course

of this project.

Special thanks go to my supervisor, Dale Carnegie, who offered me this project, and

who provided invaluable advice and motivated me to succeed, particularly during the

final crunch. Thanks also to Scotty Forbes and Bruce Rhodes for their technical help.

My fellow inmates … er, ahem … graduate students … deserve no less appreciation

for their advice, support and friendship over the past five years. Thank you (in no

particular order) Andrew Payne, Lucas Sikking, Ashil Prakash, Craig Jensen and

Adam Somerville.

Table of Contents vii

Table of Contents

Abstract .. iii

Acknowledgements..v

Table of Contents...vii

List of Figures .. xiii

List of Tables ...xvii

1 Introduction..1

1.1 MARVIN ...1

1.2 Projects...3

1.2.1 Robot Humanisation ..3

1.2.2 Task Planning and Navigation...4

1.2.3 Localisation and Control..4

1.2.4 Generic Motor Drivers...5

1.3 Operating Environment..6

1.4 Thesis Objectives ...7

1.5 Project Planning ...8

1.6 Chapter Summary ..9

2 Hardware..11

2.1 Overview..11

2.2 Mechanical Details...12

2.3 Power Source ...13

2.4 PC Hardware..15

2.4.1 PC...15

2.4.2 Data Acquisition (DAQ) Card ...16

2.4.3 Wireless LAN ..19

2.5 Sensors ...20

2.5.1 Odometers ..21

2.5.2 Rangefinders ..22

2.5.3 Tactile Sensors ...24

2.5.4 Beacon Receivers...24

2.6 Actuators ..25

2.6.1 Motor Drivers...26

viii The Development of a Control System for an Autonomous Mobile Robot

2.6.2 Microcontroller ..27

3 Software Interfaces ..29

3.1 Applications ...29

3.1.1 HI-TECH C..29

3.1.2 MATLAB...29

3.1.3 LabVIEW...30

3.1.4 Microsoft Word..31

3.2 Inter-Application Interfaces ...32

3.2.1 ActiveX Control Containment ...33

3.2.2 ActiveX Automation..34

3.2.3 MATLAB Script Node ..35

3.2.4 Dynamic Data Exchange..35

3.2.5 File I/O...36

3.2.6 Selected Interface: ActiveX Automation ...36

3.2.7 MATLAB – LabVIEW Interface Details ..37

3.2.8 MATLAB – Microsoft Word Interface Details38

3.3 Sensor Interfaces..39

3.3.1 Tactile Sensors and Beacon Receivers ..40

3.3.2 Optical Encoders..40

3.3.3 Infrared Rangefinders ..41

3.4 Microcontroller Interface ...42

3.4.1 Communication Protocol ...42

3.4.2 Microcontroller Software...43

3.4.3 PC – Microcontroller Interface Software...43

3.5 MATLAB Interface ...46

3.5.1 MATLAB Interface Details ...47

3.5.2 Control System Inputs..48

3.5.3 Control System Outputs...49

3.6 Graphical User Interface ..49

4 Sensor Software ...53

4.1 Data Acquisition ..53

4.1.1 Odometers ..54

4.1.2 Rangefinders ..55

4.1.2.1 Mean ..55

Table of Contents ix

4.1.2.2 Median ...56

4.1.2.3 Weighted Mean..56

4.1.2.4 Selected Implementation..57

4.1.3 Tactile Sensors and Beacon Receivers ..57

4.2 Internal Representation ..57

4.2.1 Odometers ..58

4.2.1.1 Odometer Conversion Factors ...58

4.2.1.2 Wheel Velocities..60

4.2.1.3 Position and Orientation ..60

4.2.2 Rangefinders ..62

4.2.2.1 Polynomial Model..62

4.2.2.2 Lookup Table ...64

4.2.2.3 Localisation Using Rangefinders...66

4.2.3 Coordinate Transformations ..68

4.3 Sensor Fusion...69

4.3.1 Sensor Fusion Techniques ...71

4.3.1.1 Boolean Logic..71

4.3.1.2 Dynamic Weighted Average..71

4.3.1.3 Bayesian Inference...72

4.3.1.4 Other Techniques ...73

4.3.1.5 Selected Implementation: Dynamic Weighted Average..................73

4.3.2 MARVIN’s Implementation ..74

5 Motor Control Software...75

5.1 Motion Planning...75

5.1.1 Generating Target Trajectory...76

5.1.2 Generating Velocity Profile ...78

5.2 Control Theory...81

5.2.1 PID ...82

5.2.2 Fuzzy Logic ...83

5.2.3 Neural Network..84

5.2.4 Neuro-Fuzzy ..85

5.2.5 Selected Implementation: PID ...85

5.3 Heading Control...86

5.3.1 Uncorrected Target Wheel Velocities..86

x The Development of a Control System for an Autonomous Mobile Robot

5.3.2 Heading Error...87

5.3.3 PID Heading Control ...91

5.4 Velocity Control...93

5.5 Collision Avoidance...94

5.6 Driving Motors...95

5.6.1 Velocity-PWM Relationship..96

5.6.2 Writing PWM Value to Microcontroller..98

5.7 Simulation ..99

6 Results..101

6.1 Open Environment Test Results ..101

6.1.1 Linear Forward Trajectory...102

6.1.2 Linear Reverse Trajectory..104

6.1.3 Moving Turn ..105

6.1.4 Linear Trajectory with Offset Angle..105

6.1.5 Position Errors ...106

6.2 Corridor Environment Test Results ...108

6.2.1 Linear Trajectories ...108

6.2.2 Stationary Turns...112

6.2.3 Extreme Tests...113

6.2.4 Collision Avoidance...114

6.3 Combined System Test Results ...115

6.3.1 Single Instruction...116

6.3.2 Sequence of Instructions ..118

7 Conclusions..123

7.1 Objectives Achieved ..123

7.2 Future Work ...125

7.2.1 Additional Sensors ...126

7.2.2 Motor Driver Improvements ..127

7.2.3 Simulation Improvements..127

7.2.4 Improved Sensor Algorithms...128

7.3 Summary ..129

Appendix A: Circuit Schematics ...131

A.1 Beacon Receiver Schematic...131

A.2 Beacon Emitter Schematic...131

Table of Contents xi

A.3 Motor Diver Schematic..132

A.4 Motor Driver Schematic ..132

Appendix B: Source Code ...133

B.1 gui_marvin_control.m..133

B.2 marvin_control.m...136

B.3 acq_en_count.m ...139

B.4 acq_ir_voltage.m..140

B.5 acq_switch.m ...140

B.6 rep_en_velocity.m..141

B.7 rep_en_coord.m ...142

B.8 rep_ir_distance.m...142

B.9 rep_ir_coord...143

B.10 coord_trans.m...145

B.11 rel_coord.m ..145

B.12 sensor_fusion.m ...146

B.13 gen_tgt_trj.m..147

B.14 wheel_pos.m ..148

B.15 gen_vel_prof.m ..148

B.16 tgt_velocity.m ..150

B.17 heading_error.m...151

B.18 heading_control.m ...153

B.19 average_angle.m ..154

B.20 velocity_control.m ...155

B.21 stop_wheels.m..156

B.22 get_motor_power.m...156

B.23 set_motor_power.m ...157

B.24 sim_en_count.m...157

B.25 sim_ir_voltage.m ...158

B.26 sim_motor_power.m ..159

Appendix C: CD Contents...161

References..163

List of Figures xiii

List of Figures

Figure 1.1: Marvin the Paranoid Android ...1

Figure 1.2: MARVIN and the Laser Rangefinder ...2

Figure 1.3: Project Hierarchy ..3

Figure 1.4: MARVIN vs. the Daleks...4

Figure 1.5: Overhead View of C Block Corridor ..6

Figure 1.6: C Block Corridor Viewed from Intersection ..6

Figure 1.7: Flowchart of Project Development Process..8

Figure 2.1: MARVIN 2000 ...11

Figure 2.2: MARVIN XP ..12

Figure 2.3: ACE-828C 24 V ATX Power Supply...14

Figure 2.4: Power Switch Panel ..14

Figure 2.5: Shuttle xPC ...16

Figure 2.6: Lab-PC+ Data Acquisition Card...17

Figure 2.7: 6025E Data Acquisition Card ...18

Figure 2.8: 6025E Block Diagram...18

Figure 2.9: ZyAIR B-220 Wireless LAN Module...20

Figure 2.10: HEDS-5500 Optical Encoder Module ..21

Figure 2.11: GP2Y0A02YK Infrared Distance-Measuring Sensors22

Figure 2.12: Triangulation with the GP2Y0A02YK ...22

Figure 2.13: GP2Y0A02YK Voltage-Distance Relationship......................................23

Figure 2.14: Tactile Sensor..24

Figure 2.15: B062E Infrared Receivers and B062S Emitters......................................25

Figure 2.16: Motor Driver PCB...26

Figure 2.17: H-Bridge Circuit ...27

Figure 2.18: Microcontroller PCB...27

Figure 3.1: MATLAB 6.1..30

Figure 3.2: LabVIEW 6.1..30

Figure 3.3: If Structure MATLAB – LabVIEW Comparison31

Figure 3.4: Windows Media Player Control in MATLAB Figure Window33

Figure 3.5: LabVIEW ActiveX Automation Server in MATLAB............................34

Figure 3.6: MATLAB Script Node in LabVIEW..35

xiv The Development of a Control System for an Autonomous Mobile Robot

Figure 3.7: Sample MATLAB – Microsoft Word Interface......................................38

Figure 3.8: Measurement and Automation Explorer Test Panel39

Figure 3.9: Digital Switch Input VI Block Diagram ...40

Figure 3.10: Encoder Counter VI Block Diagram...41

Figure 3.11: IR Analogue Input VI Block Diagram..41

Figure 3.12: Set Motor Power VI Bock Diagram..45

Figure 3.13: Program Structure ...46

Figure 3.14: GUI Window for Control System...50

Figure 4.1: Internal Representation Coordinate System..58

Figure 4.2: Obtaining Odometer Correction Factor ..59

Figure 4.3: Correlation Between MARVIN’s Motion and Wheel Motion61

Figure 4.4: Polynomial Matched to Data ..63

Figure 4.5: Lookup Table Curves Matched to Data ..65

Figure 4.6: Obtaining Offset and Heading from Rangefinders67

Figure 5.1: Circular Trajectory from Distance and Angle Inputs76

Figure 5.2: Wheel Step Response..79

Figure 5.3: Velocity-Time Profile ...79

Figure 5.4: Velocity-Distance Profile..80

Figure 5.5: Artificial Neuron...84

Figure 5.6: Closest Point on Target Trajectory ...88

Figure 5.7: Reacquiring Target Trajectory..90

Figure 5.8: Using Simulation to Tune Heading Control System92

Figure 5.9: Freewheeling and Loaded Step Responses ...96

Figure 5.10: Loaded and Freewheeling Velocity-PWM Plots97

Figure 6.1: Simulation, Distance = 4 m/s, Velocity Limit = 0.4 m/s102

Figure 6.2: Real World, Distance = 4 m/s, Velocity Limit = 0.4 m/s103

Figure 6.3: Real World, Distance = -4 m, Velocity Limit = 0.4 m/s.......................104

Figure 6.4: Real World, Turning Angle = -18o, Velocity Limit = 0.6 m/s..............105

Figure 6.5: Real World, Offset Angle = 7.2o, Velocity Limit = 0.6 m/s106

Figure 6.6: Position Errors in an Open Environment ..107

Figure 6.7: Corridor Coordinate System ...108

Figure 6.8: Simulation, Velocity Limit = 0.4 m/s ...109

Figure 6.9: Real World, Odometers Only, Velocity Limit = 0.4 m/s......................109

Figure 6.10: Real World, Odometers and Rangefinders, Velocity Limit = 0.4 m/s..110

List of Figures xv

Figure 6.11: Position Errors and Measurement Errors in a Corridor Environment ..111

Figure 6.12: 90o Right Turns in Corridor ..112

Figure 6.13: Correcting Initial 20o Heading Error...113

Figure 6.14: Correcting Initial 60o Heading Error...114

Figure 6.15: Collision Avoidance..115

Figure 6.16: Simulation, Single Instruction, Velocity Limit = 0.6 m/s.....................116

Figure 6.17: Real World, Single Instruction, Velocity Limit = 0.6 m/s....................117

Figure 6.18: Errors for Single Instructions..118

Figure 6.19: Simulation, Sequence of Instructions, Velocity Limit = 0.6 m/s..........119

Figure 6.20: Real World, Sequence of Instructions, Velocity Limit = 0.6 m/s.........119

Figure 6.21: Errors for Sequences of Instructions...120

Figure 7.1: Wall Positions Measured over Time...128

List of Tables xvii

List of Tables

Table 3.1: PC – Microcontroller Communication Protocol42

Table 5.1: Substitutions for Equation 5.9...80

Table 5.2: Wheel Velocity Multiplication Factors...92

Table 6.1: Position Errors for Extreme Tests...114

Introduction 1

1 Introduction

1.1 MARVIN

MARVIN is the flagship of an expanding

fleet of large-scale autonomous guided

vehicles developed by the Mechatronics

Group of the Department of Physics and

Electronic Engineering at the University of

Waikato. MARVIN was named after the

paranoid android from Douglas Adams’s

“Hitchhikers Guide to the Galaxy” novels

(Figure 1.1), and in the grand academic

tradition, a suitably descriptive acronym

was chosen to match the name (Mobile

Autonomous Robotic Vehicle for Indoor

Navigation).

Figure 1.1: Marvin the Paranoid
Android

The original long-term objective of the MARVIN project was to develop an

autonomous mobile security device that would patrol the corridors of the university’s

science block, detecting and recording the activities of intruders, and recharging itself

when necessary. However, this goal has since been revised, and it is now less specific

about the intended application. Although security applications have not been ruled

out, MARVIN could just as easily be used for tasks such as internal mail delivery. In

recent years the project’s focus has also shifted towards public relations and human-

machine interaction.

Daniel Loughnane, a former graduate mechatronics student, began development on

MARVIN in 1999. By early 2001, the basic mechanical structure and electronics had

been implemented. The robot possessed a rudimentary control system, implemented

on a Phillips 87C552 microcontroller, that regulated wheel speeds using odometers,

and utilised infrared rangefinders for object avoidance [Loughnane, 2001].

2 The Development of a Control System for an Autonomous Mobile Robot

Former graduate student Shaun Hurd

concurrently developed a custom laser

rangefinding system for MARVIN. This

system utilised a rotating laser and CCD

camera to detect objects at a range of up to

10 m over a 360° field of view. Images

were acquired using a PC image capture

card, and an image-processing algorithm

was developed to extrapolate distances

from the recorded images. The laser

rangefinder was mounted to MARVIN’s

upper chassis, as shown in Figure 1.2.

Although successful, this device was never

integrated into MARVIN’s control system

[Hurd, 2001].

Figure 1.2: MARVIN and the
Laser Rangefinder

Development slowed during 2001, because no full-time graduate students were

assigned to the project at the time. Nevertheless, a number of revisions were

implemented. The microcontroller was replaced with a PC and a data acquisition

(DAQ) card, but the control software was not ported over to the new platform.

Instead, a LabVIEW program was developed to allow remote driving capabilities

using a wireless LAN connection. This was successfully demonstrated in the Osborne

Lectures, a tour of secondary schools throughout New Zealand. Unfortunately the

motor drivers, rangefinders and one of the odometers were subsequently removed for

use in other projects, so that MARVIN was no longer operational at the onset of this

thesis project.

Introduction 3

1.2 Projects

Four separate thesis projects relating to MARVIN, including this one, are being

conducted in parallel. They interrelate in the loosely defined hierarchy shown in

Figure 1.3.

Figure 1.3: Project Hierarchy

1.2.1 Robot Humanisation

The original design for MARVIN’s outer chassis bore an unfortunate resemblance to

the Daleks from “Dr Who”. A modern robot should not look like tacky 1960’s science

fiction, so graduate mechatronics student Ashil Prakash is working with

Robotechnology Ltd. [http://www.robotechnology.co.nz] to design a chassis that is

more in line with 21st century expectations (Figure 1.4). In addition to its aesthetic

improvements, the new chassis will allow MARVIN to exhibit humanlike behaviour

through motion of the head and torso [Prakash & Carnegie, 2003].

The second aspect of the robot humanisation project is a human-machine interface.

This is primarily a voice interface that will utilise commercial speech recognition

software to interpret spoken commands. Due the complexities of identifying unique

voice patterns, this system cannot recognise individuals – an essential requirement for

security applications. Instead, individual access will be provided using a Cardax

swipe-card system [http://www.cardax.com].

Robot Humanisation

Task Planning and Navigation

Localisation and Control

Generic Motor Drivers

4 The Development of a Control System for an Autonomous Mobile Robot

 Daleks Original Chassis New Chassis

Figure 1.4: MARVIN vs. the Daleks

1.2.2 Task Planning and Navigation

The task planning and navigation system being designed by graduate student Lucas

Sikking is the Mechatronics Group’s first attempt at achieving autonomy in a large-

scale mobile robot. Voice commands indicating target destinations must be translated

into coordinates on an internal map. The navigation system will plot a course for

MARVIN to travel in order to reach the target coordinates, and resolve it into a

sequence of instructions that are passed to the control system (Section 1.2.3). If an

unmapped obstacle is encountered, the map will be updated and a new course will be

plotted around the obstacle. Infrared beacons are to be placed at strategic locations

around the operating environment, providing active landmarks that the navigation

system can use to correct any cumulative odometry errors [Sikking & Carnegie,

2003].

1.2.3 Localisation and Control

Although a simple control system was developed for MARVIN’s embedded

controller, it is not implemented on the new PC hardware. The limitations of the

original control system, coupled with the fact that significant alterations will be made

to the sensors and motor drivers, mean that converting it to the new platform is not a

Introduction 5

viable option. This thesis describes the development of a new control system for

MARVIN that will execute motion instructions delivered by the navigation system,

and return sensor data and localisation information.

Instructions are translated into velocity profiles and a target trajectory. The control

system must ensure that MARVIN’s wheels follow the intended velocity profiles as

closely as possible. Data from multiple sensors must be combined appropriately in

order to produce an accurate representation of MARVIN’s position and orientation,

which the control system will use to track MARVIN’s motion along the target

trajectory. If it drifts off course, the wheel velocities must be adjusted accordingly

[Lee-Johnson & Carnegie, 2003].

1.2.4 Generic Motor Drivers

One of the main difficulties encountered by the Mechatronics Group has been the

unreliability of motor driver circuits, particularly when large loads are involved. Craig

Jensen, a mechatronics graduate student, will design generic H-bridge motor driver

circuits that can be applied to any robot in the Mechatronics Group’s fleet, including

MARVIN. This will greatly accelerate the initial stages of development, allowing

students to focus on high-level design.

Since all the large-scale robots include a PC, the motor drivers will utilise a standard

DB9 serial interface (which can also be adapted to USB, if necessary). Software will

be developed that transmits power levels to the motor drivers, and receives odometer

data. Eventually the software will be utilised by MARVIN’s control system, replacing

the system-specific hardware interface developed in this thesis [Jensen & Carnegie,

2003].

6 The Development of a Control System for an Autonomous Mobile Robot

1.3 Operating Environment

MARVIN is intended to operate primarily within the first floor corridors of C block at

the University of Waikato (overhead view given in Figure 1.5, photographs given in

Figure 1.6). This is of greatest importance to the navigation system, which requires a

predefined static map of the environment.

Figure 1.5: Overhead View of C Block Corridor

(a) (b)

(c) (d)

Figure 1.6: C Block Corridor Viewed from Intersection

Introduction 7

Although it will receive information from the navigation system, which will operate

only in pre-mapped environments, the control system itself will be less location-

specific, and it should function at full capacity inside any environment with parallel

walls that are within range of the rangefinders. In an environment where the walls are

too distant or obscured by obstacles, the control system will still operate, but it must

rely exclusively on dead reckoning for localisation, and consequently it will become

more susceptible to cumulative error [Borensten & Feng, 1996].

1.4 Thesis Objectives

The primary objectives of this thesis project are as follows:

• Purchase or design new optical encoders (odometers), infrared rangefinders,

tactile sensors, beacon receivers and motor drivers.

• Mount sensors and actuators to the chassis and interface them to the DAQ

card.

• Develop LabVIEW software that uses the DAQ card to communicate with the

sensors and actuators.

• Establish a means to control LabVIEW from MATLAB.

• Acquire sensor data in MATLAB.

• Obtain velocity, position and orientation information from odometer data.

• Obtain obstacle distances, position and orientation information from

rangefinder data.

• Combine localisation information from odometers and rangefinders to produce

a single representation of MARVIN’s position and orientation.

• Obtain velocity profiles and an overall trajectory of motion for a given

instruction

• Utilise localisation information to maintain MARVIN’s trajectory.

• Develop a PID control system to maintain wheel velocities at the appropriate

levels.

• Incorporate tactile sensor data and obstacle distances in a collision avoidance

system so that MARVIN can react to a dynamic environment.

8 The Development of a Control System for an Autonomous Mobile Robot

1.5 Project Planning

Figure 1.7 outlines the development schedule for this project.

Figure 1.7: Flowchart of Project Development Process

Simulate sensors and actuators.

Obtain wheel velocity profiles that implement given
motion instructions.

Establish communication protocol between control
system and navigation system.

Obtain localisation information from simulated
odometers and rangefinders.

Control MARVIN’s simulated motion along intended
trajectory.

Install and interface real sensors and actuators.

Refine control system for operation in the real world.

Test control system in conjunction with navigation
system.

Improve system performance.

Introduction 9

1.6 Chapter Summary

This thesis is divided into the following chapters:

Chapter 2 – MARVIN’s hardware is discussed, and the alterations and additions

implemented during this project are described.

Chapter 3 – The various software interfaces utilised by the control software are

explained.

Chapter 4 – The process of obtaining localisation information from sensor data and

combining data from multiple sensors in a useful manner is discussed.

Chapter 5 – An algorithm that controls MARVIN’s speed and trajectory is

described.

Chapter 6 – Test results of MARVIN’s motion under various conditions are

presented.

Chapter 7 – Conclusions are given along with a performance evaluation and

suggestions for future development.

Hardware 11

2 Hardware

2.1 Overview

Although MARVIN had been operational in the past, it was in a non-working state at

the onset of this project. The motor driver PCBs had been salvaged for use in other

devices. One of the odometers was missing, and neither had been interfaced to the PC.

Many of the components, including the motherboard, hard disk, DAQ connector

module, power supply and Uninterruptible Power Supply (UPS), were mounted in a

temporary manner that was insufficiently robust to withstand the forces that would be

encountered during real-world operation. Figure 2.1 gives an outline of the

unfavourable aspects of MARVIN’s original hardware.

Figure 2.1: MARVIN 2000

Given MARVIN’s initial state, the decision was made to do a significant hardware

overhaul. The wheels, chassis, motors and batteries remain largely untouched from

the original design, but the power supply, PC, DAQ card, wireless LAN module,

odometers, rangefinders, tactile sensors, beacon receivers, PCB platforms, switches,

cabling, motor drivers and microcontroller have been replaced or added during the

course of this project. MARVIN’s new hardware is shown in Figure 2.2.

UPS

ATX Power
Supply

Cardboard
Electrical Isolation Odometer

DAQ Connector
Block

Motherboard

Back Panel
Hard Drive

12 The Development of a Control System for an Autonomous Mobile Robot

Figure 2.2: MARVIN XP

2.2 Mechanical Details

MARVIN’s frame is 0.777 m high, 0.583 m wide and 0.515 m long. The base of the

frame is constructed from 25 mm × 25 mm steel tubing, welded together for strength.

The upper section consists of aluminium struts that are riveted or screwed together for

easy modifiability.

In order to lower the centre of gravity and improve stability, the heaviest components,

the motors and batteries, are mounted at MARVIN’s base. The PC is mounted near

the centre for accessibility reasons. The ATX power supply cannot fit inside the PC,

so it is attached to two aluminium beams on MARVIN’s side.

Two Perspex platforms are attached above and below the PC, providing non-

conductive surfaces on which to mount the various PCBs. These circuits are attached

to the platforms using PCB guides, with at least one end left open so that they can be

removed for repair if necessary. The lower platform houses the motor drivers and

microcontroller, which ideally should be as close as possible to the motors. DAQ

connector blocks and sensor-related PCBs are mounted on the upper platform.

Infrared
Rangefinders

PCB
Platforms

Wireless LAN

Tactile
Sensors

24V ATX Power
Supply

Switch Panel

PC
Beacon

Receivers

Motor Drivers

Hardware 13

Locomotion is provided by two wheels in the standard wheelchair configuration,

supported by castors at the front and rear. MARVIN’s linear velocity and heading are

controlled by varying the angular velocity of each wheel. This yields tighter turning

circles and reduced wheel slippage in comparison to other possible arrangements such

as tricycle or quad wheel configurations [Loughnane, 2001]. The wheels have a radius

of 0.165 m, and the distance between the centre of each wheel is 0.508 m. The tyre

pressure of each wheel is 303 kPa (44 lb/in2).

2.3 Power Source

MARVIN is powered by two 12 V flooded lead-acid batteries in series (resulting in a

total of 24 V). These batteries have a Reserve Capacity (RC) of 55 minutes, and a

Cold Cranking Amperage (CCA) of 310 A. This corresponds to approximately 23

Amp Hours of useful operation. However, since they are not deep cycle batteries,

damage will result if they are repeatedly allowed to run flat.

The motor drivers are powered directly from the 24 V battery terminals. The PC,

microcontroller and sensors require a range of voltages (generally 5 V or 12 V) which

are provided by an ATX power supply. The power supply was originally connected to

a 240 V AC mains-equivalent signal produced by a UPS. This approach was relatively

inefficient, as it involved a conversion from a low DC voltage to a high AC voltage,

and back again. Another limitation to consider was the significant size and weight of

the UPS.

Consequently, the standard ATX power supply was replaced with a 24 V ATX power

supply, the ACE-828C from ICP Electronics (shown in Figure 2.3). This supply’s

output characteristics are virtually identical to those of a standard ATX supply, but it

is powered from 18 V to 32 V DC, rather than mains, so it can be connected directly

to the battery terminals, eliminating the need for a UPS. The ACE-828C is rated up to

250 W, which is more than adequate for the PC and the limited number of peripherals

that are driven from it.

14 The Development of a Control System for an Autonomous Mobile Robot

Figure 2.3: ACE-828C 24 V ATX Power Supply

The ACE-828C, like most modern ATX power supplies, goes into a “soft” shutdown

mode when the PC is turned off. Due to the power supply’s imperfect efficiency, it

does draw a small current in this state, which can drain the batteries over time. It is

therefore necessary to physically disconnect the power supply from the batteries after

the PC is shut down. This is accomplished using a Double Pole Single Throw (DPST)

switch mounted on an aluminium panel in an accessible location near the top of

MARVIN, as shown in Figure 2.4.

A separate DPST switch is used for the motor drivers (mounted in the same location

for aesthetic and accessibility reasons), since it is often necessary to disable the

motors while the PC and sensors are running. An LED is mounted to the panel that

indicates whether the microcontroller (Section 2.6.2) is receiving valid instructions

from the PC.

Figure 2.4: Power Switch Panel

Hardware 15

2.4 PC Hardware

MARVIN executes its high-level software on a standard PC platform rather than the

embedded controllers favoured by most of the Mechatronics Group’s smaller mobile

robots (although it does still use a microcontroller to drive the motors, as described in

Section 2.6.2). PCs have numerous advantages over embedded controllers, including:

• Processing speed increase of several orders of magnitude.

• Improved code portability.

• Wider selection of development tools.

• Large variety of alternative hardware interfaces.

• Cheap wireless communication options.

• Less hardware design necessary.

2.4.1 PC

The original PC used for MARVIN was a 466 MHz Celeron with 128 MB RAM, and

a 6 GB hard disk. A standard PC case is too large to fit inside MARVIN’s chassis, so

most of the case had been trimmed away, leaving just the motherboard and back

panel, which were mounted to MARVIN’s chassis on a single corner.

This PC was barely adequate for the complex calculations that would be necessary for

this and other projects, so it was upgraded. The Shuttle xPC, a Small Form-Factor

(SSF) computer, was selected rather than a standard PC. This has the advantage that

no case modifications are necessary for it to fit inside MARVIN’s chassis, and it can

remain fully enclosed, providing better protection and isolation. Unlike other small-

sized computers such as notebooks and PDAs, SFF computers remain competitive

with standard PCs in terms of price and performance.

The only significant drawback is that the Shuttle xPC has just one PCI slot (currently

occupied by the data acquisition card), limiting the potential for future expansion.

This is of particular significance to Shaun Hurd’s custom-designed laser rangefinding

16 The Development of a Control System for an Autonomous Mobile Robot

system (Section 1.1), which will be added to MARVIN at a later date. The device

currently requires a PCI video capture card to operate, so it will be necessary to find

an alternative means of video capture, or replace the PC.

The specifications for the Shuttle xPC (shown in Figure 2.5) are as follows:

CPU: Athlon XP 2000+ (1.67 GHz)

RAM: 512 MB PC2700 DDR (333 MHz)

Motherboard chipset: nVidia nForce 2 / MCP-T

Expansion slots: 1 × PCI

 1 × AGP

General purpose I/O Ports: 4 × USB 2.0

 2 × IEEE 1394

 1 × Serial DB9

Hard Disk: 10 GB, 5400 rpm

Figure 2.5: Shuttle xPC

2.4.2 Data Acquisition (DAQ) Card

The software originally communicated with the sensors and actuators using a National

Instruments Lab-PC+ DAQ card (Figure 2.6) plugged into the PC’s ISA slot.

Featuring eight analogue inputs, two analogue outputs, 24 digital I/O lines and three

configurable timers/counters, the Lab-PC+ is adequate for the purposes of this project.

Hardware 17

Unfortunately, modern motherboards are no longer manufactured with ISA slots, so

this card is unsuitable for use in the new PC.

Figure 2.6: Lab-PC+ Data Acquisition Card

The replacement card is the 6025E (Figure 2.7), also from National Instruments.

Chosen for its similarity to the Lab-PC+, the 6025E has the following specifications:

Analogue Inputs

Number of channels: 16 single-ended or 8 differential

Resolution: 12 bits

Maximum sampling rate: 200 kS/s

ADC Type: Successive approximation

Analogue Outputs

Number of channels: 2

Resolution: 12 bits

Digital I/O

Number of channels: 32

Counters/Timers

Number of channels: 2

Resolution: 24 bits

Maximum source frequency: 20 MHz

Type: Up/down counters

18 The Development of a Control System for an Autonomous Mobile Robot

Figure 2.7: 6025E Data Acquisition Card

A block diagram representing the hardware functions of the 6025E is given in Figure

2.8. Unlike the Lab-PC+, the 6025E is a jumperless card, and all of the configuration

settings are software-selectable.

Figure 2.8: 6025E Block Diagram

The analogue inputs in the 6025E DAQ card utilise a Programmable Gain

Instrumentation Amplifier (PGIA), which can be configured in Referenced Single-

Ended (RSE), Non-Referenced Single-Ended (NRSE), or Differential (DIFF) modes

of operation. While in RSE mode, the DAQ card ties the PGIA’s negative inputs to

the Analogue Input Ground (AIGND) terminal. In NRSE mode, the PGIA’s negative

inputs are tied to Analogue Input Sense (AISENSE). DIFF mode configures the DAQ

Hardware 19

card so that adjacent analogue inputs are attached to the positive and negative inputs

of the PGIA.

Most new National Instruments DAQ cards only provide 8 digital I/O lines. However,

in order to maintain compatibility with legacy cards, the 6025E uses an 82C55A

Programmable Peripheral Interface (PPI) to provide 24 additional digital I/O lines,

divided into three 8-bit ports, which can be configured to perform the same functions

as the Lab-PC+ digital I/Os. Four modes of operation are available: Basic I/O,

Strobed Input, Strobed Output and Bi-directional. These modes configure various

automatic handshaking signals on Port C.

The various digital and analogue lines are accessible via two 50-pin I/O connector

blocks attached to the back of the card with a ribbon cable.

2.4.3 Wireless LAN

Until Ashil Prakash’s voice recognition interface is implemented on MARVIN, the

software is operated remotely from a notebook PC, which communicates with

MARVIN’s PC over a wireless LAN connection. MARVIN’s PC is accessed using

the standard Remote Desktop Connection (or Windows Terminal Service) tool that

ships with Windows XP. This essentially allows the notebook to become MARVIN’s

keyboard, mouse, monitor and speakers.

There are insufficient PCI slots available for an internal wireless LAN card, so a USB

module – the ZyAIR B-220 (Figure 2.9) – is used instead. The B-220 has the

following specifications:

20 The Development of a Control System for an Autonomous Mobile Robot

Media Access Protocol: IEEE 802.11b

Data Rate: 11 Mbps / 5.5 Mbps / 2 Mbps / 1 Mbps

Coverage Area: Indoor: 50 m @ 11 Mbps

 80 m @ 5.5 Mbps or lower

 Outdoor: 150 m @ 11 Mbps

 300 m @ 5.5 Mbps or lower

Frequency: 2.4 ~ 2.835 GHz (Industrial Scientific Medical Band)

Output Power: 17 dBm (typical)

Receiver Sensitivity: -82 dBm @ 11 Mbps

Bit Error Rate: 10-5 @ -82 dBm

Figure 2.9: ZyAIR B-220 Wireless LAN Module

2.5 Sensors

MARVIN is equipped with a range of sensors – odometers, rangefinders, tactile

sensors and beacon receivers – that the control and navigation software uses for tasks

such as localisation, velocity control and obstacle avoidance. A detailed analysis of

their usage in software is given in Chapter 4.

Hardware 21

2.5.1 Odometers

MARVIN utilises the HEDS-5500 optical encoder module (Figure 2.10) for wheel

position and velocity measurements. In an optical encoder, electrical pulses are

generated from light that passes through holes on the perimeter of a circular disk (the

code wheel) onto an optical receiver. The change in wheel position is measured by

counting these pulses. The HEDS-5500 module includes the HEDS-9100 encoder and

HEDS-5120 code wheel – the same components that were used on MARVIN prior to

this project – but they are enclosed in a single package, simplifying the design and

providing additional protection.

Figure 2.10: HEDS-5500 Optical Encoder Module

The HEDS-5120 code wheel produces 500 pulses per revolution. Since the odometers

are mounted on the motors, the gearing ratio results in a resolution of 25780 pulses

per wheel revolution. Given the wheel circumference of 1.0367 m, this corresponds to

24867 pulses per metre.

Each encoder includes two output channels that are 90° out of phase, providing a

means to determine direction. MARVIN only utilises a single channel, because

directional changes are slow enough that they can be more easily detected using

software techniques (Section 4.1.1). The encoder outputs are connected to the counter

source pins (GPCTR0_SOURCE and GPCTR1_SOURCE) on the DAQ card.

22 The Development of a Control System for an Autonomous Mobile Robot

2.5.2 Rangefinders

MARVIN utilises the Sharp GP2Y0A02YK infrared distance-measuring sensor

(Figure 2.11) to detect nearby objects. This device has a measurement range of 0.2 m

to 1.5 m, which is adequate for location sensing and object detection in the intended

corridor and laboratory environment.

Figure 2.11: GP2Y0A02YK Infrared Distance-Measuring Sensor

The GP2Y0A02YK calculates distances using a scheme based on triangulation

(Figure 2.12). Light from an infrared emitter is reflected off an object onto a Charge

Coupled Device (CCD) detector. An analogue voltage is generated from the position

of the detected light along the CCD array. Since the detector is positioned at a known

location and orientation with respect the emitter, the range of an object can be

calculated directly from this voltage. The primary advantage that this method has over

other schemes such as intensity measurement is that the colour and reflectivity of an

object has little effect on the measured distance.

Figure 2.12: Triangulation with the GP2Y0A02YK

Hardware 23

The voltage-distance relationship (Figure 2.13) reveals that distances less than 0.15 m

will result in misleading measurements, so the rangefinders are mounted far enough

from MARVIN’s edge that this “dead region” is never encountered. Six rangefinders

are mounted at the top of the chassis – one on the front, one on the back, and two on

each side. The side rangefinders face about 15° away from each other, reducing

optical crosstalk.

Figure 2.13: GP2Y0A02YK Voltage-Distance Relationship

In order to reduce noise on their supply rails, the rangefinders are driven from a

separate supply rail produced by a 7805 linear regulator. The regulator provides a

stable 5 V from a 12 V input. The rangefinder outputs are connected to DAQ card’s

the analogue inputs (ACH0-ACH5).

24 The Development of a Control System for an Autonomous Mobile Robot

2.5.3 Tactile Sensors

Four tactile sensors are mounted near MARVIN’s base – one at each of the four

corners. Some tactile sensors are position-dependant, but MARVIN currently uses

simple binary sensors. These are a temporary safety measure that will be replaced

with a more robust design once Ashil Prakash’s outer chassis is added.

Each sensor consists of a wire whisker that presses a SPDT switch when it flexes due

to contact with an object, as shown in Figure 2.14. The switches are connected to four

digital I/O ports on the DAQ card (DIO0-DIO3). When a switch is pushed (i.e. a

collision with an object has occurred), the corresponding port is pulled high through

an internal pull-up resistor on the DAQ card. Otherwise it is pulled low. The software

can use this signal to implement an emergency stop procedure that executes in the

event of a collision.

Figure 2.14: Tactile Sensor

2.5.4 Beacon Receivers

Two Kemo B062E infrared receivers are utilised in conjunction with modified

versions of the B062S emitter (Figure 2.15). These emitters function as beacons

(artificial landmarks) for Lucas Sikking’s navigation algorithm, positioned at known

locations on the corridor walls [Sikking & Carnegie, 2003]. The receivers are

Hardware 25

mounted on MARVIN’s sides, far enough below the rangefinders to minimise

interference. They provide signals indicating when MARVIN passes an emitter, so

that the navigation system can correct any cumulative odometry errors that have

arisen.

Figure 2.15: B062E Infrared Receivers and B062S Emitters

The receiver circuits consist of a photodiode and filtering IC that switches a relay

when it receives a 14 kHz modulated infrared signal from the emitter. The relay is

connected to the digital I/O port on the DAQ card in the same manner as the contact

switches, so that the digital line is pulled high when MARVIN is in the path of a

beacon. Receiver and emitter schematics are given in Appendix A.1 and Appendix

A.2 respectively.

2.6 Actuators

MARVIN’s wheels are driven independently by two 24 V DC permanent magnet

brush motors (salvaged from an electric wheelchair), which are controlled using H-

bridge motor driver PCBs designed by graduate Mechatronics student Andrew Payne.

Pulse Width Modulated (PWM) inputs for the motor drivers are in turn provided by a

separate 8051 microcontroller PCB, also designed by Andrew Payne.

The motor drivers were originally developed for Itchy and Scratchy; a pair of identical

robots designed to perform cooperative tasks [Payne & Carnegie, 2003]. Since Itchy

and Scratchy possess similar motor characteristics to MARVIN, the same designs can

26 The Development of a Control System for an Autonomous Mobile Robot

be utilised for this project with no significant modifications. Craig Jensen’s generic

motor drivers may replace them at a later date, depending on comparative test results.

2.6.1 Motor Drivers

The motor driver PCBs (Figure 2.16, schematic shown in Appendix A.3) control the

current supplied to the motors (and therefore the speed of rotation) by varying the

duty cycle of a PWM signal. As long as the PWM signal’s switching speed is much

greater than the motor’s time constant, the motor responds in approximately the same

manner that it would react to a DC voltage that is proportional to the PWM signal’s

duty cycle.

Figure 2.16: Motor Driver PCB

In order to provide the high current signals necessary to drive large motors, the motor

drivers utilise the H-bridge circuit shown in Figure 2.17. Two diagonal MOSFETs are

switched from the PWM signal, while the other two remain in the off state. Motor

direction is controlled by selecting which transistor pair to switch [Payne & Carnegie,

2003].

Hardware 27

Figure 2.17: H-Bridge Circuit

2.6.2 Microcontroller

The 6025E DAQ card can generate PWM signals directly from its two onboard

counters. Unfortunately, the counters are also used to count odometer pulses, and

there are too few available for both tasks. Instead, an 8051-family microcontroller, the

Phillips P89C51RC2HBP, is used as a PWM generator (Figure 2.18, schematic shown

in Appendix A.4). It communicates with the PC’s DAQ card using a 12-bit parallel

interface, consisting of an 8-bit data connection (PA0-PA7 on the DAQ card), and a

4-bit handshaking connection (PC4-PC7).

Figure 2.18: Microcontroller PCB

Software Interfaces 29

3 Software Interfaces

MARVIN’s software utilises a number of different applications (HI-TECH C,

LabVIEW, MATLAB and Microsoft Word) on two different hardware platforms (PC

and 8051) that each require a means to communicate with each other. The control

system must acquire data from various analogue and digital signals provided by the

sensors. Software layers corresponding to the four MARVIN-related projects must

exchange information. Finally a Graphical User Interface (GUI) and data logging

system is required for testing purposes.

3.1 Applications

3.1.1 HI-TECH C

Programming languages based on C are among the most widely used languages in

existence today. C was originally developed in 1972 based on two previous

languages, B and BCPL, but it has since undergone numerous revisions. The language

is hardware independent, and modified versions are commonly used in embedded

controllers. MARVIN’s motor driver software was developed using the HI-TECH

8051 C Compiler (HI-TECH C) by HI-TECH Software.

3.1.2 MATLAB

MATLAB (Matrix laboratory, shown in Figure 3.1) is a programming language

designed for technical computing. Unlike other languages such as C, MATLAB’s

basic data element is a dynamic array of floating point numbers. Solutions are

calculated numerically, so there is an error between the exact solution and the

calculated one, but variables are of such high precision that this error is reduced to

insignificant levels in most applications.

30 The Development of a Control System for an Autonomous Mobile Robot

MATLAB provides a large selection of

specialised toolboxes for applications such

as control systems, signal processing,

system identification and data acquisition.

MATLAB’s level of support in these areas

makes it an ideal platform on which to base

MARVIN’s high level software.

Figure 3.1: MATLAB 6.1

3.1.3 LabVIEW

LabVIEW (Figure 3.2) is a program development application based on the graphical

programming language, G, developed by National Instruments. It is designed

primarily for test and measurement purposes, making it useful as an interface to the

data acquisition (DAQ) hardware. LabVIEW allows developers to create programs,

called virtual instruments (VIs) to recreate the appearance and functionality of real

instruments such as amplifiers and filters.

Figure 3.2: LabVIEW 6.1

Data objects are represented by blocks linked together by wires on a block diagram

rather than lines of text. This form of programming allows developers with limited

programming experience to create simple programs that perform useful tasks.

However, an experienced software developer would take longer to implement most

algorithms in G than they would in a text-based language. G code also tends to be

Software Interfaces 31

more difficult to follow at a glance than its text-based equivalent because many G

structures consist of multiple subdiagrams that cannot be observed at the same time.

Figure 3.3 gives an example of this.

LabVIEW

if c > 10
 a = 0;
else
 a = b + 2;
end;

MATLAB

Figure 3.3: If Structure MATLAB – LabVIEW Comparison

The inputs and outputs of a VI are called the controls and indicators respectively.

Controls can be in the form of dials, slide bars, switches, buttons, check boxes or text

input boxes. Graphs, charts, tables, meters, lights and text output boxes are indicators.

3.1.4 Microsoft Word

Microsoft Word is a popular word processor that includes a large selection of auto

correction options for grammar and spelling. Ashil Prakash’s human-machine

interface uses Microsoft Word’s inbuilt speech recognition rather than a stand-alone

package such as Dragon Dictate. Since speech recognition is generally rather

unreliable, Microsoft Word is useful as a means to automatically correct some of its

mistakes [Prakash & Carnegie, 2003].

32 The Development of a Control System for an Autonomous Mobile Robot

3.2 Inter-Application Interfaces

Prior to the onset of this project, most PC-based robotic software at the Mechatronics

Group consisted of relatively simple LabVIEW programs. LabVIEW provides many

user-friendly data acquisition VIs, and it has built in support for National Instruments

DAQ cards such as the Lab-PC+ and 6025E, so it is well-suited to the task of

controlling MARVIN’s hardware. However, due to its graphical nature, LabVIEW is

less suitable for designing the complex logic necessary for MARVIN to become

autonomous.

A high level of program complexity is more easily accomplished in MATLAB. Due

to its growing popularity and support in the academic community, MATLAB has

become the preferred programming language to use for future projects in the

Mechatronics Group. The eventual goal is to replace all current LabVIEW software

with Craig Jensen’s MATLAB hardware interface [Jensen & Carnegie, 2003], or an

equivalent system. However, it will not be ready in time for this project.

In the meantime, an interface between the two programs has been developed. Using

this interface, LabVIEW provides the low-level hardware interface, while the

MATLAB code is responsible for the high-level control tasks. A similar interface has

also been developed between MATLAB and Microsoft Word, so that voice

commands can be passed to MATLAB for the navigation system to execute.

The following interfaces were considered:

• ActiveX Control Containment

• ActiveX Automation

• MATLAB Script Node

• Dynamic Data Exchange

• File I/O

Software Interfaces 33

3.2.1 ActiveX Control Containment

ActiveX is a marketing label that describes a loosely defined set of technologies

developed by Microsoft to allow interaction between multiple programs without

requiring developers to have knowledge of each program’s inner workings. It is based

on two other Microsoft technologies: COM (Component Object Model) and OLE

(Object Linking and Embedding). Although ActiveX encompasses a very broad range

of technologies, the only ones that are supported in MATLAB and LabVIEW are

ActiveX Control Containment and ActiveX Automation.

An ActiveX control is an application that can be embedded in the client’s control

container. The control can send notifications back to the client in the form of events,

which can trigger the client’s event handler routine. Since MATLAB’s ActiveX

Automation lacks support for events, ActiveX Control Containment is potentially the

more powerful of the two interfaces.

MATLAB can control another application in this manner from within a figure

window, using the actxcontrol function (refer to Figure 3.4 for an example).

Similarly, ActiveX control container blocks can be created in LabVIEW. However,

neither program can itself be an ActiveX control, so this is unsuitable for interfacing

these two programs.

 % Windows Media Player ActiveX control.
 hf=figure('Position',[120 370 316 100]);
 h=actxcontrol('MediaPlayer.MediaPlayer.1',[20,10,260,80],hf);
 set(h,'FileName','c:\WINNT\Media\Windows Logon Sound.wav');

Figure 3.4: Windows Media Player Control in MATLAB Figure Window

34 The Development of a Control System for an Autonomous Mobile Robot

3.2.2 ActiveX Automation

Like the ActiveX Control Containment, ActiveX Automation allows one program (the

client) to control another (the server), but an Automation server is generally not

embedded in the client application. The client simply calls the server like an ordinary

function, and it must wait for the server to finish its task before it can continue.

MATLAB and LabVIEW support ActiveX Automation as both clients and servers. Of

particular interest is the MATLAB function actxserver, which can be used to set up a

LabVIEW server when it is given LabVIEW’s program ID as a parameter. The

ActiveX program ID is a unique entry in the registry used by other programs to

identify it. Each ActiveX object has a set of properties, which are variables controlled

by that object, governing, for instance, the appearance of its GUI or the files and

directories it can access. Equally important are an object’s methods, similar to

function calls, which are requests for the object to perform an action, such as

returning the value of a variable. MATLAB can access LabVIEW’s properties and

methods, and through them gain read/write access to a LabVIEW VI’s controls and

indicators. This interface is relatively simple to use, and it allows the two programs to

communicate with reasonable efficiency. Figure 3.5 shows the creation and

manipulation of a LabVIEW ActiveX server in MATLAB.

 % Set up LabVIEW ActiveX server. Open VI window.
 lvserv = actxserver('LabVIEW.Application');
 vi = invoke(lvserv,'GetViReference',...
 'c:\Project\Code\LabVIEW\Wheel Controller.vi');
 vi.FPWinOpen = 1;

Figure 3.5: LabVIEW ActiveX Automation Server in MATLAB

Software Interfaces 35

3.2.3 MATLAB Script Node

LabVIEW 5.1 has built in support for MATLAB via script nodes – blocks on the

LabVIEW block diagram that can execute MATLAB code using ActiveX. An

example of a MATLAB script node is shown in Figure 3.6 below.

Figure 3.6: MATLAB Script Node in LabVIEW

National Instruments recommends the script node as the simplest, most efficient

interface between the two programs. However, it is not the best approach for this task.

The high-level code will be in MATLAB, with LabVIEW only providing the interface

to the hardware. Consequently, MATLAB should be the controlling program, not

LabVIEW. The problem can be circumvented if the MATLAB functions are called

from within a main VI’s loop, but this is an inelegant solution. It would result in

further difficulty when the control system is converted into pure MATLAB code.

Compatibility issues might also arise with some MATLAB toolboxes.

3.2.4 Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a protocol used to send data between programs.

Unlike ActiveX, it does not give one program direct control over another – a program

can only be manipulated in this way if it can treat data as commands. The data is

exchanged asynchronously, so a handshaking or interrupt mechanism is needed to

ensure that a program receives the data that was sent.

36 The Development of a Control System for an Autonomous Mobile Robot

MATLAB supports DDE through a group of client functions (ddeadv, ddeexec,

ddeinit, ddepoke, ddereq and ddeunadv) that set up the link and perform the

necessary data exchanges. LabVIEW can then be configured as a DDE server using

the DDE Srv Register Service VI. The disadvantage of this method is that both the

client and server must be set up and run independently, which introduces unwanted

complexities such as timing issues. Overall, the difficulties of setting up a reliable

DDE interface for this project outweigh its advantages.

3.2.5 File I/O

This approach involves writing data into a file with one program, and reading it from

the file with the other. This is the only method that is virtually guaranteed to work

with any program on any platform. However, disc access is very slow, so this is the

least efficient method. Moreover, synchronising the two programs this way is

difficult. It would be used only as a last resort.

MATLAB supports file I/O through functions such as fopen, fclose, fread, fwrite,

fprintf, and fscanf. Similarly, LabVIEW provides a range of file I/O VIs, including

Open/Create/Replace File, Write Characters To File and Read Characters From

File.

3.2.6 Selected Interface: ActiveX Automation

Although some of these interfaces are not viable in this application, they each have

situations where they are useful. File I/O must be used when the programs lack a

common alternative interface. DDE is useful for communication between programs on

different machines, or on non-Windows operating systems. MATLAB script nodes

are the most convenient technique for calling MATLAB functions from LabVIEW

VIs. ActiveX Control Containment provides a powerful interface for applications that

support it.

Software Interfaces 37

However, due to its ease of use, and its level of support in MATLAB, LabVIEW and

Microsoft Word, ActiveX Automation was selected over these other interfaces.

3.2.7 MATLAB – LabVIEW Interface Details

ActiveX Automation is used extensively throughout the control system wherever it

communicates with the sensor and motor driver VIs.

Some LabVIEW properties and methods can be invoked directly in MATLAB.

Methods with more than one argument must be accessed using the invoke function.

This function calls an object’s methods with the given arguments, and outputs the

methods’ return values.

LabVIEW communicates using two distinct ActiveX classes of object: the

Application class, and the Virtual Instrument class. The Application class gives

MATLAB access to the properties and methods that affect LabVIEW as a whole. It

can be created directly in MATLAB. The Virtual Instrument class allows MATLAB

to manipulate individual LabVIEW VIs. It cannot be created directly, but it can be

instantiated using the GetVIReference Application class method.

The FPWinOpen Virtual Instrument class property opens up a front panel window of

the LabVIEW VI object, so that the VI’s controls and indicators can be manipulated

and viewed. This is not necessary for the final control system – the GUI is

implemented in MATLAB – but it is used for testing purposes.

The most important methods for this interface are GetControlValue and

SetControlValue from the Virtual Instrument class, which can read and write to a

VI’s controls and indicators. Invoking GetControlValue returns the requested

variable in its original data format, so care must be taken to only return values in data

types compatible with MATLAB. For example, in MATLAB versions earlier than

6.5, Booleans should be converted to integers or floating-point numbers in the

LabVIEW VI before they are passed to MATLAB. SetControlValue accepts only

38 The Development of a Control System for an Autonomous Mobile Robot

strings as parameter inputs, so all numeric data types must be converted in MATLAB,

using the num2str or int2str functions.

After the VI’s controls have been set, the VI is run using the Virtual Instrument class

method, Run. Then the controls and indicators are passed back to MATLAB, where

the process is repeated.

3.2.8 MATLAB – Microsoft Word Interface Details

Figure 3.7 shows a test program that opens a Microsoft Word document, reads text

strings into MATLAB to be processed, and deletes them from the Microsoft Word

document.

% Set up MS Word ActiveX server. Open document.
wordserv = actxserver('Word.Application');
wordserv.Visible = 1;
set(wordserv.Options,'ReplaceSelection',0);
invoke(wordserv.Documents,'Open','h:\Project\test.txt');

% Select text. Return it to MATLAB. Delete text.
invoke(wordserv.Selection,'SetRange',0,10000);
strng = get(wordserv.Selection,'Text')
invoke(wordserv.Selection,'Delete');

% Quit MS Word. Don't save changes.
invoke(wordserv,'Quit',0);

% Clean up ActiveX objects to help prevent memory leaks.
release(wordserv);

Figure 3.7: Sample MATLAB – Microsoft Word Interface

The Word.Application.Visible property opens a Microsoft Word window. It can be

set directly in MATLAB. However, the Word.Options.ReplaceSelection property

must be set using the MATLAB set function, since a Word.Options object has not

been declared. This property sets the option “Typing Replaces Selection”, normally

accessible from the “Edit” tab of the options menu in Microsoft Word. It causes new

text to appear in front of the selected text, rather than overwriting it.

Word.Documents.Open is the method used to open a document.

Word.Selection.SetRange selects characters for processing in Microsoft Word – in

this case the range is set large enough for every character in the document to be

Software Interfaces 39

selected. The Word.Selection.Text property returns the selected characters as a text

string, ignoring any formatting information. It is returned to MATLAB using the get

function. After it has been retrieved, the selected text is deleted from the document

using Word.Selection.Delete.

Finally, the application window is closed (without saving changes to the document)

using Word.Application.Quit, and the ActiveX server is released from memory.

3.3 Sensor Interfaces

Before the LabVIEW hardware/software interface VIs were written, the various

sensor signals were configured in the Measurement and Automation Explorer. This

utility also includes a test panel (Figure 3.8) that provides direct access to the DAQ

card’s analogue inputs and outputs, digital I/O ports and counters.

Figure 3.8: Measurement and Automation Explorer Test Panel

Following configuration and testing, the following interface VIs were developed for

MARVIN’s sensors:

• Digital Switch Input

• Encoder Counter

• IR Analogue Input

40 The Development of a Control System for an Autonomous Mobile Robot

3.3.1 Tactile Sensors and Beacon Receivers

The tactile sensors and beacon receivers provide digital signals that are accessed using

the Digital Switch Input VI (block diagram given in Figure 3.9). This VI simply

polls the Dig Line library VI for the first six lines on port 0 of the DAQ card. The

iteration control must be set to 0 during the first call, indicating that Dig Line should

initialise the line.

Figure 3.9: Digital Switch Input VI Block Diagram

3.3.2 Optical Encoders

The counters that are attached to the optical encoders are controlled using Encoder

Counter (block diagram given in Figure 3.11). During the first call (designated by

setting iteration to zero), each counter is configured to increment on the rising edge

of the encoder signal using the Event Or Time Counter Config library VI. The

Counter Start VI sets the counters to begin incrementing on the next rising edge of

the encoder signal. Counter Read is used to access the counter value in each

subsequent call. Both Counter Start and Counter Read require a task ID input – a

Software Interfaces 41

value representing the device being addressed, and the I/O operation. Event Or Time

Counter Config provides this value during the first call, but a predefined constant is

used in subsequent calls.

Figure 3.10: Encoder Counter VI Block Diagram

3.3.3 Infrared Rangefinders

IR Analogue Input measures analogue voltages from the six Analogue to Digital

Converters (ADCs) attached to the infrared rangefinders. It simply calls the AI

Sample Channel library VI once for each rangefinder. The DAQ card is configured

in its RSE mode of operation using the Measurement and Automation Explorer.

Figure 3.11: IR Analogue Input VI Block Diagram

42 The Development of a Control System for an Autonomous Mobile Robot

3.4 Microcontroller Interface

Andrew Payne has developed a protocol for communication between his

microcontroller board and a PC [Payne & Carnegie, 2003]. The microcontroller

software was developed in HI-TECH C, and required few modifications to operate on

MARVIN. However, the PC side of Andrew Payne’s interface, coded in Visual C++,

was not used because it would require an additional inter-application interface, and

only a single application can communicate with the DAQ card at a time. Thus, a

replacement interface was developed in LabVIEW that utilised the same protocol so

that the microcontroller code could be retained.

3.4.1 Communication Protocol

Instructions are delivered to the microcontroller as two bytes of data. The first byte

controls which motor to address and which direction to drive it, while the second byte

represents the PWM value. If a valid instruction executes correctly, the

microcontroller returns the inverse of the received byte (i.e. each bit is toggled),

otherwise it returns an error signal. This allows the PC software to resend the

instruction if it fails. The bit pattern of the protocol is given in Table 3.1.

Table 3.1: PC – Microcontroller Communication Protocol

Instruction Type Bit Pattern Example (Hex)

Header – Sent* 0 0 0 0 0 L R D 05

Header – Returned* 1 1 1 1 1 !L !R !D FA

Data – Sent 1 PWM/2 AD

Data – Returned 0 !(PWM/2) 52

Error - Returned 0 1 1 1 1 1 1 1 7F

Software Interfaces 43

* Left wheel: L = 1, R = 0

Right wheel: L = 0, R = 1

Forwards: D = 0

Reverse: D = 1

3.4.2 Microcontroller Software

The microcontroller software translates the received data into a PWM signal and

direction bit for the selected motor driver. The software also filters out any transient

direction changes that might result from noise on the data or handshaking lines.

Additionally, if the microcontroller receives no instructions for 500 ms, the software

times out and sets the PWM duty cycle to zero. This is a safety precaution to prevent

collisions in the event of a PC lockup.

If necessary, the PWM duty cycles can be limited by setting the Motor0Limit and

Motor1Limit variables to nonzero values. An optional acceleration limit also exists

to protect the motor drivers from damage that could result from rapidly increasing or

decreasing the PWM duty cycle, or reversing direction. This is implemented using a

timer interrupt that updates the PWM every 100 ms. The PWM changes are not

allowed to exceed the values of Motor0AccMax and Motor1AccMax.

3.4.3 PC – Microcontroller Interface Software

The microcontroller interface is implemented in the Set Motor Power LabVIEW VI (

Figure 3.12). Firstly, the DAQ card’s 82C55A PPI is configured for bi-directional

communication on Ports A and C using the Digital Group Config library VI. This

allows the software to utilise the automatic handshaking capabilities of the OBFA,

ACKA, IBFA and STBA lines on Port C.

Data is written to the microcontroller using Digital Single Write, and read using

Digital Single Read. These VIs are configured to access Port A only when the

44 The Development of a Control System for an Autonomous Mobile Robot

handshaking lines indicate that the microcontroller is ready to send or receive data.

This prevents the PC from writing to the port at the same time as the microcontroller,

and ensures that data is not lost. The VIs must be called sequentially – a write,

followed by a read (to ensure that the instruction was received and executed) – but

LabVIEW does not execute code in an explicit sequence by default. Consequently, the

VI’s are executed inside a sequence structure – a structure that executes subdiagrams,

or frames, in a predefined order.

The header and PWM values are written and verified for each motor, yielding a total

of four read-write operations that are carried out whenever the VI is called. Each time

a read-write operation is executed, the value returned from the microcontroller is

compared with the value written to it. If the returned value is not the inverse of the

written value, the read-write operations are repeated. If an error is returned after

writing the PWM value, both the header and PWM instructions are redelivered. The

error corrections are repeated up to ten times using while structures. A small while

structure that encloses the header operation is in turn enclosed by a larger structure

that encompasses both operations.

Much of the error correction code could be implemented in MATLAB rather than

LabVIEW. However, programs that utilise the MATLAB-LabVIEW interface are an

order of magnitude slower than those that run directly in LabVIEW. In order to ensure

that erroneous instructions can be redelivered in time to prevent the motors from

responding to them, it was necessary to implement the error correction directly in

LabVIEW.

Software Interfaces 45

Writing to Microcontroller

Reading from Microcontroller

Figure 3.12: Set Motor Power VI Bock Diagram

46 The Development of a Control System for an Autonomous Mobile Robot

3.5 MATLAB Interface

MARVIN’s program structure consists of four layers, as shown in Figure 1.3, loosely

corresponding to the four elements of MARVIN’s project hierarchy given in Figure

1.3. The top layer is Ashil Prakash’s speech recognition human-machine interface

[Prakash & Carnegie, 2003]. The second layer is the navigation system designed by

Lucas Sikking [Sikking & Carnegie, 2003]. This project consists of the two bottom

software layers – the control system developed in MATLAB and the LabVIEW

hardware interface. Craig Jensen’s generic hardware interface [Jensen & Carnegie,

2003], or an equivalent system, may replace the LabVIEW system at a later date.

Figure 3.13: Program Structure

The three upper layers are implemented in MATLAB (although the human-machine

interface also utilises Microsoft Word for speech recognition). Since the control

system does not communicate directly with the human-machine interface, this report

only details the interface between the control system and the navigation system.

Human-Machine Interface

Navigation System

Control System

Hardware Interface

Software Interfaces 47

3.5.1 MATLAB Interface Details

MATLAB lacks generic support for real-time mechanisms such as interrupts and

multithreading. It does provide asynchronous behaviour for certain specialised tasks

such as GUIs and serial communication, in the form of callback functions – functions

that are called when a particular event occurs. Some toolboxes also provide generic

real-time support for Simulink, a graphical modelling and simulation tool for

MATLAB. However, the options for MATLAB itself are more limited.

These limitations, coupled with the complexities inherent in interrupt-driven systems,

mean that the software relies on polling for most tasks. Each software layer is

implemented as a function that must be called by the preceding layer often enough to

operate correctly. The main control system function, marvin_control (Appendix

B.2), is called by the navigation system at a frequency of at least 10 Hz. A delay loop

within marvin_control ensures that the control cycle period is approximately

constant. This system is adequate for the small number of layers involved, but once

more high-level algorithms are added it will likely become necessary to convert to a

less sequential approach.

Data that must be maintained between function calls is stored in persistent variables.

A persistent variable is like a global variable that can only be utilised by the function

in which it was declared. It remains in memory between function calls, retaining the

value it held during the previous call. Persistent variables must be initialised during

the function’s first call, so each function that uses them includes a condition check to

determine if the current call is the first. This introduces a small overhead, but the main

system bottlenecks reside elsewhere, so the overall impact on performance is

negligible. The use of persistent variables greatly reduces the number of arguments

that must be passed to a function. Unnecessary details can thus be hidden from higher-

level functions, improving code readability and reusability.

48 The Development of a Control System for an Autonomous Mobile Robot

3.5.2 Control System Inputs

• Instruction Flag – This flag indicates whether the call is the first call, a new

instruction, an emergency brake instruction or a request to continue executing

the last instruction that was given.

• Basic Instruction – Distance and angle variables comprise the simplest form

of instruction. If a position is delivered with an angle of zero, the control

system will attempt to move MARVIN in a straight line. An angle given with

zero distance is a request for a stationary turn. Any combination of non-zero

values indicates a moving turn along a circular path.

• Offset Angle – Normal heading corrections require a sequence of two or more

instructions – first MARVIN is reoriented, then the original instruction is

resumed. The offset angle provides a simpler alternative that is useful for

small heading adjustments. A non-zero offset angle indicates a heading error

that the control system will attempt to correct while in motion.

• Rangefinder Weights – These indicate the priority level of the infrared

rangefinders for localisation purposes.

• Corridor Coordinates – The corridor offset and angle coordinates represent

MARVIN’s offset from the corridor centre axis and the direction of the centre

axis respectively. They are only adjusted when MARVIN enters a new section

of corridor or room.

• Wall Offsets – This two-element array represents the offset coordinates of the

corridor walls with respect to the corridor centre axis.

• Origin Coordinates – These are a set of Cartesian coordinates and an angle

that represent MARVIN’s initial position and orientation.

Software Interfaces 49

3.5.3 Control System Outputs

• Time – The time since the first call, in seconds.

• Absolute Coordinates – A set of Cartesian coordinates and an angle that

represent MARVIN’s position and orientation with respect to the origin.

• Relative Coordinates – Distance along the corridor centre axis, offset from

the centre axis, and heading with respect to the corridor angle. These values

are reset when the corridor angle changes.

• Target Coordinates – Relative coordinates representing MARVIN’s intended

position and orientation on the target trajectory.

• Rangefinder Coordinates – Offset and heading measured by the

rangefinders.

• Wheel Velocities – Measured velocity of each wheel.

• Rangefinder Data – Raw distances measured by the rangefinders.

• Tactile Sensor Data – Booleans representing the state of each contact sensor.

• Beacon Data – Booleans representing the state of each beacon receiver.

3.6 Graphical User Interface

Although the control system is designed to receive instructions from the navigation

system, it must also be manually controllable during testing. The software simulation

(Section 5.7) requires a real-time graphical output of MARVIN’s motion. This would

also provide the ability to monitor the localisation algorithm’s accuracy during real-

world testing.

These requirements are fulfilled through the use of a GUI. The MATLAB Layout

Editor (GUIDE) provides a graphical means to add and adjust GUI elements. It

generates a generic MATLAB file that can be edited to perform specific tasks.

MATLAB GUIs utilise callback functions to provide asynchronous responses to user

inputs. When the user triggers a button or slider on the GUI, the corresponding

callback function is activated. Input and output states are stored in a data structure that

is accessible from all the callback functions.

50 The Development of a Control System for an Autonomous Mobile Robot

The control system GUI is given in Figure 3.14, and the corresponding MATLAB

file, gui_marvin_control.m, is given in Appendix B.1. The main GUI function

gui_marvin_control is largely unaltered from the generated function. The only

additions are initialisations of various elements stored in the main data structure.

Figure 3.14: GUI Window for Control System

Each input button or slider has a corresponding callback function that updates its

value in the main data structure. Slider values are also written to the GUI as text

strings. The main callback function, run_Callback, is triggered from the GUI’s Run

button. It calls marvin_control continuously until the Run button is triggered a

second time. The marvin_control function’s input parameters are continuously

adjusted to match the values on the sliders and buttons, while its outputs are plotted

on the GUI’s two figure axes, or displayed as text.

The standard function used for plotting data in MATLAB, plot, is too inefficient for

real-time plotting because it redraws the entire figure each time it is called, even if the

data has not changed. Instead, the line function is used to plot a static number of

Software Interfaces 51

straight-line segments. These line segments are updated in a First-In-First-Out (FIFO)

arrangement, so that for each program cycle the oldest line is replaced with new

values using the set function.

MARVIN’s trajectory is plotted in the upper axis of Figure 3.14. Also included in the

figure is a direction arrowhead with endpoints derived from the current heading using

Equations 3.1 and 3.2, and a set of lines indicating the range detected by each

rangefinder. The velocity of each wheel is plotted over time in the lower figure.

)cos(ψθ ±−= aa lxx Equation 3.1

)sin(ψθ ±−= aa lyy Equation 3.2

x: MARVIN’s x coordinate (m)

y: MARVIN’s y coordinate (m)

θ: MARVIN’s heading (rad)

xa: Arrowhead endpoints’ x coordinates (m)

ya: Arrowhead endpoints’ y coordinates (m)

la: Length of arrowhead lines (m)

ψ: “Sharpness” angle of arrowhead (rad)

As well as being plotted in real time, the data returned from marvin_control is

logged to a file for debugging purposes. Data is written to file as a table of values

(stored as strings) separated by tab characters. Unique filenames are generated from

their creation time using the datestr library function. The ISO 8601 notation given

below is used because it is the only representation available that includes time values

but omits characters that are illegal for filenames.

52 The Development of a Control System for an Autonomous Mobile Robot

ISO 8601 standard notation for date and time stored in a single data field:

yyyymmddTHHMMSS

y: Year

m: Month

d: Day

T: Separator between date and time

H: Hour

M: Minute

S: Second

Sensor Software 53

4 Sensor Software

Just as an animal obtains knowledge of its surroundings using one or more of its

senses (vision, hearing/sonar, smell, taste and touch), a mobile robot uses data from its

sensors to produce an internal model of its state with respect to its environment. In

MARVIN this model consists of simple distances, angles and velocities that the robot

uses to autonomously maintain its intended trajectory, or take evasive action if

necessary.

The three main steps to building this model are as follows:

• Data Acquisition – Obtaining raw sensor data.

• Internal Representation – Converting raw data into a usable form.

• Sensor Fusion – Combining data from multiple sensors.

4.1 Data Acquisition

The LabVIEW VIs that interface to the sensor hardware via the data acquisition card

have already been detailed in Section 3.3. This section deals with the MATLAB

functions that read data from the VIs. The values returned from these functions are not

true raw data – various modifications have been made so that useful information can

be obtained – but they are in the same form as the original data (i.e. counts from the

optical encoders, voltages from the infrared rangefinders).

54 The Development of a Control System for an Autonomous Mobile Robot

4.1.1 Odometers

The acq_en_count function (Appendix B.3) reads in counter values from the

Encoder Counter LabVIEW VI (Section 3.3.2), and outputs the number of counts

measured since the last call, and the time interval between calls.

MARVIN’s software utilises the cputime library function to measure the time elapsed

between program cycles. This function outputs the time, in seconds, since the program

started, with a resolution that depends on the hardware platform. MARVIN’s xPC

provides millisecond precision, which is adequate for the control cycle period of 93

ms.

During each call, the time measured during the previous call is subtracted from the

current value. If the measured time difference is less than the intended control cycle

period, the function enters a delay loop. This results in an approximately constant

period (which is necessary for an efficient control algorithm), and it ensures that the

measured time interval is large enough to yield accurate velocity measurements.

Similarly, the previous counter values for each encoder are subtracted from the

current values returned from Encoder Counter. Negative values indicate when the

24-bit counters have overflowed, at which time the values are adjusted accordingly.

Given the wheel speeds MARVIN encounters, and the control cycle period used, the

counters never overflow more than once in a single control cycle.

The raw counter values do not take wheel direction into account, so they are adjusted

according to the direction that the motors are being driven. In order to protect the

motor drivers, the software does not reverse a wheel’s direction while it is in motion.

This means that the wheel direction could only be calculated incorrectly if an external

force moved the wheels in opposition to the driving motors, which is unlikely to occur

in the intended indoor operating environment.

Sensor Software 55

4.1.2 Rangefinders

Utilising the IR Analogue Input VI (Section 3.3.3), acq_ir_voltage (Appendix B.4)

returns an array of voltages sampled on each of the six analogue input ports attached

to the IR rangefinders. The only modification made to the raw voltages is a software

filter that reduces noise. At long ranges a small change in voltage results in a large

change in the measured distance, so it is necessary to filter out noise before the

voltage-distance conversion is carried out. A number of different software averaging

techniques were considered for the filter, including:

• Mean

• Median

• Weighted Mean

4.1.2.1 Mean

n

E
E

n

i
i∑

== 1 Equation 4.1

Ei: ith sample

Ē: Mean average of samples

n: Number of samples

This technique is easily implemented in MATLAB using the library function mean. It

provides fast response to change, but extreme values can significantly affect the result

(unless a large number of samples are taken, which would negate the speed benefit).

Thus the mean is most effective when filtering small amounts of noise.

56 The Development of a Control System for an Autonomous Mobile Robot

4.1.2.2 Median

2/nmed EE = , nn EEEE ≤≤≤≤ −121 ... Equation 4.2

Emed: Median average of samples

This technique can be applied in MATLAB using the median function. In general, the

median average is less sensitive to extreme values than the mean, but it is also slower

to respond.

4.1.2.3 Weighted Mean

n

Ew
E

n

i
ii∑

== 1 , 1
1

=∑
=

n

i
iw Equation 4.3

wi: ith weighting

No library functions are available to calculate the weighted mean, but the scheme is

relatively easy to implement using simple arithmetic. A number of different

techniques can be used to assign weights to each sample. For example, weights can be

allocated according to the time at which samples were taken – i.e. more recent

samples are given higher weights. Another possibility is to apply weights according to

a sample’s proximity to the median value, providing a compromise between the mean

and median techniques.

Sensor Software 57

4.1.2.4 Selected Implementation

Due to factors such as ambient light and electrical crosstalk, a high level of noise can

be observed on the rangefinder inputs – especially at long range. Consequently, in this

application the median average is superior to the mean. Depending on the

implementation, a weighted mean could also be effective. However, the median

average provides sufficient filtering, and with greater efficiency than a weighted

average could achieve, so it is the logical choice. The median average is taken over

ten samples (corresponding to approximately 935 ms), providing an optimal

compromise between accuracy and speed of response.

4.1.3 Tactile Sensors and Beacon Receivers

The tactile sensor switches and beacon receiver relays are both acquired using the

Digital Switch Input VI (Section 3.3.1). The acq_switch function (Appendix B.5)

reads in signals from the indicators representing each of the six digital lines, and

returns them as an array of Boolean values.

Since the MATLAB-LabVIEW interface lacks support for callbacks or interrupts, the

digital lines must be polled. This situation is less than ideal when responding to

collisions, since it causes a delay of up to one control cycle period (approximately 100

ms). In practice however, this delay is insignificant compared to the motors’ response

time, so its effect on the system is not noticeable.

4.2 Internal Representation

If data from multiple sensors is to be combined effectively, it must first be converted

into an internal representation that is shared by all the sensors. The most significant

data that can be derived from multiple sensors is a set of coordinates defining

MARVIN’s position and orientation. Since MARVIN is primarily designed to operate

in a narrow, rectangular corridor or laboratory environment, its position is given in

58 The Development of a Control System for an Autonomous Mobile Robot

Cartesian coordinates – distance xM along the corridor or room, and offset yM from its

centre axis – while its heading is defined as an angle θM, in radians (Figure 4.1).

Figure 4.1: Internal Representation Coordinate System

The issue of representation is not entirely limited to overlapping sensor data. Data that

is unique to a single type of sensor, such as MARVIN’s wheel velocities and object

distances, must still be provided in a form that the control system can utilise.

4.2.1 Odometers

The MATLAB function rep_en_velocity (Appendix B.6) obtains velocity

information from the encoder counts and time given by acq_en_count. The

rep_en_coord function (Appendix B.7) converts individual wheel distances to an

overall position and heading for MARVIN.

4.2.1.1 Odometer Conversion Factors

Due to factors such as wheel slippage, missed counts, gear slop and non-uniform tyre

radii, the theoretical odometer count/distance conversion factor (24867 pulses per

metre) only approximates the actual count/metre ratio. More accurate conversion

factors for each wheel are obtained experimentally.

Sensor Software 59

A number of straight-line motion instructions with different velocity limits (or peak

velocities for the velocity profiles) are executed in the same manner as the tests shown

in Section 6.1. The ratio between the actual distance travelled and the distance

measured by the encoders for each instruction is plotted in Figure 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.11

1.115

1.12

1.125

1.13

1.135
Distance Ratio vs. Maximum Velocity

velocity limit (m/s)

di
st

an
ce

 ra
tio

Figure 4.2: Obtaining Odometer Correction Factor

The distance ratios are approximately uniform for velocity limits greater than 0.2 m/s,

which suggests that there is no measurable change in wheel slippage over this range.

The theoretical conversion factor is multiplied by the average of these ratios to

eliminate the systematic error. Since 0.2 m/s is the minimum value intended for the

velocity limit during normal operation, only the distance ratios for velocity limits

greater than this are averaged. The resulting average distance ratio of 1.1285 yields a

conversion factor of 28062 pulses per metre.

The real-world conversion factor is not equal for both wheels – an overall drift to the

left is observed if they are assigned equal values, most likely due to unequal tyre radii.

Consequently, the value obtained above must be adjusted experimentally for each

wheel to reduce the systematic error.

A preliminary measure of the degree of odometer asymmetry can be accomplished by

recording the average ratio of distances measured by each wheel while manually

60 The Development of a Control System for an Autonomous Mobile Robot

pushing MARVIN along a straight line. However, the results are distorted because the

forces exerted on the wheels when MARVIN is being pushed are different from those

provided by the motors during autonomous operation. The average ratio resulting

from these tests is 0.9817, which yields multipliers of 1.00915 for the left wheel, and

0.99085 for the right wheel. If they are applied to the conversion factors, these values

overcompensate for the error, resulting in a significant drift to the right. Consequently,

the multipliers are adjusted manually until the systematic error is reduced to

satisfactory levels. The final conversion factors are:

Left Wheel: 28202 pulses per metre

Right Wheel: 27795 pulses per metre

4.2.1.2 Wheel Velocities

The conversion factors given above provide the distance travelled by the perimeter of

each wheel. These distances divided by the measured time interval provide the wheel

velocities.

The limited resolution of the time measurement introduces noise into the measured

velocities, so filtered velocities are also provided for algorithms where low noise is

more important than speed of response. A weighted mean average is used, where the

weighting for each value is twice that of the preceding value (0.5, 0.25, 0.125, ...).

This provides a satisfactory level of filtering while minimising the delay.

4.2.1.3 Position and Orientation

Assuming no wheel slippage occurs, each wheel movement results in a change in

MARVIN’s position and/or heading. If both wheels move the same distance in the

same direction, MARVIN travels in a straight line – its position changes, but its

heading remains constant. If each wheel moves the same distance, but in opposite

directions, a stationary turn results – MARVIN’s position remains constant but its

heading shifts. Any motion other than these two extremes will result in a moving turn

Sensor Software 61

– a shift of both position and heading. The correlation between individual wheel

movements and MARVIN’s overall motion is given by Equations 4.4-4.6. It is

illustrated in Figure 4.3.

Figure 4.3: Correlation Between MARVIN’s Motion and Wheel Motion

w
ll RL

M
−

=ϕ Equation 4.4

2
RL

M
lll +

= Equation 4.5

M

MC
M

l
d

ϕ
ϕ)cos(1(2 −

= Equation 4.6

φM: Angle travelled by MARVIN’s centre (rad)

w: MARVIN’s wheel separation distance (m)

lL: Arc-length travelled by left wheel (m)

lR: Arc-length travelled by right wheel (m)

lM: Arc-length travelled by MARVIN’s centre (m)

dM: Distance travelled by MARVIN’s centre (m)

During testing a small systematic error is observed on the measured angle, possibly

due to non-uniform tyre radii and/or inaccurate wheel separation measurements. In

62 The Development of a Control System for an Autonomous Mobile Robot

order to compensate for this, an experimentally obtained correction factor of 0.971 is

applied to Equation 4.4.

Finally, the calculated distance and angle are converted into a set of Cartesian

coordinates using Equations 4.7-4.9, which are added to MARVIN’s position and

orientation.

MM ϕθ =∆ Equation 4.7

)cos(θDxM =∆ Equation 4.8

)sin(θDyM =∆ Equation 4.9

θM: MARVIN’s heading (rad)

xM: MARVIN’s distance along centre axis (m)

yM: MARVIN’s offset from centre axis (m)

4.2.2 Rangefinders

The function rep_ir_distance (Appendix B.8) converts the filtered voltages provided

by acq_ir_voltage into distances. Two different techniques were considered for the

voltage-distance software model – polynomials and lookup tables. Localisation

information is extrapolated from the measured distances using rep_ir_coord

(Appendix B.9).

4.2.2.1 Polynomial Model

Equation 4.10 gives a polynomial that fits relatively closely to the experimentally

obtained voltage-distance points given in Figure 4.4. However, each rangefinder has a

slightly different voltage-distance curve, so for best accuracy each rangefinder

requires a unique polynomial. Also, even on the closest-fitting rangefinders, the

polynomial begins to diverge from the measured curve when the range is small. This

Sensor Software 63

is a significant problem, since at close range the risk of collision is highest, so this is

where a rangefinder’s accuracy is of utmost importance.

21 IRIR

IR
IR DVCV

BVAd
++

+
= Equation 4.10

A = 8.271×10-5

B = 9.369

C = -3.398

D = 17.339

dIR: Infrared rangefinder distance (m)

VIR: Infrared rangefinder voltage (V)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3
Curve-Fitted Polynomial for Voltage-Distance Relationship

distance (m)

vo
lta

ge
 (V

)

back left
front left
front
front right
back right
back

Figure 4.4: Polynomial Matched to Data

64 The Development of a Control System for an Autonomous Mobile Robot

4.2.2.2 Lookup Table

Instead of using a single polynomial to model the entire voltage-distance relationship,

this technique involves dividing the curve up into a series of straight lines. The upper

and lower voltage limits of each line segment are recorded in a table (or, in the case of

a programming language such as MATLAB, an array). Calculating distance from

voltage then becomes a simple matter of determining which table entry contains the

measured voltage, and applying the appropriate straight-line equation.

When no low-order polynomial exists that can closely match the data (as is the case

for MARVIN’s rangefinders), the lookup table results in a closer fit, and therefore

greater accuracy. Conversely, this method can be computationally less efficient than

the polynomial, especially if the curve is divided up into a large number of table

entries. However, in this project, where more significant bottlenecks reside in other

sections of code, the advantages of this technique outweigh its disadvantages.

The rep_ir_distance function stores a table of voltages for each rangefinder in the

form of a single 28×6 matrix, with the corresponding distances stored in a 28×1

matrix. The resulting lookup table curves are plotted in Figure 4.5, along with the

experimental data from which they were obtained.

The function determines the table entry containing the measured voltage using an

incremental condition check. If the voltage is below the table’s lowest entry

(approximately 0.4 V, corresponding to a distance of 1.5 m), the distance is set to

infinity, indicating that the measured object is out of range. If it is above the highest

table entry (approximately 2.75 V, corresponding to a distance of 0.15 m), the

distance is set to zero. Otherwise, the distance is calculated using Equation 4.11.

Sensor Software 65

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Back Left

distance (m)

vo
lta

ge
 (V

)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Front Left

distance (m)

vo
lta

ge
 (V

)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Front

distance (m)

vo
lta

ge
 (V

)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Front right

distance (m)

vo
lta

ge
 (V

)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Back Right

distance (m)

vo
lta

ge
 (V

)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Back

distance (m)

vo
lta

ge
 (V

)

Figure 4.5: Lookup Table Curves Matched to Data

66 The Development of a Control System for an Autonomous Mobile Robot

12

121
1

))((

LL

LLLIR
LIR VV

ddVVdd
−

−−
+= Equation 4.11

VL1: Lookup table entry’s lower voltage limit (V)

VL2: Lookup table entry’s upper voltage limit (V)

dL1: Lookup table entry’s lower distance limit (m)

dL2: Lookup table entry’s upper distance limit (m)

4.2.2.3 Localisation Using Rangefinders

Ranges are converted into offset and heading information using the rep_ir_coord

function. The function calculates offset by comparing measured wall distances with

the expected position of each wall. Heading is derived from the relative distances

measured by two or more adjacent rangefinders.

Prior to their use in this function, the rangefinder distances are filtered to eliminate

transient signals caused by objects momentarily blocking the rangefinders. This helps

to prevent MARVIN from reacting to people walking past in the corridor. Each range

is compared with the mean average of the last ten values. If the difference is larger

than 0.2 m, the range is not used in the offset and heading calculations.

The position and orientation of each rangefinder with respect to MARVIN’s position

and heading are recorded in a set of coordinate arrays. They are added to the offset

and heading derived from the odometers to obtain coordinates relative to the corridor

or room centre axis (Equations 4.12 and 4.13). These coordinates are used in Equation

4.14 to predict the wall distance that each rangefinder will measure, so that the

algorithm can reject those rangefinders that are not facing towards a wall.

Sensor Software 67

)sin(')cos(' MIRMIRMIR yxyy θθ ++= Equation 4.12

)(MIRMIR θθθ += Equation 4.13

)sin()(
IR

IRW
prIR

yy
d

θ
−

= Equation 4.14

yIR: Rangefinder offset (m)

θIR: Rangefinder heading (m)

xIR’: Rangefinder distance with respect to MARVIN (m)

yIR’: Rangefinder offset with respect to MARVIN (m)

θIR’: Rangefinder heading with respect to MARVIN (rad)

yW: Wall offset (m)

dIR(pr): Predicted distance measured by rangefinder (m)

Equations 4.15 and 4.16 yield the coordinates of measured objects relative to

MARVIN’s position and orientation. An offset is obtained from each valid

rangefinder distance using Equation 4.17, while a heading calculation requires valid

distances from adjacent rangefinder pairs, as shown in Equation 4.18. The heading

resulting from Equation 4.18 can be equal or opposite to the actual heading, so both

possibilities are compared with the odometer-measured heading, and the closest match

is selected. Figure 4.6 summarises the various parameters used in these equations.

Figure 4.6: Obtaining Offset and Heading from Rangefinders

68 The Development of a Control System for an Autonomous Mobile Robot

)'cos(' IRIRIRob dxx θ+= Equation 4.15

)'sin(' IRIRIRob dyy θ+= Equation 4.16

)cos()sin()(MobMobWIRM yxyy θθ −−= Equation 4.17

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= −

12

121
)(tan

obob

obob
IRM xx

yyθ Equation 4.18

xob: Object’s distance with respect to MARVIN (m)

yob: Object’s offset with respect to MARVIN (m)

yM(IR): MARVIN’s offset calculated from rangefinder (rad)

θM(IR): MARVIN’s heading calculated from rangefinder (rad)

Each offset and heading is allocated into one of two arrays according to which wall

the rangefinder is facing. The mean average of each nonempty array is taken, yielding

four values – an offset and heading for each wall. If an array is empty, the

corresponding offset or heading is set to NaN, indicating that it should not be used in

the sensor fusion algorithm.

This algorithm is flexible enough that it can be used for any number of rangefinders in

any combination of positions and orientations where at least two rangefinders face

each wall, as long as the appropriate values are recorded in the coordinate arrays.

4.2.3 Coordinate Transformations

The control system’s internal representation of MARVIN’s position and orientation is

calculated relative to the centre axis, and the coordinates are reset when MARVIN

moves into a room or section of corridor with a different centre axis. This is because

the rangefinders’ localisation algorithm requires the relative coordinate system to be

aligned properly with the walls. However, the constant changes in reference frame

result in difficulties in plotting MARVIN’s internal representation for testing

purposes. Also, the navigation system requires an absolute set of coordinates for its

Sensor Software 69

internal map. Consequently, the control system transforms the relative coordinates

into absolute coordinates for external use.

The coordinate transformation function coord_trans (Appendix B.10) applies axes

rotations given in Equations 4.19 and 4.20. Using this function, absolute values are

obtained for measured and target coordinates, and rangefinder origins. The rel_coord

function (Appendix B.11) resets MARVIN’s relative coordinates and updates their

origin on the absolute coordinate axis whenever the centre axis angle changes.

αα sin'cos' yxx −= Equation 4.19

αα cos'sin' yxy += Equation 4.20

α: Axes rotation angle (rad)

4.3 Sensor Fusion

Each of MARVIN’s sensors provides useful data, but their individual importance

varies with circumstance. For example, odometers are very accurate over short

distances, but they are susceptible to cumulative error, which limits their long-term

usefulness. Rangefinders are less accurate, but their error does not increase over time.

In order to minimise these problems, MARVIN utilises sensor redundancy – that is,

multiple sensors providing the same information, but with different degrees of

accuracy and precision. Overlapping sensor signals are combined, or fused, in a

manner that takes advantage of each sensor’s strengths and reduces its weaknesses.

Although this chapter concentrates on the fusion of overlapping data from different

sensors, the term sensor fusion has a broader meaning that also encompasses non-

redundant sensor signals and multiple samples from a single sensor. In general, a

sensor data fusion algorithm consists of one or more of the following implementations

[van Dam et al, 1999]:

70 The Development of a Control System for an Autonomous Mobile Robot

• Complementary – Fusion of sensor data that does not overlap. Individually,

each sensor produces only a partial model of the robot’s state, and the

complete model is assembled from the disparate components. For example,

MARVIN’s beacons provide distance information, while the rangefinders

provide offset and heading. In combination, this yields a complete

representation of MARVIN’s position and orientation.

• Competitive – Fusion of independent, overlapping sensor data in order to

reduce errors. This can involve data from different sensors measured at the

same time, or different measurements carried out by the same sensor over

time. Given enough sensor redundancies, competitive fusion can allow a robot

to continue to function at a reduced capacity in the event of individual sensor

failures. However, none of MARVIN’s overlapping sensors can be fused in a

strictly competitive manner, since unavoidable dependencies exist between

them.

• Cooperative – Fusion of data from sensors that are dependent on each other.

MARVIN’s rangefinder localisation algorithm (Section 4.2.2.3) fits into this

category, since individual rangefinders are selected or rejected in accordance

with information from the odometers, and the rangefinders’ offset and heading

calculations are directly influenced by the odometers’ heading measurement.

The navigation system’s beacon identification is also somewhat dependent on

localisation information provided by the other sensors.

Sensor Software 71

4.3.1 Sensor Fusion Techniques

A number of techniques were considered for MARVIN’s sensor data fusion

algorithm, including:

• Boolean Logic

• Dynamic Weighted Average

• Bayesian Inference

• Dempster-Shafer Inference

• Fuzzy Logic

• Neural Network

4.3.1.1 Boolean Logic

With this scheme the sensor with the greatest perceived accuracy in a given situation

is used exclusively. All other sensors are ignored since their data is less likely to

match the robot’s real-world motion. This is the simplest algorithm to implement, but

it discards a significant amount of useful data.

If used on MARVIN, the odometers would be favoured most of the time, since they

are the most accurate sensors for short-term measurements. However, once their

readings began to deviate from the real-world motion due to cumulative error, the

odometer data would need to be reset using data from the rangefinders and beacons.

4.3.1.2 Dynamic Weighted Average

A weighted average allows each sensor to make a contribution to the internal model,

but the sensors are still prioritised according to estimated uncertainties. Dynamic

weights can also be assigned on a situational basis, providing the benefits of the

purely Boolean logic, without its disadvantages.

72 The Development of a Control System for an Autonomous Mobile Robot

On MARVIN, the odometer weights would be much higher than the other sensors,

given their superior accuracy. Even with very low weights, the rangefinders would

correct odometer errors over time. Selecting the exact rangefinder weights is simply a

trade-off between accuracy and speed of response. In situations where the rangefinder

data is misleading – when MARVIN passes a corridor intersection or an open door,

for example – the weights can be temporarily zeroed.

4.3.1.3 Bayesian Inference

In this implementation sensors and their uncertainties are represented as probability

density functions (often Gaussian distributions, but other functions can also be used).

Given two overlapping probability density functions, a function for the fused sensors

can be determined using Equation 4.21 [van Dam et al, 1999].

)(
)|().|(

),|(21
21 zp

rzprzp
rrzp = Equation 4.21

p: Probability density function

z: Common internal representation

r1,r2: Raw sensor data from independent sensors

This technique provides a more structured approach than simpler techniques such as

the weighted average. However, it is not applicable between the two main sensors

utilised in MARVIN’s sensor fusion algorithm – the odometers and rangefinders –

because they are not independent.

Sensor Software 73

4.3.1.4 Other Techniques

• Dempster-Shafer Inference – Dempster-Shafer theory is an extension of

Bayesian inference. It allows probabilities to be applied to groups of states

(e.g. the sensor detects an object that is likely either “A” or “B”) and unknown

states (e.g. the object detected is likely undefined) [Wu et al, 2002].

• Fuzzy Logic – Unlike Bayesian and Dempster-Shafer techniques, fuzzy logic

does not depend upon rigid probabilities. Sensors are assigned membership to

sets whose boundaries are loosely defined, and may overlap. They can be

prioritised according to intuitive concepts such as “possibly,” “probably” and

“definitely” [Godjevac, 1995].

• Neural Network – A learning algorithm can be trained with the sensor

measurements as inputs and the internal model as the output. This can

potentially result in a more intuitive interpretation of the data than traditional

techniques [van Dam et al, 1996].

4.3.1.5 Selected Implementation: Dynamic Weighted Average

For a complex system with a large number of sensors, high-level techniques such as

neural networks can produce the most reliable localisation data. However, for a

system such as MARVIN with relatively few sensors and a comparatively simple

operating environment, they do not provide enough of an improvement to justify the

complexity of their implementation, and the increased CPU overhead that would

result from their use. MARVIN’s sensor data fusion algorithm utilises a form of

dynamic weighted average, the simplest technique that can be used without sacrificing

performance.

74 The Development of a Control System for an Autonomous Mobile Robot

4.3.2 MARVIN’s Implementation

The beacons are utilised in conjunction with the navigation system’s internal map, so

they are not included in the sensor fusion algorithm detailed in this thesis. Instead, the

raw beacon data is passed directly to the navigation system.

The sensor_fusion function (Appendix B.12) corrects the odometers’ offset and

heading data using similar data obtained from the rangefinders. Each corrected value

is a weighted average of three inputs – the original odometer input and a separate

rangefinder input for each wall.

Rangefinder weights are comprised of two factors. The first of these, assigned inside

sensor_fusion, determines the maximum weighting that can be applied to a

rangefinder offset or heading. This value remains constant throughout normal

operation, but it is increased during initialisation, so that MARVIN’s initial offset and

heading can be calibrated from the measured wall positions.

The second factor is received from the navigation system, which uses its internal map

to decide when to utilise the rangefinders for localisation, and when to ignore them.

This prevents errors from arising when MARVIN passes an open door, corridor

intersection or change in corridor wall position. A separate factor is assigned for each

wall, so a disturbance on one side does not disrupt the other (which is the reason for

deriving two independent sets of rangefinder localisation data).

MARVIN’s sensor data fusion algorithm can be extended to incorporate additional

sensors, such as a compass (which would provide an absolute heading reference) and

a laser rangefinder (which would provide localisation information similar to that

produced by the infrared rangefinders). Once the new sensor data is converted into

MARVIN’s distance-offset-heading representation it can be assigned a weighting in

the same manner as the other sensors.

Motor Control Software 75

5 Motor Control Software

If a robot’s sensors are its eyes and ears, its actuators are its muscles. Actuators

provide physical motion, allowing a robot to react to the environment observed by its

sensors. MARVIN’s primary actuators are its two driving motors, which are used to

control its overall velocity, position and orientation. The motor control system

consists of the following steps:

• Motion Planning – Translating a motion instruction into efficient velocity

profiles and trajectory.

• Heading Control – Controlling the heading in order to maintain the

trajectory.

• Velocity Control – Controlling wheel velocities in order to maintain the

heading and velocity profiles.

• Collision Avoidance – Reacting to obstacles in order to avoid collisions.

• Driving Motors – Supplying power to the motors in order to drive them at the

intended velocities.

5.1 Motion Planning

Motion instructions delivered by the navigation system primarily consist of a distance

and angle input. From this, the control software generates a target trajectory for

MARVIN to travel, and a velocity profile for each wheel. The target trajectory

provides a reference against which MARVIN’s position and orientation can be

compared, allowing the control system to dynamically correct any deviations that

occur. Similarly, wheel velocities are compared against the velocity profiles in order

to provide smooth acceleration and deceleration and maintain their ratio at the value

necessary to produce the intended motion.

76 The Development of a Control System for an Autonomous Mobile Robot

5.1.1 Generating Target Trajectory

The function gen_tgt_trj (Appendix B.13) translates a given distance/angle

instruction into a set of coordinate arrays – distance, offset and heading – representing

MARVIN’s intended position and orientation at regular intervals along the trajectory.

The trajectory is characterised as a series of straight lines whose end points are given

by these coordinates. This representation only approximates curved trajectories, but it

provides a large degree of flexibility in the trajectories that can be generated.

For moving turns, the radius of the circular path (Figure 5.1) is given by Equation 5.1.

The heading at each point along the trajectory is calculated in Equation 5.2. Distance

and offset are then obtained using Equations 5.3 and 5.4. The sign of the ± term of

each of these equations is selected according to the direction of the given instruction.

Straight-line trajectories are obtained using Equations 5.5 and 5.6.

Figure 5.1: Circular Trajectory from Distance and Angle Inputs

Motor Control Software 77

Circular Trajectories

))cos(1(2

||

tgt

tgt
tgt

d
r

ϕ−
= Equation 5.1

tgtn N
n ϕθθ += 0 Equation 5.2

))sin()(sin(00 ntgtn rxx θθ +−±= Equation 5.3

))cos()(cos(00 ntgtn ryy θθ −−±= Equation 5.4

Straight Trajectories

)cos(00 θtgtn d
N
nxx += Equation 5.5

)sin(00 θtgtn d
N
nyy += Equation 5.6

dtgt: Distance between initial and target positions (m)

φtgt: Target angle to turn through (rad)

rtgt: Radius of circular target trajectory (m)

n: Target trajectory coordinate element number

N: Total number of target trajectory coordinate elements

θ0: Initial heading (rad)

θn: Heading element (rad)

x0: Initial distance (m)

xn: Distance element (m)

y0: Initial offset (m)

yn: Offset element (m)

If an instruction results in a target trajectory that passes too close to a wall, the

trajectory is clipped to prevent potential collisions. Any part of the target trajectory

that exceeds the allowable offset range is converted into a straight-line trajectory

parallel to the centre axis.

78 The Development of a Control System for an Autonomous Mobile Robot

5.1.2 Generating Velocity Profile

The wheel_pos function (Appendix B.14) calculates the target wheel position from

the arc-length that each wheel must travel in order for MARVIN to correctly execute

the given instruction. This function carries out the inverse of the calculations in

Section 4.2.1.3. Equation 4.6 is rearranged to obtain a central arc-length from the

given straight-line distance, while the individual wheel arc-lengths are obtained using

Equations 5.7 and 5.8, which are derived from Equations 4.4 and 4.5.

2
M

ML
wll ϕ

+= Equation 5.7

2
M

MR
wll ϕ

−= Equation 5.8

The target wheel arc-lengths and the velocity limit are utilised in gen_vel_prof

(Appendix B.15) to generate a velocity profile for each wheel. This algorithm

operates in the distance domain rather than the time domain, because the most

important goal is to drive MARVIN to the intended location, whereas the time taken

to get there is less important. Velocity profiles are represented as arrays of velocities

and distances, which can be considered a form of lookup table.

The first task of this function is to obtain the maximum velocity that the wheels can

be safely driven at for a given instruction. This value is highest for straight-line

instructions and lowest for stationary turns.

In order to maintain a straight trajectory, the wheel velocities should be equal at all

times. For stationary turns they should be equal in magnitude and opposite in

direction. For circular trajectories the wheel velocities should be proportional to each

other, with the proportionality constant for the slower wheel equal to the ratio of the

target wheel positions. In each case the wheels must arrive at their target positions

simultaneously.

Motor Control Software 79

The step response of MARVIN’s wheels (in the time domain) is of the form shown in

Figure 5.2. However, in order to avoid wheel slippage, and to ensure that one wheel

does not accelerate or decelerate faster than the other (which would result in heading

errors), acceleration should be limited to less than the maximum obtainable value. For

maximum convenience, MARVIN’s velocity profiles are of the linear form given in

Figure 5.3.

Figure 5.2: Wheel Step Response

Figure 5.3: Velocity-Time Profile

This form can be divided into up to three sections – acceleration, constant velocity

and deceleration. Though linear in time, the velocity profile is modelled in the

distance domain where the acceleration and deceleration sections are not linear. The

first step to developing the model is to obtain the position where the acceleration and

deceleration curves would intersect if no upper velocity limit were present (as shown

in Figure 5.4), using Equation 5.10. The corresponding velocity is calculated using

Equation 5.9. If this velocity is below the upper velocity limit, the velocity profile will

be approximately triangular. Otherwise it will be approximately trapezoidal, and the

positions where the constant velocity line intersects with the acceleration and

deceleration curves are calculated using Equation 5.11 and 5.12, respectively. In each

case Equation 5.9 is used to calculate velocities from positions, given the various

substitutions shown in Table 5.1.

80 The Development of a Control System for an Autonomous Mobile Robot

Figure 5.4: Velocity-Distance Profile

)(2 0
2

0 llavv −+= Equation 5.9

)(2
2

12

2
2

aa
lav

l fi
c −

+
= Equation 5.10

1

22

1 2a
vv

l im
a

−
= Equation 5.11

2

2

2 2a
v

ll m
fa += Equation 5.12

Table 5.1: Substitutions for Equation 5.9

Original Substitution if vc ≤ vm Substitution if vc > vm

 l ≤ lc l > lc l < la1 la1 ≤ l ≤ la2 l > la2

v0 vi vc vi vm vm

a a1 a2 a1 0 a2

l0 0 lc 0 la1 la2

Motor Control Software 81

lf: Final position (m)

vi: Initial velocity (m/s)

vm: Upper velocity limit (m/s)

a1: Acceleration (m/s2)

a2: Deceleration (m/s2)

vc: Velocity at acceleration-deceleration intersection (m/s)

lc: Position at acceleration-deceleration intersection (m)

la1: Position at acceleration-upper velocity limit intersection (m)

la2: Position at deceleration-upper velocity limit intersection (m)

The final task that this function performs is to update the direction flags for each

wheel. Ordinarily this would be unnecessary since wheel velocities are recorded as

signed values. However, the microcontroller returns an error if the wheel direction bit

is inverted while the current PWM magnitude is nonzero, even if the new magnitude

is zero. Without the direction flags it would not be possible to indicate the sign of a

zero velocity instruction.

5.2 Control Theory

Two control loops are implemented in MARVIN’s control algorithm. The outer loop,

heading control (Section 5.3), adjusts target wheel velocities so that MARVIN is

always facing the direction necessary to follow the target trajectory. The inner loop,

velocity control (Section 5.4), ensures that the wheels are driven at the target

velocities. Several alternative control techniques were considered for these control

loops:

• PID

• Fuzzy Logic

• Neural Networks

• Neuro-Fuzzy

82 The Development of a Control System for an Autonomous Mobile Robot

5.2.1 PID

PID control utilises three different feedback elements – Proportional, Integral, and

Derivative – to produce an output (called the control variable) that depends on the

tracking error between a target value (called the set point) and a measured value

(called the process variable).

With proportional control (Equation 5.13) the control variable is proportional to the

error. Proportional control is generally fast and stable (for low proportional gains), but

it results in a steady-state offset error. Increasing the proportional gain can reduce the

offset error, but it also increases the system’s instability. In many systems the stability

requirements limit the proportional gain to a value that yields an unacceptably large

offset error.

)(tKeu(t) = Equation 5.13

u(t): Control variable

e(t): Tracking error

K: Proportional gain

Integral control (Equation 5.14) involves the summation of errors over time. Unlike

proportional control, it does not produce an offset error, but it is slower to reach

steady state than proportional control. In most control algorithms the integral sum

should be limited to prevent integrator windup, an effect where it can increase

indefinitely when the system is in saturation.

∫=
t

I

dηe(η
T
Ku(t)

0

) Equation 5.14

TI: Integral time.

Derivative control (Equation 5.15) is dependent on the rate of change of error. It is

generally faster than both proportional and integral control, so the derivative element

Motor Control Software 83

of PID control is primarily responsible for a system’s speed of response. Derivative

control greatly amplifies noise, so it is usually applied only to filtered signals.

)(teKTu(t) D &= Equation 5.15

TD: Derivative time.

Combining the three control elements allows a system to exploit their advantages, and

eliminate their disadvantages. Equations 5.13-5.15 are added together to form

Equation 5.16, which represents the entire PID control system. This yields the transfer

function (in the Laplace domain) given in Equation 5.17.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫)()1)(

0

teTdηe(η
T

teKu(t) D

t

I

& Equation 5.16

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++== sT

sT
K

sE
sUD(s) D

I

11
)(
)(Equation 5.17

5.2.2 Fuzzy Logic

Fuzzy logic involves the use of qualitative reasoning instead of purely quantitative

measurements. It is particularly useful when dealing with systems that are ill-defined

or difficult to model. Like Boolean logic, fuzzy logic involves selecting an action if a

set of conditions is satisfied. However, rather than deciding whether the conditions are

true or false, fuzzy logic estimates each condition’s degree of truth (generally a

number between 0 and 1), and calculates output values based on the relative estimates.

Process variables are assigned membership to one or more fuzzy sets, which are

labelled with qualitative descriptions such as “small”, “medium” and “large”. The

degree of truth of a given set is calculated from its membership function, which can be

a number of shapes, including triangular, trapezoidal and Gaussian. Various

techniques can be used to obtain an output value from the membership functions. One

84 The Development of a Control System for an Autonomous Mobile Robot

of the simplest methods is to apply a weighted average of the target value for the

relevant fuzzy sets. Weights can be derived from their relative degrees of truth.

5.2.3 Neural Network

A neural network utilises simplified models of biological neurons in an attempt to

simulate the adaptive processes that occur in the brain. The main advantage of a

neural network is its ability to learn through training instead of requiring the

developer to design a hard-coded algorithm.

A model for an artificial neuron is given in Figure 5.5. A weighted sum of each of the

neuron’s inputs is calculated, a threshold, θ, is subtracted and the result is fed into an

activation function, f(a). Activation functions that are commonly utilised include step,

ramp, sigmoid and Gaussian functions. The neuron’s output may represent the control

variable, or it may pass to another neuron, where the process is repeated. Training a

neural network is generally accomplished by adjusting the weights until the output of

the network matches the target output.

Figure 5.5: Artificial Neuron

Motor Control Software 85

5.2.4 Neuro-Fuzzy

One of the main disadvantages of fuzzy control systems is the lack of a systematic

design approach. Tuning these systems is a time-consuming process. One solution to

this problem is to use neural networks to tune a system automatically. These self-

tuning controllers can be developed faster than conventional systems, and they often

provide better performance [Godjevac, 1995].

5.2.5 Selected Implementation: PID

The simplest and most widely used technique, PID control, is selected due to its ease

of implementation. Although a PID control system does not necessarily provide the

best response characteristics, it is sufficient for the purposes of this project. The same

discrete PID algorithm is utilised by each of the control loops, but they are tuned

independently, resulting in different control constants.

The digital PID control algorithm is derived from Equation 5.16 in its differential

form (Equation 5.18). This is approximated in the discrete domain using Euler’s

method, resulting in Equation 5.19, which can be implemented directly in MATLAB.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=)()(1)(teTte

T
teK(t)u D

I

&&&& Equation 5.18

⎥
⎦

⎤
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++−=)2()1(21)(1)1(ke

T
Tke

T
Tke

T
T

T
TKkuu(k) DDD

I

Equation 5.19

In order to prevent integrator windup, upper and lower thresholds can be imposed on

the control variable so that the integral sum does not add to the control variable if it is

already at the maximum value that can have an effect on the system. Alternatively, the

three control elements can be singled out, with separate limits imposed on each.

Separating out the components also allows the algorithm to assign different levels of

86 The Development of a Control System for an Autonomous Mobile Robot

filtering to each element’s error signal. Thus, noise can be reduced on the derivative

element’s error signals without adversely affecting the speed of the proportional and

integral components.

5.3 Heading Control

MARVIN’s heading control algorithm is implemented in three steps. Firstly,

uncorrected target wheel velocities are obtained using the velocity profiles. Then a

heading error is obtained, representing the difference between the measured heading

and the heading necessary to maintain the correct trajectory. Finally, the heading error

is utilised in conjunction with the uncorrected target velocities to produce a set of

velocity errors for each wheel.

5.3.1 Uncorrected Target Wheel Velocities

The uncorrected target velocity for each wheel is obtained from the velocity profile

using tgt_velocity (Appendix B.16). This function applies an algorithm similar to that

used to obtain rangefinder distances from the lookup table described in Section

4.2.2.2. The velocity for a given distance is calculated from the velocity profile

lookup table using Equation 5.20.

12

121
1

))((

LL

LLL
L ll

vvll
vv

−
−−

+= Equation 5.20

lL1: First velocity profile position (m)

lL2: Second velocity profile position (m)

vL1: First velocity profile velocity (m/s)

vL2: Second velocity profile velocity (m/s)

Two minimum velocity thresholds are required to start the wheels moving correctly,

and to prevent them from stopping prematurely. The rising velocity threshold

Motor Control Software 87

represents the velocity that the wheels must be driven at in order to overcome static

friction and start moving. The falling velocity threshold represents the minimum

velocity that the wheels can be driven at once they are in motion. Thus, the rising

velocity threshold is applied during the acceleration phase of the velocity profile, and

the falling velocity threshold is applied at all other times, unless the target position has

been reached. The nature of the velocity control system means that these thresholds

can be lower than the physical thresholds of the system, but they must be nonzero to

ensure smooth operation.

5.3.2 Heading Error

The target trajectory provides a reference that is used to ensure that MARVIN’s

position and orientation coordinates are as close as possible to the correct values at all

times. If MARVIN begins to drift off course, it becomes necessary to adjust its

heading in order to return to the correct path.

The heading_error function’s (Appendix B.17) first task is to locate the target point

– the point on the target trajectory that is closest to the measured position. Equation

5.21 is intended for instructions that involve a significant physical displacement (i.e.

straight line motion, or moving turns where the centre of rotation lies outside

MARVIN’s perimeter). It utilises the measured position in conjunction with each set

of coordinates comprising the target trajectory to obtain the separation distance for

each point. For instructions where rotation is more easily measured than displacement

(i.e. stationary turns), the heading separation (Equation 5.22) is calculated instead.

22)()(yyxxd nnn −+−= Equation 5.21

|| θθϕ −= nn Equation 5.22

dn: Separation distance for target trajectory element n (m)

φn: Separation angle for target trajectory element n (rad)

88 The Development of a Control System for an Autonomous Mobile Robot

The elements that produce the two smallest separation distances or separation angles

are obtained using the library function min. The corresponding coordinates form the

endpoints of a line that is orthogonal to the line connecting the measured coordinates

to the target point, as shown in Figure 5.6. The point of closest approach is the

intersection between these two lines, as calculated in Equations 5.23-5.26. This point

of intersection may be outside the two endpoints if MARVIN is outside the range of

the target trajectory. Certain calculations require that the target point be inside the

target trajectory, while this limitation causes problems with other calculations. Thus,

two sets of coordinates are generated – one for each of the conflicting requirements.

Figure 5.6: Closest Point on Target Trajectory

12

12
1 xx

yym
−
−

= Equation 5.23

12

21
2 yy

xxm
−
−

= Equation 5.24

21

1211

mm
yyxmxmxtgt −

−+−
= Equation 5.25

21

1121

mm
xxymymytgt −

−+−
= Equation 5.26

m1: Gradient of line connecting two points on target trajectory

m2: Gradient of line connecting measured position to target point

xtgt: Target distance coordinate (m)

ytgt: Target offset coordinate (m)

Motor Control Software 89

Because the target trajectory is divided into straight lines, the target position

coordinates are only approximations of the ideal value, but the resolution of the target

trajectory is high enough to ensure sufficient accuracy. These coordinates yield two

important values: separation heading and separation distance. The separation heading

is the heading that MARVIN must obtain in order to move towards the target position.

It is calculated using the four-quadrant inverse tangent function atan2 in conjunction

with Equation 5.27. The separation distance – the distance between the actual and

target positions – is calculated using Equation 5.28.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

= −

xx
yy

tgt

tgt
s

1tanθ Equation 5.27

22)()(yyxxd tgttgts −+−= Equation 5.28

θs: Separation heading (rad)

ds: Separation distance (m)

The third important value for heading error calculations is the target heading – the

heading that corresponds to the target position on the trajectory. Like the target

position, the target heading derived in this algorithm is not equal to the ideal value. It

is approximated as a weighted average of the endpoint headings, with the weighting

derived from the position of the target point relative to the endpoint positions, as

shown in Equations 5.29-5.31. A weighted average of two angles is not as simple as

the equivalent calculation for ordinary numbers, because angles overflow after a

single rotation. The function average_angle (Appendix B.18) was created for this

purpose – it applies the necessary modifiers so that the angles being averaged are in

the same range.

2
1

2
11)()(yyxxp tgttgt −+−= Equation 5.29

2
2

2
22)()(yyxxp tgttgt −+−= Equation 5.30

21

2211

pp
pp

tgt +
+

=
θθθ Equation 5.31

90 The Development of a Control System for an Autonomous Mobile Robot

p1: Position of target point relative to first endpoint (m)

p2: Position of target point relative to second endpoint (m)

θtgt: Target heading coordinate (rad)

To correct heading errors for reverse motion along the trajectory, MARVIN needs to

turn in the opposite direction from that required for forward motion. Consequently, if

MARVIN is travelling in reverse, the target heading coordinate is folded over an axis

formed by the measured heading.

An ideal trajectory to follow in order to correct position and heading errors is of the

form given in Figure 5.7. This trajectory is achieved by incrementally adjusting

MARVIN’s heading error, which is the difference between the intended heading and

the measured heading. The intended heading at a given time is a weighted average of

the target heading and separation heading, with the weights proportional to the

separation distance. Thus, if MARVIN is far from its target position, the separation

heading is given higher priority than the target heading so that the position error can

be reduced quickly. However, if MARVIN’s position is approximately correct, its

heading must be maintained at the correct value in order to prevent it from drifting

away from the target trajectory – in this situation the target heading is given higher

priority than the separation heading. Equation 5.32 gives the overall heading error

calculation. The three most recent heading errors are output for the PID control

algorithm to utilise.

Figure 5.7: Reacquiring Target Trajectory

Motor Control Software 91

θθθθ −−+= tgtssssse dKdK)1(Equation 5.32

θe: Heading error (rad)

Ks: Proportionality constant for separation distance (0.5 m-1)

The final variable produced by this function is a value representing the proportion of

the trajectory that MARVIN has covered at a given time (Equation 5.33). If certain

parameters exceed their predefined thresholds, MARVIN is halted prematurely by

setting the proportion to 1. This indicates that MARVIN is unable to complete the

instruction accurately, so it awaits a new instruction from the navigation system.

)(
)(

21

121

ppN
pppnTp +

++
= Equation 5.33

Tp: Proportion of trajectory covered

n: First trajectory element

N: Total number of trajectory elements

5.3.3 PID Heading Control

The function heading_control (Appendix B.19) adjusts the target wheel velocities by

applying a PID control algorithm to the heading error information. A modifier

representing the fractional change in wheel velocities required to correct a given

heading error is obtained using the basic PID algorithm given in Equation 5.19. The

heading errors are relatively clean signals, so no additional filtering is necessary for

the derivative control element. Consequently, the control algorithm is implemented as

a single equation.

The modifier is converted into a multiplication factor that is applied to a single wheel,

reducing its velocity to the value required to implement the heading correction, as

shown in Table 5.2. It is limited to a magnitude of 1 or less, preventing the wheel

from reversing direction, and protecting the system from integrator windup.

92 The Development of a Control System for an Autonomous Mobile Robot

Table 5.2: Wheel Velocity Multiplication Factors

 Left wheel Right wheel

modifier < 0 1+modifier 1

modifier ≥ 0 1 1-modifier

The heading control system is tuned through experimentation using the simulation

(Section 5.7). An appropriate proportional gain is obtained that results in a reasonable

response time with minimal oscillation. The integral time is adjusted to reduce the

steady-state offset from the target trajectory (Figure 5.8). Finally, the derivative time

is adjusted to a value that improves the response time without adversely affecting

system stability.

0 2 4 6 8 10

-1

0

1

2

K = 1.43, Ti = Inf

x (m)

y
(m

)

Target Trajectory
Simulated Trajectory

0 2 4 6 8 10

-1

0

1

2

K = 1.43, Ti = 6.5 s

x (m)

y
(m

)

Target Trajectory
Simulated Trajectory

Figure 5.8: Using Simulation to Tune Heading Control System

The optimal low-velocity control gains result in instability at high velocities, so the

proportional gain is not kept constant over the full range. Instead, the high-velocity

gain becomes inversely proportional to the target velocity.

Motor Control Software 93

Limits are imposed on the wheels’ acceleration in order to maintain stability and

minimise wheel slippage. Two different measures of acceleration are limited: target

acceleration and real acceleration. Target acceleration is derived from the change in

target velocity since the last control cycle. Real acceleration involves the difference

between the measured velocity and the target velocity. The limit for real acceleration

is less stringent than that for target acceleration, given the amount of noise on the real

velocity measurement. Thus, the target acceleration limit is favoured during normal

operation, and the real acceleration limit is only imposed if an error or external

disturbance causes the measured velocity to diverge significantly from the target

velocity.

Once the target velocities are finalised, heading_control produces a set of velocity

errors representing the differences between each wheel’s measured velocities and

target velocities for the last three control cycles.

5.4 Velocity Control

As long as the velocity-PWM relationships are modelled accurately, the measured

wheel velocities will closely match the target velocities under normal conditions.

However, external disturbances such as uneven floors affect the loading experienced

by the wheels, which in turn have a significant impact on the measured velocities.

Rather than waiting until a disturbance causes MARVIN to drift off course before

correcting it, a second PID control loop monitors and corrects the wheel velocities

directly.

The PID algorithm given in Equation 5.19 is applied to the target wheel velocities in

the function velocity_control (Appendix B.20). The proportional and integral

elements are applied directly to the control errors produced by the heading_control

function, but derivative control is applied only to filtered errors (which are obtained

from the filtered velocities described in Section 4.2.1) in order to reduce the

destabilising effects of noise.

94 The Development of a Control System for an Autonomous Mobile Robot

Upper and lower velocity thresholds are imposed to prevent the wheel velocities from

exceeding safety limits or changing direction while in motion, as well as protecting

against integrator windup. The difference between applied velocity and measured

velocity is also limited for safety reasons. This prevents the applied velocity from

ramping up indefinitely if the odometers or motor drivers fail, or if the wheels are

obstructed.

The velocity control algorithm must be tightly tuned, since it is the primary factor that

limits the performance of the heading control algorithm. Tuning the velocity control

loop is accomplished in approximately the same manner as for heading control: the

proportional gain, integral time and derivative time are selected experimentally in

order to provide a satisfactory trade-off between stability, offset and speed of

convergence. Once preliminary tuning is complete, the two control loops are tested in

combination, and final adjustments are made to each.

5.5 Collision Avoidance

The control system’s collision avoidance scheme halts MARVIN’s forward motion in

the event of an impending (or actual) collision, and awaits further instructions from

the navigation system. It does not attempt to plot a course around the obstacle, since

the navigation system is better suited to this task.

Impending collisions are grouped into three levels of threat according to the proximity

of a measured obstacle. The first level is implemented in the heading_error function

(Section 5.3.2, Appendix B.17). If the rangefinder facing the direction of motion (i.e.

the front sensor for forward motion, and the rear sensor for reverse motion) detects an

obstacle within 0.8 m, and the trajectory crosses the measured obstacle, the instruction

ends prematurely. Due to various acceleration limits imposed on the control system,

MARVIN will decelerate smoothly. This prevents wheel slippage and protects the

motor drivers from the current surges that accompany rapid changes in applied power.

Motor Control Software 95

The two higher threat levels are implemented in the stop_wheel function (Appendix

B.21). Medium level collision avoidance is implemented if the rangefinder facing the

direction of motion measures an obstacle within a range of 0.4 m, or if the navigation

sends a stop instruction (by setting the distance and angle inputs to zero). In this

situation the target velocity is set to zero. However, the microcontroller contains its

own acceleration limits that prevent the PWM duty cycles from decreasing too

quickly.

If one or more of the contact sensors detect a collision, or if the navigation system

sends an emergency brake instruction, the brake flag is set, which instructs the

microcontroller to ignore its acceleration limits and stop the wheels immediately. The

strain on the motor drivers is preferable to the damage that would result from a

collision.

5.6 Driving Motors

The target velocity must be converted into a value representing the PWM duty cycle

that would drive the wheels at that velocity. The microcontroller represents this PWM

value as an 8-bit integer, so the duty cycle is given by Equation 5.34.

255
PD = Equation 5.34

D: PWM duty cycle

P: PWM value

The microcontroller is configured to limit the PWM to half duty cycle (or a value of

128) to prevent high-speed collisions. The duty cycle limit also protects the motor

drivers from excessive current surges during acceleration and deceleration. This

precaution is doubly necessary because three separate thesis projects would be

compromised if MARVIN were seriously damaged.

96 The Development of a Control System for an Autonomous Mobile Robot

5.6.1 Velocity-PWM Relationship

If a given PWM value does not drive a wheel at the target velocity, the PID control

system compensates by adjusting it until the velocity is correct. However, the wheel

will settle on the correct velocity more slowly if the mismatch between PWM value

and target velocity is large, so for optimal performance a close match under normal

conditions is necessary. In order to obtain the velocity-PWM relationships for each

wheel, a range of step responses are recorded (refer to Figure 5.2 for samples).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Freewheeling Step Response, PWM = 40

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Loaded Step Response, PWM = 40

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Freewheeling Step Response, PWM = 80

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Loaded Step Response, PWM = 80

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Freewheeling Step Response, PWM = 128

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Loaded Step Response, PWM = 128

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

Figure 5.9: Freewheeling and Loaded Step Responses

Motor Control Software 97

The average steady-state velocity is measured for each step response, and the resulting

data is plotted in Figure 5.10. Both the freewheeling and loaded relationships are

linear except where they cross the PWM axis.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PWM

ve
lo

ci
ty

 (m
/s

)
Left Wheel

Loaded
Freewheeling

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PWM

ve
lo

ci
ty

 (m
/s

)

Right Wheel

Loaded
Freewheeling

Figure 5.10: Loaded and Freewheeling Velocity-PWM Plots

The function get_motor_power (Appendix B.22) models the relationship as a pair of

straight lines with equal gradients but different PWM-intercepts for each wheel

direction (Equations 5.35 and 5.36).

98 The Development of a Control System for an Autonomous Mobile Robot

2.256.159 ±×= ll vP Equation 5.35

0.240.151 ±×= rr vP Equation 5.36

Pl: Left wheel’s PWM value

Pr: Right wheel’s PWM value

5.6.2 Writing PWM Value to Microcontroller

PWM values produced by get_motor_power are signed floating-point numbers

between –255 and 255. These are converted into header and data bytes for the

microcontroller communication protocol using set_motor_power (Appendix B.23).

The header byte is set to a value between 2 and 5, selecting the appropriate motor and

direction according to the protocol detailed in Section 3.4.1. The data byte is derived

from the raw PWM value using Equation 5.37, with the sign of the ± term depending

on direction. A direction flag (Section 5.1.2) is utilised for this purpose rather than the

sign of the raw value, because it provides direction information even if the PWM

value is zero. If the brake flag is set to 1, the header and data bytes are zeroed,

indicating that an emergency stop is necessary.

128
2

|| ±= PB Equation 5.37

B: Data byte

The header and data bytes are written to the microcontroller using the Set Motor

Power VI (Section 3.4.3). Set Motor Power returns four error counts indicating the

number of times each header or data byte was redelivered.

Motor Control Software 99

5.7 Simulation

A number of factors necessitated the development of a software simulation of

MARVIN’s behaviour, including:

• Delays with the motor driver hardware.

• The simultaneous testing requirements of multiple developers.

• The need for an ideal, controllable environment in which to test algorithms.

This simulation consists of a series of MATLAB functions that model the responses

of MARVIN’s sensors and actuators, replacing the hardware interface functions. The

main function marvin_control (Section 3.5.1, Appendix B.2) is structured so that a

single flag switches between simulation mode and real mode, and the program selects

between the simulation functions and hardware interface functions accordingly.

The odometers are simulated using sim_en_count (Appendix B.24), which is a

replacement for acq_en_count (Section 4.1.1, Appendix B.3). The encoder pulse

count over a given control cycle is calculated using Equation 5.38. For testing

purposes, cumulative error can be simulated by multiplying a count by a known

factor.

TECvc ss = Equation 5.38

cs: Simulated encoder count (pulses/m)

E: Cumulative error factor

C: Conversion factor (26996 pulses/m)

vs: Simulated wheel velocity (m/s)

T: Control cycle period (s)

The sim_ir_voltage function (Appendix B.25) replaces acq_ir_voltage (Section

4.1.2, Appendix B.4), simulating the infrared rangefinders’ voltage outputs. Since the

control system lacks an internal map, simulated corridor walls are placed at positions

100 The Development of a Control System for an Autonomous Mobile Robot

given by the navigation system or the user. Simulated rangefinder distance

calculations are the same as those performed by the rangefinder localisation algorithm

to predict distances (Section 4.2.2.3, Equations 4.12-4.14). They are then converted

into voltages using the same lookup table as rep_ir_distance (Section 4.2.2.2,

Appendix B.8). Equation 4.11 is rearranged to obtain voltage from distance (Equation

5.39).

12

121
1

))((

LL

LLLIR
LIR dd

VVddVV
−

−−
+= Equation 5.39

The tactile sensors and beacons are not simulated by the control system. MARVIN’s

tactile sensors are only useful as an emergency collision warning system, which is not

necessary in simulation. The control system does not utilise the beacons, and they

cannot be simulated accurately without a map, so the navigation system is better

equipped to simulate them.

The function sim_motor_power (Appendix B.26) replaces set_motor_power

(Section 5.6.2, Appendix B.23). Accurate motor driver characteristics were not known

at the time this function was developed, so the simulation is not used to test the

velocity control algorithm. Instead, it provides an ideal response, setting the velocity

of each wheel to the target velocity. The only real-world properties that are simulated

are velocity thresholds, representing the slowest velocities that the wheels will tolerate

before they stop.

Plots of MARVIN’s simulated motion are presented in Chapter 6, where they are

compared with data obtained from real world tests.

Results 101

6 Results

To measure the control system’s performance, a number of tests are performed in

simulated and real environments. The enclosed CD (detailed in Appendix C) contains

captured data, figures and video footage obtained from these tests.

6.1 Open Environment Test Results

The first set of tests is performed inside a 6 × 4 m section of laboratory that is treated

as an open environment because the various desks and other obstructions along the

walls, as well as the large wall separation, mean that the rangefinders cannot be used

for localisation purposes. Various motion instructions are delivered to the control

system to execute at 0.2 m/s, 0.4 m/s and 0.6 m/s.

The maximum velocity limit for these tests, 0.6 m/s, approximates the speed that the

left wheel (the slowest wheel for any given PWM value) travels at when the PWM

value is set to half duty cycle (the present upper limit – refer to Section 5.6 for

details).

The control system utilises only the odometers for localisation during these tests, so it

is susceptible to a number of errors, including:

• Initial Misalignments – The odometers can only measure changes in position

and orientation, so the control system cannot detect or correct initial position

or heading errors. While position errors contribute little to the final position

error, even small initial heading errors can significantly alter the final position.

An origin point is marked on the floor as a reference so that MARVIN can be

aligned consistently, minimising the heading error. Using the floor markings,

the errors due to position misalignments can be reduced to approximately 1 cm

in either direction. Initial heading errors are limited to approximately 1.5o. For

a 4 m linear trajectory this yields an offset error of 10 cm.

102 The Development of a Control System for an Autonomous Mobile Robot

• Odometry Errors – Odometry errors can be both random and systematic. An

attempt has been made to reduce the systematic errors through odometer

calibrations. Random errors are unavoidable in tests such as these that rely on

dead reckoning for localisation. Undetected heading errors caused by wheel

slippage or missed counts on a single wheel are the most significant source of

position error, especially if they occur near the start of the trajectory.

6.1.1 Linear Forward Trajectory

Figure 6.1 gives the result of a simulated 4 m straight-line instruction executed at 0.4

m/s. The equivalent instruction implemented in the real world is shown in Figure 6.2.

The simulation can be considered an ideal response that the real-world results should

aspire to match. A comparison of Figure 6.1 and Figure 6.2 shows that the real-world

results do closely match the behaviour of the simulation after taking the signal noise

and motor response characteristics into account.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

-1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

x (m)

y
(m

)

Trajectories

Target Trajectory
Measured Trajectory

Figure 6.1: Simulation, Distance = 4 m/s, Velocity Limit = 0.4 m/s

Results 103

-1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

x (m)

y
(m

)

Trajectories

Target Trajectory
Measured Trajectory
Actual End Point

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

) Left Wheel
Right Wheel

Figure 6.2: Real World, Distance = 4 m/s, Velocity Limit = 0.4 m/s

The target trajectory is plotted for each of these results along with control software’s

internal representation of the path travelled (the measured trajectory). For the real-

world test, the actual trajectory that MARVIN follows is not shown, because it is

impractical to externally measure MARVIN’s position while it is in motion. Instead,

only MARVIN’s real-world destination position is plotted. Since this is within 3 cm

of the internal measurement of MARVIN’s final position, it can be seen that the real-

world motion does closely match the internal representation of the trajectory.

The lower plot in each figure contains the velocity profiles measured for each wheel.

The only “imperfections” in the simulation velocity profiles are caused by the lower

velocity limits in the acceleration and deceleration stages. These limits are in place to

prevent the control system from driving the wheels at such low velocities that

oscillations occur. They are not visible on the real-world velocity profiles because the

motor responses smooth out sharp edges such as these. Much of the noise observed on

the real-world velocity profiles (including the small spike at the centre of the left

104 The Development of a Control System for an Autonomous Mobile Robot

wheel’s profile) is likely due to the limited resolution of the PC’s timer (Section

4.2.1.2) than rather than actual variations in wheel velocity.

6.1.2 Linear Reverse Trajectory

A real-world instruction executed at 0.4 m/s in the reverse direction is plotted in

Figure 6.3. The result is very similar to the forward motion, with MARVIN

maintaining a straight trajectory and arriving within 5 cm of the internal measurement

of position. In this test, a slight velocity mismatch during deceleration results in a -1o

heading error at the end of the trajectory, but since the system detects the error it can

be corrected in subsequent instructions.

-5 -4 -3 -2 -1 0 1

-1

-0.5

0

0.5

1

x (m)

y
(m

)

Trajectories

Target Trajectory
Measured Trajectory
Actual End Point

0 2 4 6 8 10 12 14 16
-0.5

-0.4

-0.3

-0.2

-0.1

0

Velocity Profiles

ve
lo

ci
ty

 (m
)

Left Wheel
Right Wheel

Figure 6.3: Real World, Distance = -4 m, Velocity Limit = 0.4 m/s

Results 105

6.1.3 Moving Turn

Figure 6.4 shows an 18o moving left turn instruction executed with a 0.6 m/s velocity

limit in the real world. The left wheel is maintained at a slightly lower velocity than

the right wheel in order to produce a controlled drift to the left. A small disturbance is

apparent at the beginning of the left wheel’s velocity profile as the control system

ramps up the applied velocity to overcome static friction, then slows the wheel to

compensate for the initial “velocity surge”.

-1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

x (m)

y
(m

)

Trajectories

Target Trajectory
Measured Trajectory
Actual End Point

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

Figure 6.4: Real World, Turning Angle = -18o, Velocity Limit = 0.6 m/s

6.1.4 Linear Trajectory with Offset Angle

A linear distance instruction with a 7.2o initial offset angle executed at 0.6 m/s is

given in Figure 6.5. Of the instructions shown, this is the only instruction that results

in significant deviation from the target trajectory. This is to be expected, since the

offset angle is implemented as a means to dynamically correct an initial heading error.

106 The Development of a Control System for an Autonomous Mobile Robot

MARVIN begins the trajectory aligned horizontally, so the right wheel velocity is

reduced in order to steer MARVIN to the right. The left wheel velocity then reduces

to line MARVIN up with the target trajectory.

-1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

x (m)

y
(m

)

Trajectories

Target Trajectory
Measured Trajectory
Actual End Point

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

Figure 6.5: Real World, Offset Angle = 7.2o, Velocity Limit = 0.6 m/s

6.1.5 Position Errors

A thorough analysis of the system’s accuracy requires that a range of instructions be

executed multiple times at each speed. The resulting position errors for each test are

given in Figure 6.6. These plots generally show the final positions clustered around

the target position. The errors are spread more widely across the y-axis (error range =

-14→13 cm, average error magnitude = 5 cm) than the x-axis (error range = -9→8

cm, average error magnitude = 2 cm) because undetected heading errors due to initial

misalignment and odometry errors affect the MARVIN’s offset more than the overall

distance it travels. There is no obvious correlation between velocity and position

Results 107

error, which is further evidence that changes in velocity do not affect wheel slippage

over the measured range.

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)
Distance = 4 m

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)

Distance = -4 m

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)

Distance = 4 m, Turning Angle = -18 degrees

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)

Distance = 4 m, Turning Angle = 18 degrees

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)

Distance = 4 m, Offset Angle = -7.2 degrees

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

x (m)

y
(m

)

Distance = 4 m,Offset Angle = 7.2 degrees

Velocity Limit = 0.2 m/s
Velocity Limit = 0.4 m/s
Velocity Limit = 0.6 m/s
Target Position

Figure 6.6: Position Errors in an Open Environment

108 The Development of a Control System for an Autonomous Mobile Robot

6.2 Corridor Environment Test Results

The coordinate system that the navigation system uses for MARVIN’s primary

intended operating environment, the corridors on the first floor of C Block at the

University of Waikato, is shown in Figure 6.7. Although the navigation system is not

utilised in the tests detailed in this section, these results are presented in the same

coordinate system. The largest straight section of corridor is selected for these tests so

that the expected wall positions can be set to constant values. In an environment as

restrictive as these corridors, the only motion instructions that can be executed safely

are linear trajectories and stationary turns.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

10

12

x (m)

y
(m

)

C Block Corridors

Figure 6.7: Corridor Coordinate System

6.2.1 Linear Trajectories

A simulated 6 m trajectory executed at 0.4 m/s is given in Figure 6.8. Figure 6.9

shows the same instruction executed in the real world with the rangefinder weights

zeroed so that they do not contribute to the localisation algorithm. Figure 6.10 is a plot

of the instruction executed on the completed system that localises MARVIN using

fused odometer and rangefinder data. These plots are similar to those obtained in

Section 6.1, but they also include object positions detected by each rangefinder. Like

the measured trajectory, the object positions indicate the software’s internal

measurement of position rather than an actual location in the real world.

Results 109

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 1 2 3 4 5 6 7 8 9 10

4

5

6

7

8

x (m)

y
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

Figure 6.8: Simulation, Velocity Limit = 0.4 m/s

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 1 2 3 4 5 6 7 8 9 10

4

5

6

7

8

x (m)

y
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

Figure 6.9: Real World, Odometers Only, Velocity Limit = 0.4 m/s

110 The Development of a Control System for an Autonomous Mobile Robot

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 1 2 3 4 5 6 7 8 9 10

4

5

6

7

8

x (m)

y
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

Figure 6.10: Real World, Odometers and Rangefinders, Velocity Limit = 0.4 m/s

The simulation result shown in Figure 6.8 assumes that the wall positions remain

constant throughout the entire test, which is not the case in the real world. The

rangefinder objects shown in Figure 6.10 give a good indication of the true shape of

the corridor walls. The depressions on either side of MARVIN near the mid-point of

the trajectory are doors. The raised surface on the left side of the second half of the

trajectory is a wall-mounted notice board.

The measured wall positions begin to drift away from their expected positions in

Figure 6.9 because MARVIN has drifted to the left due to odometry errors and/or

initial misalignment. This no longer occurs in Figure 6.10 because the rangefinder

localisation algorithm is continuously correcting any offset and heading errors

encountered by the odometer localisation algorithm.

Overall, ten instructions are executed at each speed. Half only utilise the odometers

for localisation, while the other half also incorporate the rangefinder data. The

resulting position errors, plotted in Figure 6.11, show that the rangefinders reduce the

Results 111

system’s offset (y-axis) error range from –11→18 cm to -7→2 cm. The average offset

error magnitude reduces from 7 cm to 3.5 cm.

-0.2 -0.1 0 0.1 0.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x (m)

y
(m

)

Position Errors

Odometers Only, Velocity Limit = 0.2 m/s
Odometers Only, Velocity Limit = 0.4 m/s
Odometers Only, Velocity Limit = 0.6 m/s
Odometers & Rangefinders, Velocity Limit = 0.2 m/s
Odometers & Rangefinders, Velocity Limit = 0.4 m/s
Odometers & Rangefinders, Velocity Limit = 0.6 m/s
Target Position

-0.2 -0.1 0 0.1 0.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x (m)

y
(m

)

Measurement Errors

Figure 6.11: Position Errors and Measurement Errors in a Corridor
Environment

Instructions executed at slower velocities appear to benefit more from the rangefinder

data than those executed at faster speeds. This could be due to the delay associated

with the filtering on the rangefinder voltage signals. However, the most likely cause is

that the sensor fusion scheme does not take MARVIN’s velocity into account.

Although the weights remain the same, the rangefinders’ contribution is effectively

being reduced at higher speeds because the corrections are being applied at fewer

positions along the trajectory. The rangefinder weights could become speed-

dependant, but increased weights would result in more rapid variations in measured

offset and heading. MARVIN’s manoeuvrability decreases as its speed increases, so it

may react unfavourably to these changes.

Figure 6.11 also includes measurement errors (the differences between the actual

positions and the software’s internal measurements) for each test. The odometer-only

measurement errors are approximately the same as the position errors (error range = –

11→18 cm, average error magnitude = 7 cm) – this means that MARVIN’s position

error is not detected by the software. However, the measurement errors for the results

112 The Development of a Control System for an Autonomous Mobile Robot

that incorporate rangefinder data have an average magnitude of only 2 cm, and they

are spread over a very narrow range (-4→0 cm) centred around the –2 cm point on the

y-axis. The notice board on the left wall is the most likely cause of this minor

systematic error. Since the expected wall positions are set to constant values for these

tests, the rangefinder localisation algorithm cannot take into account the slight

variation in expected wall positions. If it was utilised for these tests, the navigation

system could adjust the expected wall positions using information from its internal

map, eliminating this error.

6.2.2 Stationary Turns

The rangefinder localisation algorithm is very effective at correcting offset and

heading errors for motion that is parallel to the walls, but its usefulness diminishes for

other types of motion, as demonstrated by the sequence of two 90o stationary turns

shown in Figure 6.12. In this test, a 470 ms delay due to the filtering on the

rangefinder signals distorts the measured wall positions while MARVIN is turning.

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

-1 0 1 2 3 4 5 6 7 8 9

4

5

6

7

8

x (m)

y
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

Figure 6.12: 90o Right Turns in Corridor

Results 113

6.2.3 Extreme Tests

In order to gauge the true effectiveness of the rangefinder localisation algorithm, tests

are performed under extreme conditions that the odometers alone would be unable to

withstand. Deliberate misinformation about the initial heading is delivered to the

software, and the rangefinder localisation algorithm must detect the true heading so

that the control system can apply the appropriate course corrections. These tests are

performed at low velocities (0.2 m/s) for safety reasons. Figure 6.13 shows the results

of a test performed with MARVIN oriented approximately 20o away from the

expected horizontal heading. Figure 6.14 is a similar test performed with an initial 60o

heading error. In both cases MARVIN corrects the initial heading error within the first

3 m of the trajectory and arrives within 10 cm of the target position. The exact

position errors for each test are given in Table 6.1.

Figure 6.13: Correcting Initial 20o Heading Error

114 The Development of a Control System for an Autonomous Mobile Robot

Figure 6.14: Correcting Initial 60o Heading Error

Table 6.1: Position Errors for Extreme Tests

Initial Heading Error Position Error, x-axis Position Error, y-axis

20o -3 cm 0 cm

60o 10 cm 0 cm

6.2.4 Collision Avoidance

The collision avoidance tests involve placing a hapless victim in front of MARVIN as

it executes a normal instruction. Figure 6.15 shows that MARVIN stops within 40 cm

of the lucky individual when travelling at 0.6 m/s. The same individual has also

learned through bitter experience that when all else fails the tactile sensors do indeed

function correctly.

Results 115

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 1 2 3 4 5 6 7 8 9 10

4

5

6

7

8

x (m)

y
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

Figure 6.15: Collision Avoidance

6.3 Combined System Test Results

In order to travel long distances down a corridor while utilising the rangefinder

localisation algorithm, the wall positions must be updated dynamically. Also, the

rangefinder weights must be temporarily zeroed whenever MARVIN passes through

regions such as the corridor intersection that may yield misleading measurements.

Controlling these inputs manually does not produce reliable or repeatable results, so

these tests can only be performed in conjunction with the navigation system.

Phew!

116 The Development of a Control System for an Autonomous Mobile Robot

6.3.1 Single Instruction

The first tests performed on the combined navigation system and control system are

linear distance trajectories that traverse the entire corridor. The navigation system

delivers a single 29.3 m instruction to the control system and adjusts the wall

positions and rangefinder weights as it executes. Figure 6.16 shows the simulated

trajectory executed at 0.6 m/s. Figure 6.17 shows the equivalent instruction executed

in the real world.

The fact that the measured object distances line up with the expected wall positions in

the y-axis shows that MARVIN maintains a relatively straight trajectory over the

entire distance, which would not be possible using odometers only. False readings are

apparent on some of the measured object positions. The “objects” detected by the

front and rear rangefinders near the start and the end of the trajectory are most likely

due to ambient light or reflections from the windows at each end of the corridor. The

disturbance on the left wall near the end of the trajectory is a glass cabinet.

Figure 6.16: Simulation, Single Instruction, Velocity Limit = 0.6 m/s

Results 117

Figure 6.17: Real World, Single Instruction, Velocity Limit = 0.6 m/s

Position and measurement errors for a number of similar tests are plotted in Figure

6.18. Given the large distance travelled, it is expected the distance errors should be

larger than the errors measured in previous tests, and the results confirm this (error

range = -22→7 cm, average error magnitude = 11 cm).

Offset errors should ordinarily be corrected based on the rangefinder data, but the

offset errors for these tests (error range = -15→5 cm, average error magnitude = 8 cm)

show a general increase from those obtained in the previous tests. The most likely

cause of this discrepancy is that the rangefinder weights on the left side are zeroed

over a large section of corridor close to the final position to prevent the control system

from reacting to the shifting wall positions and the glass cabinet. Since the left wall is

only utilised briefly at the end of the trajectory, the control system does not have time

to detect and correct the offset errors. This also explains why the errors are corrected

more successfully at 0.2 m/s than at the higher velocities.

118 The Development of a Control System for an Autonomous Mobile Robot

-0.2 -0.1 0 0.1 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x (m)

y
(m

)

Position Error

Velocity Limit = 0.2 m/s
Velocity Limit = 0.4 m/s
Velocity Limit = 0.6 m/s
Target Position

-0.2 -0.1 0 0.1 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x (m)

y
(m

)

Measurement Error

Figure 6.18: Errors for Single Instructions

6.3.2 Sequence of Instructions

The final tests involve a sequence of three instructions delivered by the navigation

system – a linear distance, followed by a 90o left turn, then another linear distance.

Due to odometry errors MARVIN is unlikely to be exactly in the centre of the

corridor intersection following the left turn, nor will it be facing the correct direction,

so the control system must acquire the intended position and orientation after it enters

the new section of corridor. The resulting simulated trajectory is given in Figure 6.19

and the real-world trajectory is plotted in Figure 6.20.

The primary disturbances observed on the measured object positions occur in the

corridor intersection. This is because the lag introduced by the rangefinders’ software

filter smears the measured corner positions when MARVIN executes a stationary turn.

The slight disturbance on the right wall next to the final position is produced by a

drinking fountain.

Results 119

Figure 6.19: Simulation, Sequence of Instructions, Velocity Limit = 0.6 m/s

Figure 6.20: Real World, Sequence of Instructions, Velocity Limit = 0.6 m/s

120 The Development of a Control System for an Autonomous Mobile Robot

Due to odometry errors, MARVIN enters the second section of corridor slightly to the

left of the corridor centre axis. Once the navigation system sets the rangefinder

weights to nonzero values, the control system detects the position error and steers

MARVIN to the right, as evidenced by the reduced velocity of the right wheel shown

on the velocity profile. The measured trajectory actually appears straighter than the

observed motion in the real world because the rangefinder localisation algorithm

shifts the measured position towards the left at the same time as MARVIN moves to

the right to correct the error.

A slight drift to the left is observed as MARVIN travels through the corridor

intersection (where it cannot use the rangefinders for localisation) before it executes

the left turn instruction, resulting in an initial position error that the control system

cannot detect or correct. This causes MARVIN to overshoot the target position by

approximately 4 cm.

-0.2 -0.1 0 0.1 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x (m)

y
(m

)

Position Error

Velocity Limit = 0.2 m/s
Velocity Limit = 0.4 m/s
Velocity Limit = 0.6 m/s
Target Position

-0.2 -0.1 0 0.1 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x (m)

y
(m

)

Measurement Error

Figure 6.21: Errors for Sequences of Instructions

Figure 6.21 gives the position and measurement errors for a number of similar tests.

Unlike the previous results, the position errors shown for these tests do not represent

the final positions with respect to a single target position because the navigation

system instructs the control system to drive MARVIN to a slightly different target

position for each test. The x-axis represents the final offset errors for these tests, since

Results 121

MARVIN turns into the vertically oriented section of corridor. The measurement

errors are spread widely across the x-axis (error range = -12→12 cm, average error

magnitude = 6 cm), probably due to the non-uniform wall positions in the target

section of corridor, as well as the fountain.

Conclusions 123

7 Conclusions

7.1 Objectives Achieved

The following thesis objectives have been achieved:

• New HEDS-5500 optical encoder modules, Sharp GP2Y0A02YK infrared

rangefinders, custom-built tactile sensors, Kemo B062E beacon receivers,

custom-designed H-bridge motor drivers and a Phillips P89C51

microcontroller were installed on MARVIN and interfaced to the DAQ card.

The hardware has remained stable throughout months of testing.

• LabVIEW software was developed that utilises the DAQ card’s internal

counters to measure pulses from the odometers. The software obtains voltage

readings from the infrared rangefinder voltages using the DAQ card’s built-in

ADC. Values indicating the logic states of the tactile sensor switches and

beacon receiver relays are received on the digital I/O ports. Software was

created to interface with the microcontroller using the communication protocol

established by Andrew Payne, performing the appropriate error corrections

when necessary.

• A number of alternative inter-application interfaces were investigated:

ActiveX Control Containment, ActiveX Automation, MATLAB Script Nodes,

Dynamic Data Exchange and File I/O. A robust software interface was

established between MATLAB, LabVIEW and Microsoft Word using ActiveX

Automation.

• The sensor data measured by LabVIEW is delivered to MATLAB, where the

raw signals are conditioned for use by the localisation algorithms. A technique

was developed to apply direction information to the raw odometer counts.

Several alternative software filters were investigated for the rangefinder

signals, and a median average scheme was selected.

• Distance measurements were obtained from the odometer counts, and the

corresponding conversion factors were calibrated to reduce the errors.

Equations were derived to obtain MARVIN’s distance, offset, heading and

124 The Development of a Control System for an Autonomous Mobile Robot

wheel velocities from the individual displacements measured by each wheel

over time.

• The voltage-distance relationship for each rangefinder was measured, and

lookup tables were created that obtain distance measurements from the voltage

signals. An algorithm was developed to obtain offset and heading information

from the measured wall positions in a corridor environment. Offsets can be

obtained from individual rangefinder measurements, whereas headings are

derived from the relative wall positions measured by two or more adjacent

rangefinders.

• An algorithm was developed that combines the odometer and rangefinder

localisation information intelligently. Various sensor fusion techniques were

considered, including Bayesian inference, Dempster-Shafer inference, fuzzy

logic and neural networks. A dynamic weighted average scheme was selected.

• Algorithms were developed to obtain target motion trajectories and velocity

trajectories from arbitrary distance and angle inputs. The target trajectory is

used to ensure that MARVIN’s position and orientation is correct at all times.

The velocity profile provides an intended velocity for each wheel that will

result in smooth acceleration and deceleration while driving MARVIN along

the target trajectory.

• Various control schemes were researched for MARVIN’s motion control

system, including PID, fuzzy logic, neural network and neuro-fuzzy. Two

separate PID control loops were implemented. The outer loop controls

MARVIN’s heading, maintaining its motion along the target trajectory based

on localisation information obtained by the sensor fusion algorithm. The inner

loop controls MARVIN’s wheel velocities in an attempt to match the velocity

profiles while applying course corrections obtained by the heading control

system.

• A collision avoidance system was implemented that groups perceived

obstacles into three levels of threat according to their measured proximity, and

takes evasive action.

• Extensive tests and calibrations were performed in the real world in order to

measure and refine the system’s performance.

Conclusions 125

In addition to these fulfilling all the intended objectives, the project has achieved the

following:

• MARVIN’s PC hardware has undergone an extensive overhaul, receiving a

new ACE-828C 24V power supply, Shuttle xPC, 6025E DAQ card and

ZyAIR B-220 wireless LAN module.

• A software simulation was developed that models the behaviour of

MARVIN’s sensors and actuators. It integrates seamlessly with the control

system, allowing developers to switch between simulated and real

environments by adjusting a single variable. A MATLAB GUI was created so

that MARVIN’s motion and perceived environment, both in simulation and in

the real world, can be tracked in real time. A data logging system was created

to record the relevant data for future analysis.

• The control system was successfully interfaced with the navigation system,

resulting in a combined system that can navigate autonomously throughout a

corridor and laboratory environment, avoiding any obstacles it encounters

along the way.

7.2 Future Work

The completed control system has proven successful, but there are a number of

improvements that could be made in the future:

• Additional Sensors

• Motor Driver Improvements

• Simulation Improvements

• Improved Sensor Algorithms

126 The Development of a Control System for an Autonomous Mobile Robot

7.2.1 Additional Sensors

The following sensors could be added to MARVIN to improve its localisation and

navigation capabilities:

• Laser Rangefinder – Shaun Hurd’s custom laser rangefinding system [Hurd,

2001] must be interfaced to MARVIN’s new PC. The device can be utilised

for localisation purposes in the same manner as the infrared rangefinders.

However, its capabilities are more easily exploited by the navigation system

than the control system. Due to its comparatively long (10 m) measurement

range, the laser rangefinder is useful as a means to map the environment

dynamically. It will also allow the navigation system to detect impending

obstacles in time to plot a course around them without halting the robot.

• Compass – A compass will be useful as an absolute heading reference if the

interference issues can be overcome. Magnetic fields generated by objects

inside the operating environment (or generated by MARVIN itself) will

interfere with a standard magnetic compass. A compass module designed

specifically for robotic applications that can compensate for magnetic

interference, such as the P2UsCMP120 from ActivMedia Robotics

[http://www.activrobots.com], may prove an ideal solution. Alternatively, an

inertial sensor such as a gyrocompass could be used.

• Optical Mouse – A standard optical mouse contains a CCD camera and a DSP

that measures changes in position from the shifting patterns on a moving

surface. If an optical mouse is positioned close to the floor or focussed through

a lens, it could provide an alternative form of dead reckoning localisation that

is not susceptible to the same errors as the odometers (e.g. wheel slippage).

Conclusions 127

7.2.2 Motor Driver Improvements

If future projects require MARVIN to travel at faster velocities than the present

software limits allow, extra precautions may become necessary to prevent high-speed

collisions. The microcontroller software may also require modifications so that the

duty cycle limit can be safely removed without risking damage to the motor driver

circuits. Reducing the acceleration limit is one solution, but this would compromise

the system’s speed of response at all velocities. A more favourable alternative is to

implement a speed-dependent acceleration limit. Since the emergency brake signal

and the communication timeout bypass the acceleration limit, future developers must

ascertain the safest course of action to take in the event of a collision or a PC lockup.

Further investigations are also required to determine whether MARVIN’s present

motor drivers should be replaced with Craig Jensen’s generic motor drivers.

7.2.3 Simulation Improvements

MARVIN’s hardware is now functional, so the simulation is no longer essential, but it

is still very useful for the initial testing stage whenever a significant modification or

addition is implemented on MARVIN’s software. The simulation will allow future

developers to debug the software in a safe environment where errors do not result in

physical damage. However, due to the simplicity of the present simulation, many

errors are not detected until the code is executed on real hardware. It might therefore

be useful to expand the simulation to incorporate additional real-world properties such

as motor response characteristics. As new sensors and actuators are installed on

MARVIN, simulation functions should also be developed to model their behaviour.

128 The Development of a Control System for an Autonomous Mobile Robot

7.2.4 Improved Sensor Algorithms

New sensors that are installed on MARVIN can be added to the sensor fusion

algorithm by assigning the appropriate weights. However, as the number of sensors

increases, the weighted average scheme will become less effective. At some point a

more complex algorithm such as a Bayesian or Dempster-Shafer scheme or a neural

network may become necessary.

One potential improvement that could be applied to the rangefinder localisation

algorithm is to extrapolate MARVIN’s position and orientation from measured wall

positions over time, instead of (or as well as) those measured by multiple sensors at a

single point in time. Figure 7.1 superimposes the measured wall positions for two

separate trajectories, and shows that the data points are generally grouped into straight

lines. A line representing a detected wall can be fitted to these data points using the

MATLAB function polyfit, and compared with the line representing the expected

wall position. Any transformation that is applied to the measured line in order to

match it to the expected wall position could then be applied to MARVIN’s position

and orientation.

Figure 7.1: Wall Positions Measured over Time

The main advantage of this technique is that it reduces errors due to sensor noise and

wall disturbances. It also allows the localisation algorithm to measure MARVIN’s

heading even if only a single rangefinder is facing the wall. However, a significant

drawback is that it will slow the algorithm’s response to changes in offset or

Conclusions 129

orientation. The rangefinders’ software filters already result in distortions when a

stationary turn is executed in the corridor, and any further delays would exaggerate

the problem further. These advantages and disadvantages should be carefully

considered before such a revision is implemented.

7.3 Summary

The result of this project is a hardware and software platform that smoothly executes a

range of motion instructions in a corridor or laboratory environment at a maximum

velocity of 0.6 m/s. In a corridor environment the control system guides MARVIN to

its target position with 99% accuracy under normal conditions. If it is given false

starting information the accuracy remains within 98%. The collision avoidance

algorithm allows the control system to stop within 40 cm of a detected obstacle when

travelling at its maximum speed.

Throughout the course of this project, MARVIN has been transformed from a (non-

working) remotely guided vehicle into an autonomous device. The completed

navigation and control system allows MARVIN to plan and execute a sequence of

motion instructions that drive MARVIN to a designated location in a corridor or

laboratory environment. Overall, the project can be considered a significant success,

meeting (and in some cases exceeding) its objectives, and providing a robust system

that can be expanded upon in future projects undertaken by the Mechatronics Group.

Circuit Schematics 131

Appendix A: Circuit Schematics

A.1 Beacon Receiver Schematic

12V +

-

U2531

4

8

32
7

6

C6
100 uF

C7
100 nF

R1
374 R4

5.6k

T1
NPN

R5
432

IF

LED

C5
4.7 uF

C2
100 uF

C1
10 uF

R2
150kC7

100 nF
C4
39 pF

R3
1.1k

RELAY

1
2

A.2 Beacon Emitter Schematic

+ 9V

-

D?

LED2

R6
42

T4
NPN

T2
NPN

R7
1k1

R8
10k

C6
100 uF

C7
100 nF

T2

NPN

R10
10k

R9
22k C8

4.7 uF
C9
100 nF

S1
SWITCH

132 The Development of a Control System for an Autonomous Mobile Robot

A.3 Motor Diver Schematic

VCC

VCC

VCC

VCC

VCC

VCC

VCC

DIR

TEMP

OVERTEMP

CURRENTCURRENT

OVERCURRENT

CURRENT
OVERCURRENT

TEMP
OVERTEMP

DIR

PWM

PWM

R3
150

C6
15n

R9
150

C12
15n

R11

3R9

C10
100n

U3

L6384

Vin
2

Inp 1

DT 3

GND 4LVG5
Out6
HVG7
VBoot

8

R4
150

C7
15n

R6

3R9

C13
15n

R10
150 R12

3R9

C11
100n

J1
CON4

1234

C8

100n
C9
100n

+

-

U7B

TS914

5

6
7

4
11

R2047k

C20 100n R24
6k8

+

-

U7A

TS914

3

2
1

4
11

R26
4k7

R22
1k

C2110n

R21 1k2

R18 1k2

R27
4k7

+

-

U7D

TS914

12

13
14

4
11

R23 62k
R25
1k

+

-

U7C

TS914

10

9
8

4
11

J2

CON10

1
2
3
4
5
6
7
8
9

10

Q1
MOSFET

1

2
3

Q3
MOSFET

1

2
3

Q2
MOSFET

1

2
3

Q4
MOSFET

1

2
3

U4C

 9
 8

 10G
N

D
7

VC
C

14

U4B

 5

 6 4

G
N

D
7

V
C

C
14

U4A

 2

 3 1

G
N

D
8

VC
C

14

U4D

12

 11

 13G
N

D
8

VC
C

14

F1
FUSE

C5
1000uF

R1
100R

C4
0.22uF

C3

100n

C16
100n

C17
82pF R15

100R 1W

D14
15V ZENER

U5

555 TIMER

THES6

TRIG
2

DISCH7

G
N

D
1

CONT 5
O/P

3
RESET 4

V+
8

D15
IN4148

D11

IN4148

R13

100k

C14
20n

D10

IN4148

R5

3R9

U2

L6384

Vin
2

Inp1

DT3

GND4 LVG 5
Out 6

HVG 7
VBoot

8

D13

IN4148U6

555 TIMER

THES6

TRIG
2

DISCH7

G
N

D
1

CONT 5
O/P

3
RESET 4

V+
8

D12

IN4148

C15
20n

C18
100n

D17
IN4148

C19
82pF

R14

100k

D16
15V ZENER R16

100R 1W

D2

1
2

3

D4
TRANZORB

1
2

D8
TRANZORB

1
2

D3
TRANZORB

1
2

D7
TRANZORB

1
2

D5

1
2

3

D6

1
2

3

D9

1
2

3

t

RT1
THERMISTOR

U1
7815

VIN
1

+15
3

C
O

M
2

R28
10

R29
10

D19

LED

1 2

C2

100n

R17
4k7

C1
1uF

R8

68k

R7

68k

R19
0R003D18

BAS16

A.4 Motor Driver Schematic

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC
VCC

VCC

PWM0

OVERTEMP0

OVERCURRENT0

PWM1

OVERTEMP1

OVERCURRENT1

PWM0
PWM1

OVERTEMP0
OVERCURRENT0
OVERTEMP1
OVERCURRENT1
ENCODER0B
ENCODER1B
ENCODER2B

ENCODER0A
ENCODER1A
ENCODER2A

OFB
ACK
STB
IBF

DIR0

OFB
ACK
IBF
STB

ENCODER0A
ENCODER0B

ENCODER1A
ENCODER1B

ENCODER2A
ENCODER2B

DIR0

DIR1

DIR1

ERROR

ERROR

U2
XTAL

1
2

C7

27pF

1 2

C8

27pF

1 2

C3
100nF

1
2C2

100nF

1
2

+ C13
1uF

1
2

+ C11
1uF

1
2

+

C14

1uF

12

+

C12

1uF

1 2

U3

232

C1+
1

C1-
3

C2+
4

C2-
5

TDI
11

RTSI
10

RDO
12

CTSO9 CTSI 8RDI
13

RTSO
7TDO
14

V-
6

V+
2VC

C
16

G
N

D
15

P89C51RC+
 DIP

U1
80C552

P0.0/AD0 39

P0.1/AD1 38

P0.3/AD3 36

P0.4/AD4 35

P0.5/AD5 34

P0.2/AD2 37

P0.7/AD7 32P0.6/AD6 33NEA/VPP31

NPSEN 29

P2.7/A15 28

PROG/ALE 30

P2.5/A13 26P2.4/A12 25

P2.6/A14 27

P2.2/A10 23P2.1/A9 22

P2.3/A11 24

P1.4/CEX15 P1.3/CEX04 P1.2/ECI3
P1.0/T21

VC
C

40

P1.6/CEX37

P1.7/CEX48

RST9

P3.2/INT012

P3.4/T014

P2.0/A8 21

Vs
s

20

P3.1/TXD 11

P3.3/INT113

P3.5/T115

P3.6/WR 16

XTAL218

XTAL119

P1.1/T2EX2

P3.7/RD 17

P3.0/RXD 10

P1.5/CEX26

C9
0.1uF

1
2

D1
1N914

1
2

+ C10
10uF

1
2

R1
10K

1
2

S1

SW PUSHBUTTON

P1
CONNECTOR DB9

594837261

JP5

MOTOR 0

1
2
3
4
5
6
7
8
9

10

JP6

MOTOR 1

1
2
3
4
5
6
7
8
9

10

JP2

DAQ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

JP1

HEADER 4

1
2
3
4

JP3

HEADER 4

1
2
3
4

JP4

HEADER 4

1
2
3
4

+ C1
10uF

1
2 C4

100nF

1
2 C5

100nF

1
2 C6

100nF

1
2

1
2

220

1
2

S2

SW SPDT

2
3

1

R3

2K2

1 2

R2
4K7

1 2 3 4 5 6 7 8 9

R4
4K71 2

R5
4K71 2 1

2

220

1
2

Q1
MOSFET N1

2
3

Source Code 133

Appendix B: Source Code

B.1 gui_marvin_control.m

function varargout = gui_marvin_control(varargin)

% Chris Lee-Johnson
%
% GUI_MARVIN_CONTROL Application M-file for gui_marvin_control.fig
% FIG = GUI_MARVIN_CONTROL launch gui_marvin_control GUI.
% GUI_MARVIN_CONTROL('callback_name', ...) invoke the named callback.

if nargin == 0 % LAUNCH GUI

 fig = openfig(mfilename,'reuse');

 % Generate a structure of handles to pass to callbacks,
 % and store it.
 handles = guihandles(fig);
 handles.run = 0;
 handles.stop = 0;
 handles.execute = 0;
 handles.target_distance = 0;
 handles.target_angle = 0;
 handles.offset_angle = 0;
 handles.ir_weighting = 1;
 handles.corridor_angle = 0;
 handles.corridor_offset = 0;
 handles.wall_distance_1 = 0.84;
 handles.wall_distance_2 = 0.84;
 guidata(fig,handles);

 if nargout > 0
 varargout{1} = fig;
 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try
 if (nargout)
 [varargout{1:nargout}] = feval(varargin{:});
 else
 feval(varargin{:});
 end
 catch
 disp(lasterr);
 end

end

% --
function varargout = run_Callback(h, eventdata, handles, varargin)

handles.run = get(h,'Value');
guidata(h,handles);

if handles.run == 1

 % Constants.
 N = 100;
 M = 1;
 X0 = 1.200;%14.1;%27;%
 Y0 = 6.025;%1.5;%
 HEADING0 = 0;
 X_WALL = [0.300,13.280,13.280,14.95,14.95,19.695,19.695,22.105,22.105,24.525,24.525,27.385,27.385,30.425, ...
 31.364,31.244,32.464,33.3588,31.7709,14.950,14.95,13.28,13.28,8.52,8.52,0.825,0.825,0.3,0.3];
 Y_WALL = [5.185,5.185,0.6,0.6,5.185,5.185,4.885,4.885,5.185,5.185,4.885,4.885,5.185,5.185,4.7865, ...
 4.6265,4.1085,6.2165,6.8650,6.865,11.45,11.45,6.865,6.865,7.165,7.165,6.865,6.865,5.185];

 % Initialise variables.
 x(1:2) = X0;
 y(1:2) = Y0;
 heading(1:2) = HEADING0;
 corridor_angle(1:2) = 0;
 w_vel_array = [0,0;0,0];
 time_plot = [0,0];
 line_count = 1;
 draw_count = 1;

 % Generate unique filename from time and date.
 fn_data = strcat(datestr(clock,30),'.txt');

 % Open file.
 file_data = fopen(strcat('c:\Project\Code\Data\',fn_data),'a');

 % Initialise marvin_control function.
 [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_velocity, ...
 ir_y,ir_heading,ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] ...

134 The Development of a Control System for an Autonomous Mobile Robot

 = marvin_control(2,0,0,0,[0,0],handles.corridor_offset,handles.corridor_angle*pi, ...
 [-handles.wall_distance_1,handles.wall_distance_2],X0,Y0,HEADING0);

 % Draw corridor walls etc.
 axes(handles.position);
 set(gca,'YDir','reverse');
 set(gca,'XTick',[0:2:34]);
 line(X_WALL,Y_WALL,'LineStyle','-');
 line([0.300,31.244],[6.025,6.025],'LineStyle','--');
 line([14.115,14.115],[11.450,0.600],'LineStyle','--');
 axis image;
 axis([0,34,0,12]);

 % Draw MARVIN's path, heading and IRs.
 for i = (1:N)
 traj_line(i) = line(X0,Y0,'Color','k');
 end;
 arrow_line = line(X0,Y0,'Color','k');
 for i = 1:6
 ir_line(i) = line(X0,Y0,'Color','r');
 end;

 % Draw velocity profiles.
 axes(handles.velocity);
 for i = (1:N)
 vel_line_1(i) = line(0,0,'Color','b');
 vel_line_2(i) = line(0,0,'Color','r');
 end;

 % Update screen plot.
 set(gcf,'DoubleBuffer','on');
 drawnow;

 while handles.run == 1

 % Get GUI handles.
 handles = guidata(h);

 % Set marvin_control inputs.
 if handles.stop == 1
 new_instruction = -1;
 target_distance = 0;
 target_angle = 0;
 offset_angle = 0;
 elseif handles.reset == 1
 new_instruction = 2;
 target_distance = 0;
 target_angle = 0;
 offset_angle = 0;
 else
 new_instruction = handles.execute;
 target_distance = handles.target_distance;
 target_angle = handles.target_angle*pi;
 offset_angle = handles.offset_angle*pi;
 end;
 ir_weighting = [handles.ir_weighting,handles.ir_weighting];
 corridor_offset = handles.corridor_offset;
 corridor_angle = handles.corridor_angle*pi;
 wall_y = [-handles.wall_distance_1,handles.wall_distance_2];

 % Reset button handles.
 handles.reset = 0;
 handles.execute = 0;
 handles.stop = 0;

 % Call marvin_control.
 [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_velocity, ...
 ir_y,ir_heading,ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] ...
 = marvin_control(new_instruction,target_distance,target_angle,offset_angle,ir_weighting, ...
 corridor_offset,corridor_angle,wall_y,X0,Y0,HEADING0);

 % Set current and last values for plotting.
 x(2) = x(1);
 y(2) = y(1);
 heading(2) = heading(1);
 x(1) = abs_x;
 y(1) = abs_y;
 heading(1) = abs_heading;
 w_vel_array(2,:) = w_vel_array(1,:);
 w_vel_array(1,:) = w_velocity;
 time_plot(2) = time_plot(1);
 time_plot(1) = time;

 % Convert integers to doubles so that fprinf can process them.
 contact_switch = double(contact_switch);
 beacon = double(beacon);

 % Save data to file.
 %
 % time: 1
 % tgt_x: 2
 % tgt_y: 3
 % tgt_heading: 4
 % abs_x: 5
 % abs_y: 6
 % abs_heading: 7
 % rel_x: 8
 % rel_y: 9
 % rel_heading 10
 % w_velocity: 11-12
 % ir_y: 13-14
 % ir_heading: 15-16

Source Code 135

 % ir_adj_x: 17-22
 % ir_adj_y: 23-28
 % ir_adj_angle: 29-34
 % ir_obj_distance: 35-40
 % contact_switch: 41-44
 % beacon: 45-46
 %

fprintf(file_data,'%g\t
%g\t%g\n',...
 [time;tgt_x;tgt_y;tgt_heading;abs_x;abs_y;abs_heading;rel_x;rel_y;rel_heading;w_velocity';ir_y'; ...
 ir_heading';ir_adj_x';ir_adj_y';ir_adj_angle';ir_obj_distance';contact_switch';beacon']);

 % Set text handles.
 set(handles.x,'String',num2str(x(1),'x = %0.3f m'));
 set(handles.y,'String',num2str(y(1),'y = %0.3f m'));
 set(handles.heading,'String',num2str(heading(1)/pi,'h = %0.3f*pi'));
 set(handles.xr,'String',num2str(rel_x,'xr = %0.3f m'));
 set(handles.yr,'String',num2str(rel_y,'yr = %0.3f m'));
 set(handles.hr,'String',num2str(rel_heading/pi,'hr = %0.3f*pi'));
 set(handles.ir_y_1,'String',num2str(ir_y(1),'IR y = %0.3f m'));
 set(handles.ir_h_1,'String',num2str(ir_heading(1)/pi,'IR h = %0.3f*pi'));
 set(handles.ir_y_2,'String',num2str(ir_y(2),'IR y = %0.3f m'));
 set(handles.ir_h_2,'String',num2str(ir_heading(2)/pi,'IR h = %0.3f*pi'));
 set(handles.ir1,'String',num2str(ir_obj_distance(1),'bl = %0.3f m'));
 set(handles.ir2,'String',num2str(ir_obj_distance(2),'fl = %0.3f m'));
 set(handles.ir3,'String',num2str(ir_obj_distance(3),'f = %0.3f m'));
 set(handles.ir4,'String',num2str(ir_obj_distance(4),'fr = %0.3f m'));
 set(handles.ir5,'String',num2str(ir_obj_distance(5),'br = %0.3f m'));
 set(handles.ir6,'String',num2str(ir_obj_distance(6),'b = %0.3f m'));
 if contact_switch(1) == 1
 set(handles.bump,'String','COLLISION, back left');
 elseif contact_switch(2) == 1
 set(handles.bump,'String','COLLISION, front left');
 elseif contact_switch(3) == 1
 set(handles.bump,'String','COLLISION, front right');
 elseif contact_switch(4) == 1
 set(handles.bump,'String','COLLISION, back right');
 end;

 % Write data to GUI.
 guidata(h,handles);

 % Get arrowhead line coordinates
 arrow_x = [x(1)-0.5*cos(adjust_angle(heading-pi/8)),x(1),x(1)-0.5*cos(adjust_angle(heading+pi/8))];
 arrow_y = [y(1)-0.5*sin(adjust_angle(heading-pi/8)),y(1),y(1)-0.5*sin(adjust_angle(heading+pi/8))];

 % Absolute positions of detected objects.
 for i = 1:6
 if ir_obj_distance(i) > 1.5
 ir_obj_x(i) = NaN;
 ir_obj_y(i) = NaN;
 else
 ir_obj_x(i) = ir_adj_x(i) + ir_obj_distance(i)*cos(ir_adj_angle(i));
 ir_obj_y(i) = ir_adj_y(i) + ir_obj_distance(i)*sin(ir_adj_angle(i));
 end;
 end;

 % Draw MARVIN's path, heading and IRs.
 axes(handles.position);
 set(traj_line(line_count),'XData',x,'YData',y);
 set(arrow_line,'XData',arrow_x,'YData',arrow_y);
 for i = 1:6
 set(ir_line(i),'XData',[ir_adj_x(i),ir_obj_x(i)],'YData',[ir_adj_y(i),ir_obj_y(i)]);
 end;

 % Draw velocity profile.
 axes(handles.velocity);
 set(vel_line_1(line_count),'XData',[time_plot(1),time_plot(2)], ...
 'YData',[w_vel_array(1,1),w_vel_array(2,1)]);
 set(vel_line_2(line_count),'XData',[time_plot(1),time_plot(2)], ...
 'YData',[w_vel_array(1,2),w_vel_array(2,2)]);

 % Update screen plot every M cycles.
 if draw_count == 1
 drawnow;
 end;

 % Increment counters.
 draw_count = mod(draw_count,M)+1;
 line_count = mod(line_count,N)+1;

 end;

 % Close data file.
 fclose(file_data);

end;

136 The Development of a Control System for an Autonomous Mobile Robot

B.2 marvin_control.m

function [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_vel,ir_y,ir_heading, ...
 ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] = marvin_control(new_instruction, ...
 new_tgt_distance,new_tgt_angle,new_ofst_angle,ir_weighting,corridor_y,corridor_angle,wall_y,init_x, ...
 init_y,init_heading)

% Chris Lee-Johnson
%
% marvin_control.m - Main motion control system for MARVIN.
% Note: On first call, new_instruction must be set to 2.
%
% ---
% Outputs
% ---
% time: Time elapsed (s)
% abs_x: Absolute x position coordinate (m)
% abs_y: Absolute y position coordinate (m)
% abs_heading Absolute heading (rad)
% rel_x: Distance along corridor (m)
% rel_y: Offset from corridor centre axis (m)
% rel_heading: Heading relative to centre axis (rad)
% tgt_x: Distance on target trajectory (m)
% tgt_y: Offset on target trajectory (m)
% tgt_heading: Heading on target trajectory (rad)
% w_vel: Velocity of MARVIN's wheels (m/s)
% [left, right]
% ir_obj_distance: Array of IR rangefinder distances (m)
% [left back, left front, front,
% right front, right back, back]
% contact_switch: Array of contact switch values (0,1)
% [left back, left front,
% right front, right back]
% ---
% Inputs
% ---
% new_instruction: New instruction flag
% -1: brake
% 0: no new instruction
% 1: new instruction
% 2: first instruction
% new_tgt_distance: Distance between origin & destination (m)
% new_tgt_angle: Target angle to turn through (-pi:pi rad)
% new_ofst_angle: Offset of target angle (-pi:pi rad)
% (use for small heading adjustments)
% ir_weighting: Weightings for IR rangefinders (0:1)
% [left,right (facing corridor angle)]
% corridor_y: Offset from centre axis of corridor (m)
% corridor_angle: Absolute direction of corridor (rad)
% wall_y: Wall offsets from centre axis (m)
% [left,right (facing corridor angle)]
% init_x: Initial absolute x coordinate (m)
% init_y: Initial absolute y coordinate (m)
% init_heading: Initial absolute heading (rad)

% Simulation flag (0:real, 1:simulation)
SIM = 1;

% Encoder counts per metre.
COUNTS_PER_M = 28062*[1.0035,0.9965];

% Distance between MARVIN's wheels (m)
W_SEPARATION = 0.508;

% IR rangefinder origins (relative to MARVIN's origin).
% (left back, left front, front, right front, right back, back)
TILT = 0.12062;
IR_OGN_X = [-0.0745,0.0745,0.1445,0.0745,-0.0745,-0.1445];
IR_OGN_Y = [-0.1415,-0.1415,0,0.1415,0.1415,0];
IR_OGN_ANGLE = [-pi/2-TILT,-pi/2+TILT,0,pi/2-TILT,pi/2+TILT,pi];

% Persistent variables.
persistent lvserv;
persistent target_distance;
persistent target_angle;
persistent offset_angle;
persistent w_pos_prof;
persistent w_vel_prof;
persistent w_section;
persistent w_tgt_pos;
persistent w_tgt_vel;
persistent w_velocity;
persistent w_dir;
persistent velocity_limit;
persistent x;
persistent y;
persistent heading;
persistent x0;
persistent y0;
persistent heading0;
persistent abs_x0;
persistent abs_y0;
persistent abs_heading0;
persistent tgt_trj_x;
persistent tgt_trj_y;
persistent tgt_trj_heading;
persistent head_error;

Source Code 137

persistent brake;
persistent w_sim_vel;

% If first instruction, set up LABVIEW interface and initialise
% variables.
if new_instruction >= 2

 % Initialise persistent variables.
 abs_x0 = init_x + corridor_y*sin(corridor_angle);
 abs_y0 = init_y - corridor_y*cos(corridor_angle);
 abs_heading0 = corridor_angle;
 x = 0;
 y = corridor_y;
 heading = adjust_angle(init_heading-corridor_angle);
 w_velocity = [0,0];
 w_tgt_vel = [0,0];
 head_error = [0,0,0];
 w_dir = [1,1];
 brake = 0;

 if SIM

 % Simulation - initialise "actual" wheel speeds.
 w_sim_vel = [0,0];

 else

 % Set up LabVIEW ActiveX server.
 lvserv = actxserver('LabVIEW.Application');

 end;

end;

if SIM

 % Simulation - Get wheel encoder counts.
 [w_count_diff,time_diff,time] = sim_en_count(new_instruction,w_sim_vel,COUNTS_PER_M);

 % Simulation - Read infra-red rangefinders.
 [ir_voltage] = sim_ir_voltage(new_instruction,x,y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE);

 % Simulation - Read contact switch.
 contact_switch = [0,0,0,0];
 beacon = [0,0];

else

 % Get wheel encoder counts from LabVIEW VI.
 [w_count_diff,time_diff,time] = acq_en_count(new_instruction,lvserv,w_velocity,w_tgt_vel);

 % Read infra-red rangefinders.
 [ir_voltage] = acq_ir_voltage(new_instruction,lvserv);

 % Read contact switch.
 [contact_switch,beacon] = acq_switch(new_instruction,lvserv);

end;

% Calculate MARVIN's wheel velocities.
[w_velocity,w_vel_filt,period] = rep_en_velocity(new_instruction,w_velocity,w_count_diff,time_diff,COUNTS_PER_M);

if new_instruction ~= 0

 % Set/reset brake flag.
 if new_instruction == -1
 brake = 1;
 else
 brake = 0;
 end;

 % Record target distance and angles.
 target_distance = new_tgt_distance;
 target_angle = new_tgt_angle;
 offset_angle = new_ofst_angle;

 % If corridor direction changes, reset distance, offset & heading.
 [abs_x0,abs_y0,abs_heading0,x,y,heading] = rel_coord(new_instruction,abs_x0,abs_y0,abs_heading0,x,y, ...
 heading,corridor_y,corridor_angle);

 % Record initial conditions.
 x0 = x;
 y0 = y;
 heading0 = heading;

 % Initialise velocity profile section variable to first section.
 w_section = [1,1];

 % Get target position of each wheel.
 [w_tgt_pos] = wheel_pos(target_distance,target_angle,W_SEPARATION);

 % Calculate velocity profile for fastest wheel.
 [w_pos_prof,w_vel_prof,w_dir,velocity_limit] = gen_vel_prof(target_distance,target_angle, ...
 w_dir,w_tgt_pos,w_velocity,velocity_limit);

 % Plot target trajectory.
 [tgt_trj_x,tgt_trj_y,tgt_trj_heading] = gen_tgt_trj(target_distance,target_angle, ...
 offset_angle,x0,y0,heading0,w_tgt_pos,wall_y);

end;

% Calculate MARVIN's cartesian coordinates and heading.

138 The Development of a Control System for an Autonomous Mobile Robot

[x,y,heading] = rep_en_coord(x,y,heading,w_count_diff, ...
 COUNTS_PER_M,W_SEPARATION);

if SIM
 % Simulation - Prevent MARVIN from crossing walls.
 HALF_WIDTH = 0.292; % Half of MARVIN's width
 if y < wall_y(1) + HALF_WIDTH
 y = wall_y(1) + HALF_WIDTH;
 elseif y > wall_y(2) - HALF_WIDTH
 y = wall_y(2) - HALF_WIDTH;
 end;
end;

% Measure IR distances.
[ir_obj_distance] = rep_ir_distance(ir_voltage);

% Measure offset and heading from IR values.
[ir_y,ir_heading] = rep_ir_coord(new_instruction,ir_obj_distance,y,heading,wall_y, ...
 IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE);

% Adjust coordinates and heading by comparing sensor data.
[x,y,heading] = sensor_fusion(new_instruction,x,y,heading,ir_y,ir_heading,ir_weighting);

% Get difference between target and actual headings.
[head_error,proportion,tgt_x,tgt_y,tgt_heading] = heading_error(head_error,target_distance,x,y,heading, ...
 tgt_trj_x,tgt_trj_y,tgt_trj_heading,ir_obj_distance,w_tgt_pos);

% Get uncorrected target wheel velocities from velocity profile.
[w_tgt_vel,w_section] = tgt_velocity(w_section,proportion,w_tgt_pos,w_pos_prof,w_vel_prof,w_vel_filt,period);

% Get PID control errors for each wheel.
[w_vel_error,w_vel_error_filt] = heading_control(new_instruction,period,w_tgt_vel,w_velocity, ...
 w_vel_filt,head_error,time_diff);

if SIM
 % Simulation - Set target velocity.
 w_tgt_vel = w_vel_error(:,1)' + w_velocity;
else
 % Apply PID control to target velocities.
 [w_tgt_vel] = velocity_control(new_instruction,w_tgt_vel,w_vel_error,w_vel_error_filt,w_velocity,w_dir, ...
 period,velocity_limit);
end;

% Stop wheels immediately in the event of an impending collision or a stop instruction.
[brake,w_tgt_vel,w_section] = stop_wheel(brake,w_tgt_vel,w_section,contact_switch, ...
 ir_obj_distance,target_distance,target_angle);

% Convert speeds into PWM values.
[w_pwm] = get_motor_power(w_tgt_vel);

if SIM
 % Simulation - Set motor power.
 [w_sim_vel] = sim_motor_power(new_instruction,w_tgt_vel);
else
 % Set motor power in LabVIEW VI.
 [error] = set_motor_power(new_instruction,brake,w_pwm,w_dir,lvserv);
end;

% Coordinates conversions.
[abs_x,abs_y,abs_heading] = coord_trans(abs_x0,abs_y0,abs_heading0,x,y,heading);
[tgt_x,tgt_y,tgt_heading] = coord_trans(abs_x0,abs_y0,abs_heading0,tgt_x,tgt_y,tgt_heading);
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(abs_x,abs_y,abs_heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE);

% Assign new variable names for returned persistant variables
% (since MATLAB doesn't allow uninitialised variables to be
% returned).
rel_x = x;
rel_y = y;
rel_heading = heading;
w_vel = w_velocity;

Source Code 139

B.3 acq_en_count.m

function [w_count_diff,time_diff,time] = acq_en_count(new_instruction,lvserv,w_velocity,w_tgt_vel)

% Chris Lee-Johnson
%
% Function to obtain wheel counts from a LabVIEW VI
%
% w_count_diff: Wheel displacements since last cycle (counts)
% time_diff: Time since last cycle (s)
% time: Total time elapsed (s)
% new_instruction: New instruction flag
% lvserv: LabVIEW ActiveX server object
% w_velocity: Wheel velocities (m/s)
% w_tgt_vel: Target wheel velocities (m/s)

% Persistent variables
persistent old_time;
persistent first_time;
persistent w_count;
persistent encoder_counter_vi;

% If first instruction, initialise variables, set up LABVIEW
% interface and initialise counters.
if new_instruction == 2

 % Initialise variables.
 first_time = cputime;
 old_time = 0;
 w_count = [0,0;0,0];

 % Encoder Counter VI.
 encoder_counter_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Encoder Counter.vi');

 % Initialise counters.
 invoke(encoder_counter_vi,'SetControlValue','iteration',num2str(0));

else
 invoke(encoder_counter_vi,'SetControlValue','iteration',num2str(1));
end;

% Get elapsed time between cycles.
time = cputime-first_time;
time_diff = time-old_time;
while time_diff < 0.08
 time = cputime-first_time;
 time_diff = time-old_time;
end;
old_time = time;

% Run Encoder Counter VI.
encoder_counter_vi.Run;

% Get current and last counter values.
w_count(2,:) = w_count(1,:);
w_count(1,1) = invoke(encoder_counter_vi,'GetControlValue','count 1');
w_count(1,2) = invoke(encoder_counter_vi,'GetControlValue','count 2');

for i = 1:2

 % Get difference between current and last counter values.
 if w_count(1,i) >= w_count(2,i)
 w_count_diff(i) = w_count(1,i) - w_count(2,i);
 else
 % If counter overflows.
 w_count_diff(i) = w_count(1,i) - w_count(2,i) + 16777216;
 end;

 % Set encoder counts according to wheels' turning directions.
 if (w_velocity(i) == 0 & w_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_tgt_vel(i) <= 0)
 w_count_diff(i) = -w_count_diff(i);
 elseif (w_velocity(i) > 0 & w_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_tgt_vel(i) > 0)
 w_count_diff(i) = 0;
 end;

end;

140 The Development of a Control System for an Autonomous Mobile Robot

B.4 acq_ir_voltage.m

function [ir_voltage] = acq_ir_voltage(new_instruction,lvserv)

% Chris Lee-Johnson
%
% Function to obtain each infrared rangefinder's voltage from
% a LabVIEW VI.
%
% ir_voltage: Array of voltages output from rangefinders
% [left back, left front, front,
% right front, right back, back]
% new_instruction: New instruction flag
% lvserv: LabVIEW ActiveX server object

% Persistent variables
persistent ir_analogue_input_vi;
persistent ir_inst_voltage;

N = 9;

% If first instruction, set up LABVIEW interface.
if new_instruction == 2

 % IR Analogue Input VI.
 ir_analogue_input_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\IR Analogue Input.vi');

 % Initialise variables.
 ir_inst_voltage(1:N,1:6) = 0;

end;

for i = N-1:-1:1
 ir_inst_voltage(i+1,:) = ir_inst_voltage(i,:);
end;

% Run IR Analogue Input VI.
ir_analogue_input_vi.Run;

% Get voltage values.
ir_inst_voltage(1,1) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 1');
ir_inst_voltage(1,2) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 2');
ir_inst_voltage(1,3) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 3');
ir_inst_voltage(1,4) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 4');
ir_inst_voltage(1,5) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 5');
ir_inst_voltage(1,6) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 6');

% Software filter to reduce noise.
ir_voltage = median(ir_inst_voltage);

B.5 acq_switch.m

function [contact_switch,beacon] = acq_switch(new_instruction,lvserv)

% Chris Lee-Johnson
%
% Function to obtain the states of tactile sensors and beacon
% receivers.
%
% contact_switch: Array of switch inputs
% [left back, left front,
% right front, right back]
% beacon: Array of beacon receiver inputs
% [left, right]
% new_instruction: New instruction flag
% lvserv: LabVIEW ActiveX server object

% Persistent variables
persistent digital_switch_input_vi;
persistent iteration;

% If first instruction, set up LABVIEW interface and initialise
% variables.
if new_instruction == 2

 % Digital Switch Input VI.
 digital_switch_input_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Digital Switch Input.vi');

 iteration = 0;

end;

% Set iteration variable.
invoke(digital_switch_input_vi,'SetControlValue','iteration (0:initialize)',num2str(iteration));

% Run Digital Switch Input VI.

Source Code 141

digital_switch_input_vi.Run;

% Get switch values.
contact_switch(1) = invoke(digital_switch_input_vi,'GetControlValue','switch 1');
contact_switch(2) = invoke(digital_switch_input_vi,'GetControlValue','switch 2');
contact_switch(3) = invoke(digital_switch_input_vi,'GetControlValue','switch 3');
contact_switch(4) = invoke(digital_switch_input_vi,'GetControlValue','switch 4');
beacon(1) = invoke(digital_switch_input_vi,'GetControlValue','switch 5');
beacon(2) = invoke(digital_switch_input_vi,'GetControlValue','switch 6');

iteration = iteration + 1;

B.6 rep_en_velocity.m

function [w_velocity,w_vel_filt,period] = rep_en_velocity(new_instruction, ...
 w_velocity,w_count_diff,time_diff,COUNTS_PER_M)

% Chris Lee-Johnson
%
% Function to obtain MARVIN's wheel velocities from the
% odometer data.
%
% w_velocity: Wheel velocities (m/s)
% w_vel_filt: Filtered wheel velocities (m/s)
% period: Control cycle period (s)
% new_instruction: New instruction flag
% w_count_diff: Wheel displacements (encoder counts)
% time_diff: Time since last cycle (s)
% COUNTS_PER_M: Number of encoder counts in 1m

% Convert wheel counts to metres.
w_dist_diff = w_count_diff ./ COUNTS_PER_M;

% Calculate wheel velocities.
if time_diff > 0
 w_velocity = w_dist_diff / time_diff;
end;

% Persistent variables.
persistent w_vel_array;
persistent time_diff_array;

% Number of samples for averaging.
N = 10;

% Initialise FIFO arrays.
if new_instruction == 2
 w_vel_array(1:N,1) = w_velocity(1);
 w_vel_array(1:N,2) = w_velocity(2);
 time_diff_array(1:N) = time_diff;
end;

% Update FIFO arrays.
for i = N-1:-1:1
 w_vel_array(i+1,:) = w_vel_array(i,:);
 time_diff_array(i+1) = time_diff_array(i);
end;

% Filter measured velocities.
w_vel_array(1,:) = w_velocity;
weight = 0.5;
w_vel_filt = [0,0];
for i = 1:N
 w_vel_filt = w_vel_filt + weight * w_vel_array(i,:);
 if i < N-1
 weight = 0.5*weight;
 end;
end;

% Obtain median control cycle period.
time_diff_array(1) = time_diff;
period = median(time_diff_array);

142 The Development of a Control System for an Autonomous Mobile Robot

B.7 rep_en_coord.m

function [x,y,heading] = rep_en_coord(x,y,heading,w_count_diff,COUNTS_PER_M,W_SEPARATION)

% Chris Lee-Johnson
%
% Function to obtain MARVIN's cartesian coordinates and
% heading from the encoder data.
%
% x: Distance along axis parallel to corridor (m)
% y: Distance from corridor centre axis (m)
% heading: Heading (radians)
% w_count_diff: Wheel displacements (encoder counts)
% COUNTS_PER_M: Number of encoder counts in 1m
% W_SEPARATION: Distance between wheels (m)

% Angle correction factor.
ANGLE_MOD = 0.97148639449454;

% Convert wheel counts to metres.
w_dist_diff = w_count_diff ./ COUNTS_PER_M;

% Convert individual wheel displacements to overall arclength and angle.
angle = ANGLE_MOD * (w_dist_diff(1) - w_dist_diff(2)) / W_SEPARATION;
arclength = 0.5 * (w_dist_diff(1) + w_dist_diff(2));

% Obtain straight line distance from arclength and angle.
if abs(angle) < 0.0001
 distance = arclength;
else
 if arclength >= 0
 distance = abs(arclength/angle) * sqrt(2*(1-cos(angle)));
 else
 distance = -abs(arclength/angle) * sqrt(2*(1-cos(angle)));
 end;
end;

% Update co-ordinates from distance and angle.
heading = adjust_angle(heading+angle);
x = x + distance * cos(heading);
y = y + distance * sin(heading);

B.8 rep_ir_distance.m

function [ir_obj_distance] = rep_ir_distance(ir_voltage)

% Chris Lee-Johnson
%
% Function to convert rangefinder voltage readings into distances.
%
% ir_obj_distance: Array of distances measured by rangefinders (m)
% [left back, left front, front,
% right front, right back, back]
% ir_voltage: Array of voltages output from rangefinders (V)

% Look-up table parameters for IR voltage-distance relationships.
ir_dist_curve = [0.15:0.05:1.5];
ir_volt_curve = [2.790,2.560,2.300,1.950,1.700,1.500,1.350,1.210,1.100, ...
 1.010,0.935,0.865,0.805,0.750,0.700,0.665,0.625,0.595, ...
 0.565,0.540,0.515,0.495,0.480,0.460,0.445,0.430,0.420,0.410;
 2.750,2.500,2.235,1.900,1.650,1.460,1.305,1.175,1.070, ...
 0.990,0.910,0.850,0.790,0.730,0.690,0.650,0.610,0.585, ...
 0.555,0.530,0.505,0.485,0.465,0.445,0.430,0.415,0.400,0.390;
 2.950,2.665,2.300,1.930,1.720,1.520,1.350,1.225,1.120, ...
 1.040,0.955,0.900,0.830,0.775,0.725,0.685,0.640,0.600, ...
 0.565,0.545,0.510,0.495,0.475,0.455,0.445,0.430,0.415,0.410;
 2.800,2.575,2.305,1.990,1.725,1.510,1.370,1.230,1.125, ...
 1.030,0.950,0.885,0.840,0.790,0.745,0.700,0.665,0.630, ...
 0.600,0.575,0.550,0.530,0.510,0.495,0.480,0.465,0.455,0.450;
 2.680,2.460,2.225,1.905,1.650,1.470,1.320,1.180,1.080, ...
 1.000,0.925,0.860,0.810,0.760,0.715,0.670,0.630,0.595, ...
 0.565,0.540,0.515,0.495,0.480,0.465,0.450,0.440,0.430,0.425;
 2.760,2.500,2.240,1.900,1.655,1.475,1.325,1.200,1.085, ...
 0.995,0.920,0.855,0.800,0.750,0.710,0.675,0.645,0.605, ...
 0.580,0.550,0.525,0.500,0.475,0.450,0.430,0.415,0.400,0.390];

N = length(ir_dist_curve);

for i = 1:6

 % Record the section that contains the current voltage value.
 ir_section(i) = 0;
 for j = [1:N-1]
 if (ir_voltage(i) <= ir_volt_curve(i,j+1) & ir_voltage(i) >= ir_volt_curve(i,j)) ...
 | (ir_voltage(i) >= ir_volt_curve(i,j+1) & ir_voltage(i) <= ir_volt_curve(i,j))
 % Record current section.

Source Code 143

 ir_section(i) = j;
 end;
 end;

 % If current position value is outside curve boundaries.
 if ir_section(i) == 0

 if (ir_voltage(i) < ir_volt_curve(i,N))
 ir_obj_distance(i) = Inf;
 else
 ir_obj_distance(i) = 0;
 end;

 else

 % Calculate distance for current section.
 if ir_volt_curve(i,ir_section(i)+1) == ir_volt_curve(i,ir_section(i))
 ir_obj_distance(i) = ir_dist_curve(ir_section(i));
 else
 ir_obj_distance(i) = (ir_voltage(i) - ir_volt_curve(i,ir_section(i))) ...
 * (ir_dist_curve(ir_section(i)+1) - ir_dist_curve(ir_section(i))) ...
 / (ir_volt_curve(i,ir_section(i)+1) - ir_volt_curve(i,ir_section(i))) ...
 + ir_dist_curve(ir_section(i));
 end;

 end;

end;

B.9 rep_ir_coord.m

function [ir_y,ir_heading] = rep_ir_coord(new_instruction,ir_obj_distance, ...
 y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE)

% Chris Lee-Johnson
%
% Function to obtain the offset and heading from the readings
% of the IR rangefinders.
%
% new_instruction: New instruction flag
% ir_y: Offset measured by IR rangefinders (m)
% [left,right (facing corridor angle)]
% ir_heading: Heading measured by IR rangefinders (rad)
% [left,right (facing corridor angle)]
% ir_obj_distance: Array of distances measured by rangefinders (m)
% [left back, left front, front,
% right front, right back, back]
% y: Corridor offset (m)
% heading: Heading (rad)
% wall_y: Left and right wall offsets (m)

persistent ir_inst_obj_dist;

N = 10;
MAX_OBJ_DIFF = 0.2;

% Maximum difference between encoder and IR values allowed before
% IRs are rejected.
MAX_Y_DIFF = 0.5;
MAX_HEAD_DIFF = 0.5*pi;

% Offset and orientation of each IR (adjusted for MARVIN's overall
% position and orientation).
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(0,y,heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE);

% If first instruction, set up LABVIEW interface.
if new_instruction == 2

 % Initialise variables.
 for i = 1:N
 ir_inst_obj_dist(i,:) = ir_obj_distance;
 end;

end;

% Update old instantaneous IR object distance measurements.
for i = N-1:-1:1
 ir_inst_obj_dist(i+1,:) = ir_inst_obj_dist(i,:);
end;

% Update new instantaneous measurements.
for i = 1:6
 if ir_obj_distance(i) <= 1.5
 ir_inst_obj_dist(1,i) = ir_obj_distance(i);
 else
 ir_inst_obj_dist(1,i) = 1.5;
 end;
end;

% Average of instantaneous measurements.
ir_mean_obj_dist = mean(ir_inst_obj_dist);

144 The Development of a Control System for an Autonomous Mobile Robot

for i = 1:6

 % Expected object distances due to walls.
 if ir_adj_angle(i) < 0
 ir_ex_obj_dist(i) = abs((wall_y(1)-ir_adj_y(i)) / sin(ir_adj_angle(i)));
 elseif ir_adj_angle(i) > 0
 ir_ex_obj_dist(i) = abs((wall_y(2)-ir_adj_y(i)) / sin(ir_adj_angle(i)));
 else
 ir_ex_obj_dist(i) = Inf;
 end;

 % If expected distance is greater than 1.2m, or if measured
 % distance changes too quickly, don't use that IR for
 % heading/offset measurements.
 if ir_ex_obj_dist(i) <= 1.2 & abs(ir_obj_distance(i)-ir_mean_obj_dist(i)) <= MAX_OBJ_DIFF
 ir_sel_obj_dist(i) = ir_obj_distance(i);
 else
 ir_sel_obj_dist(i) = Inf;
 end;

end;

% Detected object coordinates (relative to MARVIN's origin).
for i = 1:6
 if ir_sel_obj_dist(i) <= 1.5
 obj_x(i) = IR_OGN_X(i) + ir_sel_obj_dist(i) * cos(IR_OGN_ANGLE(i));
 obj_y(i) = IR_OGN_Y(i) + ir_sel_obj_dist(i) * sin(IR_OGN_ANGLE(i));
 else
 obj_x(i) = NaN;
 obj_y(i) = NaN;
 end;
end;

ir_y_count(1:2) = 0;
ir_head_count(1:2) = 0;
ir_y_array(1:6,1:2) = 0;
ir_head_array(1:6,1:2) = 0;

for i = 1:6

 j = mod(i,6)+1;

 % Measured offset.
 ir_wall_dist = obj_x(i)*sin(heading) + obj_y(i)*cos(heading);
 if ir_adj_angle(i) < 0
 ir_y_tmp = wall_y(1) - ir_wall_dist;
 k = 1;
 else
 ir_y_tmp = wall_y(2) - ir_wall_dist;
 k = 2;
 end;

 % Select IR heading that is closest to encoder heading.
 ir_head(1) = -atan2(obj_y(j)-obj_y(i),obj_x(j)-obj_x(i));
 ir_head(2) = adjust_angle(ir_head(1)+pi);
 [head_diff,index] = min(abs(heading-ir_head));
 ir_head_tmp = ir_head(index);

 % Rejected IR values.
 if ir_sel_obj_dist(i) > 1.5
 ir_y_tmp = NaN;
 ir_head_tmp = NaN;
 elseif (ir_adj_angle(i) > 0 & ir_adj_angle(j) < 0) | (ir_adj_angle(i) < 0 & ir_adj_angle(j) > 0)
 ir_head_tmp = NaN;
 end;

 % Difference between IR and encoder coordinates.
 y_diff = abs(y-ir_y_tmp);
 head_diff = abs(heading-ir_head_tmp);

 % Reject IR offsets that deviate too far from encoder offset.
 if y_diff < MAX_Y_DIFF
 ir_y_count(k) = ir_y_count(k) + 1;
 ir_y_array(ir_y_count(k),k) = ir_y_tmp;
 end;

 % Reject IR headings that deviate too far from encoder heading.
 if head_diff < MAX_HEAD_DIFF
 ir_head_count(k) = ir_head_count(k) + 1;
 ir_head_array(ir_head_count(k),k) = ir_head_tmp;
 end;

end;

for k = 1:2

 % Final IR offset is mean average of valid IR offsets.
 if ir_y_count(k) > 0
 ir_y(k) = mean(ir_y_array(1:ir_y_count(k),k));
 else
 ir_y(k) = NaN;
 end;

 % Final IR heading is mean average of valid IR headings.
 if ir_head_count(k) > 0
 ir_heading(k) = mean(ir_head_array(1:ir_head_count(k),k));
 else
 ir_heading(k) = NaN;
 end;

end;

Source Code 145

B.10 coord_trans.m

function [axis1_x,axis1_y,axis1_theta] = coord_trans(axis1_x0,axis1_y0,axis1_theta0,axis2_x,axis2_y,axis2_theta)

% Chris Lee-Johnson
%
% Function to apply coordinate transformations.
%
% axis1_x: First axis x coordinate
% axis1_y: First axis y coordinate
% axis1_theta: First axis theta coordinate
% axis1_x0: First axis x origin
% axis1_y0: First axis y origin
% axis1_theta0: First axis theta origin
% axis2_x: Second axis x coordinate
% axis2_y: Second axis y coordinate
% axis2_heading: Second axis theta coordinate

axis1_x = axis1_x0 + axis2_x*cos(axis1_theta0) - axis2_y*sin(axis1_theta0);
axis1_y = axis1_y0 + axis2_x*sin(axis1_theta0) + axis2_y*cos(axis1_theta0);
axis1_theta = adjust_angle(axis2_theta+axis1_theta0);

B.11 rel_coord.m

function [abs_x0,abs_y0,abs_heading0,x,y,heading] = rel_coord(new_instruction,abs_x0,abs_y0, ...
 abs_heading0,x,y,heading,corridor_y,corridor_angle)

% Chris Lee-Johnson
%
% Function to obtain relative coordinates and absolute origin.
%
% abs_x0: Absolute x position of origin (m)
% abs_y0: Absolute y position of origin (m)
% abs_heading0: Absolute heading of origin (rad)
% x: Distance along corridor centre axis (m)
% y: Offset from centre axis of corridor (m)
% heading: Heading relative to corridor angle (rad)
% new_instruction: New instruction flag
% corridor_y: Offset from centre axis of new corridor (m)
% corridor_angle: Absolute direction of new corridor (rad)

% Persistent variables.
persistent cor_ang_array;
persistent cor_ang_diff;

% If first instruction, initialise.
if new_instruction == 2
 cor_ang_array = [corridor_angle,corridor_angle];
end;

% Update corridor angles.
cor_ang_array(1) = cor_ang_array(2);
cor_ang_array(2) = corridor_angle;
cor_ang_diff = adjust_angle(cor_ang_array(2)-cor_ang_array(1));

if cor_ang_diff ~= 0

 % Get absolute origins of relative values.
 abs_x0 = abs_x0 + x*cos(abs_heading0) - y*sin(abs_heading0) + corridor_y*sin(abs_heading0+cor_ang_diff);
 abs_y0 = abs_y0 + x*sin(abs_heading0) + y*cos(abs_heading0) - corridor_y*cos(abs_heading0+cor_ang_diff);
 abs_heading0 = adjust_angle(abs_heading0+cor_ang_diff);

 % Reset relative values.
 x = 0;
 y = corridor_y;
 heading = adjust_angle(heading-cor_ang_diff);

end;

146 The Development of a Control System for an Autonomous Mobile Robot

B.12 sensor_fusion.m

function [x,y,heading] = sensor_fusion(new_instruction,x,y,heading,ir_y,ir_heading,ir_weighting)

% Chris Lee-Johnson
%
% Function to obtain the offset and heading from the readings
% of the IR rangefinders.
%
% x: Distance along axis parallel to corridor (m)
% y: Offset from corridor centre axis (m)
% heading: Heading relative to corridor axis (rad)
% ir_y: Offset measured by IR rangefinders (m)
% [left,right (facing corridor angle)]
% ir_heading: Heading measured by IR rangefinders (rad)
% [left,right (facing corridor angle)]
% ir_weighting: Weightings for IR rangefinders (0:1)
% [left,right (facing corridor angle)]

IR_Y_TOL = 0;
IR_HEAD_TOL = 0;

% During initialisation IR weightings are increased.
if new_instruction >= 2
 ir_y_factor = 0.500;
 ir_head_factor = 0.500;
else
 ir_y_factor = 0.020;
 ir_head_factor = 0.010;
end;

% Weighted average of valid IR offsets.
ir_y_valid = [abs(ir_y(1)) < Inf, abs(ir_y(2)) < Inf];
if ir_y_valid(1) & ir_y_valid(2)
 if ir_weighting(1) == 0 & ir_weighting(2) == 0
 ir_y_av = 0.5*(ir_y(1)+ir_y(2));
 else
 ir_y_av = (ir_y(1) * ir_weighting(1) + ir_y(2) * ir_weighting(2)) ...
 / (ir_weighting(1) + ir_weighting(2));
 end;
elseif ir_y_valid(1)
 ir_y_av = ir_y(1);
elseif ir_y_valid(2)
 ir_y_av = ir_y(2);
else
 ir_y_av = y;
end;

% Weighted average of valid IR headings.
ir_head_valid...
 = [abs(ir_heading(1)) < Inf, abs(ir_heading(2)) < Inf];
if ir_head_valid(1) & ir_head_valid(2)
 if ir_weighting(1) == 0 & ir_weighting(2) == 0
 ir_head_av = 0.5*(ir_heading(1)+ir_heading(2));
 else
 ir_head_av = (ir_heading(1) * ir_weighting(1) + ir_heading(2) * ir_weighting(2)) ...
 / (ir_weighting(1) + ir_weighting(2));
 end;
elseif ir_head_valid(1)
 ir_head_av = ir_heading(1);
elseif ir_head_valid(2)
 ir_head_av = ir_heading(2);
else
 ir_head_av = y;
end;

for i = 1:2

 % If valid IR offset is sufficiently different from encoder
 % offset, include it in weighted average.
 if abs(ir_y_av-y) > IR_Y_TOL & ir_y_valid(i)
 ir_y_weight(i) = ir_y_factor * ir_weighting(i);
 else
 ir_y_weight(i) = 0;
 ir_y(i) = 0;
 end;

 % If valid IR heading is sufficiently different from encoder
 % heading, include it in weighted average.
 if abs(ir_head_av-heading) > IR_HEAD_TOL & ir_head_valid(i)
 ir_head_weight(i) = ir_head_factor * ir_weighting(i);
 else
 ir_head_weight(i) = 0;
 ir_heading(i) = 0;
 end;

end;

% Apply weighted averages.
y = (1 - ir_y_weight(1) - ir_y_weight(2)) * y + ir_y_weight(1) * ir_y(1) + ir_y_weight(2) * ir_y(2);
heading = (1 - ir_head_weight(1) - ir_head_weight(2)) * heading + ir_head_weight(1) * ir_heading(1) ...
 + ir_head_weight(2) * ir_heading(2);

Source Code 147

B.13 gen_tgt_trj.m

function [tgt_trj_x,tgt_trj_y,tgt_trj_heading] = gen_tgt_trj(target_distance,target_angle, ...
 offset_angle,x0,y0,heading0,w_tgt_pos,wall_y)

% Chris Lee-Johnson
%
% Function to plot the target trajectory for a given movement
% instruction.
%
% tgt_trj_x: Array of x coordinates on target trajectory (m)
% tgt_trj_y: Array of y coordinates on target trajectory (m)
% tgt_trj_heading: Array of headings on target trajectory (rad)
% target_distance: Distance between initial and target positions (m)
% target_angle: Target angle to turn through (rad)
% offset_angle: Offset of target angle (rad)
% x0: Initial distance (m)
% y0: Initial offset (m)
% heading0: Initial heading (rad)
% wall_y: Left and right wall offsets (m)

% Minimum allowable distance from corridor walls.
WALL_DIST_THRESH = 0.7;

% Number of points on target trajectory.
N = 100;
i = [1:N+1];

% Apply offset to initial heading.
tgt_trj_heading0 = adjust_angle(heading0+offset_angle);

% Get target coordinates and heading.
if cos(abs(target_angle)) == 1

 % Heading for each point along target line.
 tgt_trj_heading(i) = tgt_trj_heading0;

 % Cartesian coordinates for each point along target line.
 tgt_trj_x = ((i-1)/N) * target_distance * cos(tgt_trj_heading0) + x0;
 tgt_trj_y = ((i-1)/N) * target_distance * sin(tgt_trj_heading0) + y0;

else

 % Radius of MARVIN's circular trajectory.
 radius = abs(target_distance) / sqrt(2*(1-cos(target_angle)));

 % Heading for each point along target curve.
 [tgt_trj_heading] = adjust_angle(tgt_trj_heading0 ...
 + ((i-1)/N) * target_angle);

 % Cartesian coordinates for each point along target curve.
 if (target_distance >= 0 & target_angle > 0) | (target_distance < 0 & target_angle < 0)
 tgt_trj_x = radius * (sin(tgt_trj_heading) + sin(-tgt_trj_heading0)) + x0;
 tgt_trj_y = radius * (cos(-tgt_trj_heading0) - cos(tgt_trj_heading)) + y0;
 else
 tgt_trj_x = -radius * (sin(tgt_trj_heading) + sin(-tgt_trj_heading0)) + x0;
 tgt_trj_y = -radius * (cos(-tgt_trj_heading0) - cos(tgt_trj_heading)) + y0;
 end;

end;

% If target trajectory passes too close to corridor walls,
% follow trajectory parallel to walls.
max_y(1) = wall_y(1)+WALL_DIST_THRESH;
max_y(2) = wall_y(2)-WALL_DIST_THRESH;
if abs(target_distance) > 0.005
 for j = i
 if (tgt_trj_y(j) < max_y(1) | tgt_trj_y(j) > max_y(2)) & ((w_tgt_pos(1) > 0 & w_tgt_pos(2) > 0) ...
 | (w_tgt_pos(1) < 0 & w_tgt_pos(2) < 0))
 if tgt_trj_heading(j) <= pi/2 & tgt_trj_heading(j) > -pi/2
 tgt_trj_heading(j) = 0;
 else
 tgt_trj_heading(j) = pi;
 end;
 if tgt_trj_y(j) < max_y(1)
 tgt_trj_y(j) = max_y(1);
 else
 tgt_trj_y(j) = max_y(2);
 end;
 end;
 end;
end;

148 The Development of a Control System for an Autonomous Mobile Robot

B.14 wheel_pos.m

function [w_tgt_pos] = wheel_pos(target_distance,target_angle,W_SEPARATION)

% Chris Lee-Johnson
%
% Function to obtain the target position of each wheel from
% MARVIN's target distance and angle.
%
% w_position: Wheel positions (m)
% target_distance: Distance between origin & destination (m)
% target_angle: Target angle to turn through (-pi:pi rad)
% W_SEPARATION: Distance between MARVIN's wheels (m)

% Obtain arclength from input distance and angle.
if cos(target_angle) ~= 1
 if target_distance < 0
 arclength = -abs(target_angle * target_distance / sqrt(2*(1-cos(target_angle))));
 else
 arclength = abs(target_angle * target_distance / sqrt(2*(1-cos(target_angle))));
 end;
else
 arclength = target_distance;
end;

% Target wheel positions.
w_tgt_pos(1) = arclength + 0.5 * W_SEPARATION * target_angle;
w_tgt_pos(2) = arclength - 0.5 * W_SEPARATION * target_angle;

B.15 gen_vel_prof.m

function [w_pos_prof,w_vel_prof,w_dir,velocity_limit] = gen_vel_prof(target_distance,target_angle,w_dir, ...
 w_tgt_pos,w_velocity,velocity_limit)

% Chris Lee-Johnson
%
% Function to obtain wheel velocity profiles from MARVIN's
% target position and angle.
%
% w_pos_prof: Velocity profile position parameters (m)
% w_vel_prof: Velocity profile velocity parameters (m/s)
% w_dir: Wheel direction flags (0:reverse, 1:foward)
% velocity_limit: Overall velocity limiter (m/s)
% target_distance: Distance instruction (m)
% target_angle: Angle instruction (rad)
% w_tgt_pos: Wheel target positions (m)
% w_velocity: Wheel velocities (m/s)

% Number of points per acceleration/deceleration section.
N = 100;

% Acceleration and deceleration of fastest wheel (m/s^2).
ACCELERATION = 0.15;
DECELERATION = -0.15;

% Maximum allowable velocity.
if abs(target_angle) > 0
 if abs(target_distance) < 0.5
 velocity_limit = 0.1;
 else
 velocity_limit = 0.4;
 end;
else
 velocity_limit = 0.4;
end;

% Flag to prevent function from replotting the velocity profile
% for the 2nd wheel if an illegal instruction is given to the 1st.
stop_flag = 0;

for i = 1:2

 if stop_flag == 0

 % If i = 1, j = 2 and vice versa.
 j = mod(i,2)+1;

 % Slower wheel's acceleration is proportional to ratio of
 % target positions.
 if abs(w_tgt_pos(i)) >= abs(w_tgt_pos(j))
 tgt_pos_ratio = 1;
 else
 tgt_pos_ratio = abs(w_tgt_pos(i) / w_tgt_pos(j));
 end;
 accel = tgt_pos_ratio * ACCELERATION;
 decel = tgt_pos_ratio * DECELERATION;

Source Code 149

 max_velocity = tgt_pos_ratio * velocity_limit;
 pos_overshoot = 0;

 % Get initial velocity and final position.
 % If target position is negative, invert everything.
 if w_tgt_pos(i) > 0 | (w_tgt_pos(i) == 0 & w_dir(i) == 1)
 end_pos = w_tgt_pos(i);
 start_vel = w_velocity(i);
 else
 end_pos = -w_tgt_pos(i);
 start_vel = -w_velocity(i);
 end;
 if end_pos >= pos_overshoot
 end_pos = end_pos - pos_overshoot;
 else
 end_pos = 0;
 end;

 % Limit initial velocity.
 pseudo_max_vel = sqrt(abs(2*decel*end_pos));
 if start_vel > pseudo_max_vel
 start_vel = pseudo_max_vel;
 end;
 if start_vel > max_velocity
 start_vel = max_velocity;
 end;

 % If new motion instruction oppposes current wheel direction,
 % stop both wheels.
 if start_vel < 0
 clear w_pos_prof w_vel_prof;
 w_pos_prof(1:2,1:2) = 0;
 w_vel_prof(1:2,1:2) = 0;
 stop_flag = 1;
 else

 % Point of intersection between acceleration and
 % deceleration sections.
 mid_pos = (start_vel^2 + 2*decel*end_pos) / (2*(decel-accel));
 mid_vel = sqrt(start_vel^2 + 2*accel*mid_pos);

 % If point of intersection is less than velocity limit,
 % velocity profile will be roughly triangular.
 if mid_vel <= max_velocity

 if mid_pos == 0
 w_pos_prof(i,1:N+1) = 0;
 else
 w_pos_prof(i,1:N+1) = [0:mid_pos/N:mid_pos];
 end;
 w_vel_prof(i,1:N+1) = sqrt(start_vel^2 + 2*accel*w_pos_prof(i,1:N+1));

 if mid_pos-end_pos == 0
 w_pos_prof(i,N+2:2*N+2) = 0;
 else
 w_pos_prof(i,N+2:2*N+2) = [mid_pos:(end_pos-mid_pos)/N:end_pos];
 end;
 w_vel_prof(i,N+2:2*N+2) = sqrt(mid_vel^2+2*decel*(w_pos_prof(i,N+2:2*N+2)-mid_pos));

 % If point of intersection exceeds velocity limit,
 % velocity profile will be roughly trapezoidal.
 else

 accel_pos = (max_velocity^2 - start_vel^2) / (2*accel);
 decel_pos = end_pos + (max_velocity^2) / (2*decel);

 if accel_pos == 0
 w_pos_prof(i,1:N+1) = 0;
 else
 w_pos_prof(i,1:N+1) = [0:accel_pos/N:accel_pos];
 end;
 w_vel_prof(i,1:N+1) = sqrt(start_vel^2 + 2*accel*w_pos_prof(i,1:N+1));

 if end_pos-decel_pos == 0
 w_pos_prof(i,N+2:2*N+2) = 0;
 else
 w_pos_prof(i,N+2:2*N+2) = [decel_pos:(end_pos-decel_pos)/N:end_pos];
 end;
 w_vel_prof(i,N+2:2*N+2) = sqrt(max_velocity^2 + 2*decel*(w_pos_prof(i,N+2:2*N+2)-decel_pos));

 end;
 end;

 % If target position is negative, invert everything back again.
 if w_tgt_pos(i) < 0 | (w_tgt_pos(i) == 0 & w_dir(i) ~= 1)
 w_pos_prof(i,:) = -w_pos_prof(i,:);
 w_vel_prof(i,:) = -w_vel_prof(i,:);
 end;

 end;

end;

% If target wheel position is nonzero, update wheel direction flag.
for i = 1:2
 M = length(w_pos_prof(i,:));
 if w_pos_prof(i,M) > 0
 w_dir(i) = 1;
 elseif w_pos_prof(i,M) < 0
 w_dir(i) = 0;
 end;
end;

150 The Development of a Control System for an Autonomous Mobile Robot

B.16 tgt_velocity.m

function [w_tgt_vel,w_section] = tgt_velocity(w_section, ...
 proportion,w_tgt_pos,w_pos_prof,w_vel_prof,w_vel_filt,period)

% Chris Lee-Johnson
%
% Function to obtain the target velocity of the wheels for the
% current program cycle, given its current position and velocity
% profile.
%
% w_tgt_vel: Target wheel velocities (m/s)
% w_section: Velocity profile sections
% proportion: Proportion of the trajectory covered so far
% w_tgt_pos: Target wheel positions (m)
% w_pos_prof: Velocity profile position parameters (m)
% w_vel_prof: Velocity profile velocity parameters (m/s)
% w_vel_filt: Filtered wheel velocities (m/s)
% period: Control cycle period (s)

% Velocity thresholds (m/s).
RISING_VEL_THRESH = 0.05;
FALLING_VEL_THRESH = 0.03;

for i = 1:2

 % Number of velocity profile array elements.
 N = length(w_pos_prof(i,:));

 % New wheel position.
 position = proportion * w_tgt_pos(i) + w_vel_filt(i) * period;
 if w_tgt_pos(i) >= 0
 if position > w_tgt_pos(i)
 position = w_tgt_pos(i);
 elseif position < 0
 position = 0;
 end;
 else
 if position < w_tgt_pos(i)
 position = w_tgt_pos(i);
 elseif position > 0
 position = 0;
 end;
 end;

 % If wheel has finished instruction or an emergency stop command
 % has been given, stop wheel.
 if w_section(i) >= N | w_section(i) < 0

 w_tgt_vel(i) = 0;

 else

 % Record the section that contains the current position value.
 % If position value is borderline, choose the highest section.
 w_section(i) = 0;
 for j = [1:N-1]
 if (position <= w_pos_prof(i,j+1) & position >= w_pos_prof(i,j)) ...
 | (position >= w_pos_prof(i,j+1) & position <= w_pos_prof(i,j))
 % Record current section.
 w_section(i) = j;
 end;
 end;

 % If current position value is out of bounds of velocity profile,
 % assume error has occurred.
 if w_section(i) == 0

 if (w_pos_prof(i,N) >= 0 & position > w_pos_prof(i,N)) ...
 | (w_pos_prof(i,N) < 0 & position < w_pos_prof(i,N))
 w_section(i) = N;
 end;
 w_tgt_vel(i) = 0;

 else

 % Calculate wheel's speed for current section.
 if w_pos_prof(i,w_section(i)+1) == w_pos_prof(i,w_section(i))
 w_tgt_vel(i) = w_vel_prof(i,w_section(i));
 else
 w_tgt_vel(i) = (position - w_pos_prof(i,w_section(i))) * (w_vel_prof(i,w_section(i)+1) ...
 - w_vel_prof(i,w_section(i))) / (w_pos_prof(i,w_section(i)+1) ...
 - w_pos_prof(i,w_section(i))) + w_vel_prof(i,w_section(i));
 end;

 if proportion >= 1
 w_section(i) = N;
 w_tgt_vel(i) = 0;
 else
 % Set minimum velocity during acceleration (to start wheels moving)
 % and deceleration (to prevent wheels from stopping prematurely).
 if w_vel_prof(i,w_section(i)+1) >= w_vel_prof(i,w_section(i)) ...
 & w_tgt_vel(i) < RISING_VEL_THRESH & w_tgt_pos(i) > 0
 w_tgt_vel(i) = RISING_VEL_THRESH;
 elseif w_vel_prof(i,w_section(i)+1) <= w_vel_prof(i,w_section(i)) ...
 & w_tgt_vel(i) > -RISING_VEL_THRESH & w_tgt_pos(i) < 0
 w_tgt_vel(i) = -RISING_VEL_THRESH;

Source Code 151

 elseif w_vel_prof(i,w_section(i)+1) < w_vel_prof(i,w_section(i)) ...
 & w_tgt_vel(i) < FALLING_VEL_THRESH & w_tgt_pos(i) > 0
 w_tgt_vel(i) = FALLING_VEL_THRESH;
 elseif w_vel_prof(i,w_section(i)+1) > w_vel_prof(i,w_section(i)) ...
 & w_tgt_vel(i) > -FALLING_VEL_THRESH & w_tgt_pos(i) < 0
 w_tgt_vel(i) = -FALLING_VEL_THRESH;
 end;
 end;

 end;

 end;

end;

B.17 heading_error.m

function [head_error,proportion,tgt_x,tgt_y,tgt_heading] = heading_error(head_error,target_distance, ...
 x,y,heading,tgt_trj_x,tgt_trj_y,tgt_trj_heading,ir_obj_distance,w_tgt_pos)

% Chris Lee-Johnson
%
% Determines a heading error dependant on the difference between
% MARVIN's position & orientation and the target trajectory.
%
% head_error: Array of heading errors (rad)
% proportion: Proportion of the trajectory covered so far
% tgt_x: Distance on target trajectory (m)
% tgt_y: Offset on target trajectory (m)
% tgt_heading: Heading on target trajectory (rad)
% target_distance: Distance between origin & destination (m)
% x: Distance along axis parallel to corridor (m)
% y: Offset distance (m)
% heading: Heading angle (rad)
% tgt_trj_x: Array of distances n target trajectory (m)
% tgt_trj_y: Array of offsets on target trajectory (m)
% tgt_trj_heading: Array of headings on target trajectory (rad)
% ir_obj_distance: Array of distances measured by rangefinders (m)
% [left back, left front, front,
% right front, right back, back]
% w_tgt_pos: Target wheel positions (m)

% Constants.
POS_ERROR_LIMIT = 0.5;
SLOW_STOP_DIST = 0.8;
SAFE_MARG_DIST = 0.1;

% Number of points in target trajectory.
N = length(tgt_trj_x)-1;

% Get indeces of the two points on the target curve closest to
% current coordinates.
if (w_tgt_pos(1) > 0 & w_tgt_pos(2) < 0) | (w_tgt_pos(1) < 0 & w_tgt_pos(2) > 0)
 heading_separation = abs(adjust_angle(tgt_trj_heading-heading));
 [temp(1),tgt_trj_index(1)] = min(heading_separation);
 heading_separation(tgt_trj_index(1)) = Inf;
 [temp(2),tgt_trj_index(2)] = min(heading_separation);
 heading_separation(tgt_trj_index(1)) = temp(1);
else
 position_separation = sqrt((tgt_trj_x-x).^2 + (tgt_trj_y-y).^2);
 [temp(1),tgt_trj_index(1)] = min(position_separation);
 position_separation(tgt_trj_index(1)) = Inf;
 [temp(2),tgt_trj_index(2)] = min(position_separation);
 position_separation(tgt_trj_index(1)) = temp(1);
end;

% Get the target point.
x1 = tgt_trj_x(tgt_trj_index(1));
y1 = tgt_trj_y(tgt_trj_index(1));
x2 = tgt_trj_x(tgt_trj_index(2));
y2 = tgt_trj_y(tgt_trj_index(2));
if (x2-x1) == 0
 m1 = Inf;
else
 m1 = (y2-y1) / (x2-x1);
end;
if (y2-y1) == 0
 m2 = Inf;
else
 m2 = (x1-x2) / (y2-y1);
end;
if m1 == Inf
 tgt_x = x1;
 if m2 == Inf
 tgt_y = y1;
 else
 tgt_y = y;
 end;
elseif m2 == Inf
 tgt_x = x;
 tgt_y = y1;

152 The Development of a Control System for an Autonomous Mobile Robot

else
 tgt_x = (m1*x1 - m2*x + y - y1) / (m1 - m2);
 tgt_y = (m1*y - m2*y1 + x - x1) / (m1 - m2);
end;

% Confine point to target curve for angle/proportion
% calculations.
if (tgt_x < x1 & tgt_x < x2 & x1 <= x2) | (tgt_x > x1 & tgt_x > x2 & x1 >= x2) ...
 | (tgt_y < y1 & tgt_y < y2 & y1 <= y2) | (tgt_y > y1 & tgt_y > y2 & y1 >= y2)
 p_x = x1;
 p_y = y1;
elseif (tgt_x < x1 & tgt_x < x2 & x1 > x2) | (tgt_x > x1 & tgt_x > x2 & x1 < x2) ...
 | (tgt_y < y1 & tgt_y < y2 & y1 > y2) | (tgt_y > y1 & tgt_y > y2 & y1 < y2)
 p_x = x2;
 p_y = y2;
else
 p_x = tgt_x;
 p_y = tgt_y;
end;

% Get target angle.
a1 = tgt_trj_heading(tgt_trj_index(1));
a2 = tgt_trj_heading(tgt_trj_index(2));
if (w_tgt_pos(1) > 0 & w_tgt_pos(2) < 0) | (w_tgt_pos(1) < 0 & w_tgt_pos(2) > 0)
 a = is_inside_arc(tgt_trj_heading(1),tgt_trj_heading(round(N/2)),tgt_trj_heading(N+1),heading);
 if a == 0
 p1 = abs(adjust_angle(heading-a2));
 p2 = abs(adjust_angle(heading-a1));
 elseif a == 1
 p1 = 0;
 p2 = 1;
 else
 p1 = 1;
 p2 = 0;
 end;
else
 p1 = sqrt((p_x-x1)^2+(p_y-y1)^2);
 p2 = sqrt((p_x-x2)^2+(p_y-y2)^2);
end;
if p1+p2 == 0
 p_ratio = 0;
else
 p_ratio = p1/(p1+p2);
end;
tgt_heading = average_angle(a1,a2,p_ratio);

% If travelling in reverse, fold target heading over actual
% heading axis.
fwd_tgt_heading = tgt_heading;
if target_distance < 0
 tgt_heading = adjust_angle(heading-adjust_angle(tgt_heading-heading));
end;

% Get angle of line linking actual and target positions.
x_diff = tgt_x-x;
y_diff = tgt_y-y;
if x_diff == 0
 if y_diff >= 0
 separation_angle = pi/2;
 else
 separation_angle = -pi/2;
 end;
else
 separation_angle = atan2(y_diff,x_diff);
end;

% Difference seperation angle and real heading (sign indicates
% left or right turn to correct).
sep_ang_error = adjust_angle(separation_angle-heading);

% Difference between actual and target position.
if sep_ang_error >= 0
 position_error = sqrt(x_diff^2 + y_diff^2);
else
 position_error = -sqrt(x_diff^2 + y_diff^2);
end;

% Derive weighting from position error.
if abs(position_error) >= POS_ERROR_LIMIT
 weight = 1;
else
 weight = abs(position_error) / POS_ERROR_LIMIT;
end;

% Weighted average of separation angle and target heading.
avg_angle = average_angle(separation_angle,tgt_heading,weight);

% Heading error is the difference between average angle and
% real heading.
head_error(3) = head_error(2);
head_error(2) = head_error(1);
head_error(1) = real(adjust_angle(avg_angle-heading));

% Get proportion of trajectory that MARVIN has covered so far.
if min([tgt_trj_index(1),tgt_trj_index(2)]) == tgt_trj_index(1)
 proportion = (tgt_trj_index(1) + p_ratio - 1) / N;
else
 proportion = (tgt_trj_index(2) - p_ratio) / N;
end;

% If MARVIN is too far from target position or heading, or if
% object is blocking intended trajectory, slow wheels to a halt

Source Code 153

% (as opposed to brake or rapid stop seen in stop_wheels function).
ex_distance = (1-proportion) * target_distance;
if position_error > 0.75 | abs(adjust_angle(tgt_heading-heading)) > 0.5*pi ...
 | (ir_obj_distance(3) <= SLOW_STOP_DIST & ex_distance > 0 ...
 & ir_obj_distance(3) <= ex_distance + SAFE_MARG_DIST) ...
 | (ir_obj_distance(6) <= SLOW_STOP_DIST & ex_distance < 0 ...
 & ir_obj_distance(6) <= -ex_distance + SAFE_MARG_DIST)
 proportion = 1;
end;

B.18 heading_control.m

function [w_vel_error,w_vel_error_filt] = heading_control(new_instruction, ...
 period,w_tgt_vel,w_velocity,w_vel_filt,head_error,time_diff)

% Chris Lee-Johnson
%
% Function to derive PID control errors from wheel velocities
% and heading error.
%
% w_vel_error: PID velocity errors (m/s)
% (2x3 array)
% w_vel_error_filt: Filtered PID velocity errors (m/s)
% (3x2 array)
% new_instruction: New instruction flag
% period: Control cycle period (s)
% w_tgt_vel: Target wheel velocities (m/s)
% w_velocity: Actual wheel velocities (m/s)
% w_vel_filt: Filtered wheel velocities (m/s)
% head_error: Array of heading errors (rad)

% Persistent variables
persistent w_last_vel;
persistent w_vel_e;
persistent w_vel_e_f;
persistent modifier;

% Acceleration limits.
TGT_ACCEL_LIMIT = 0.3;
TGT_DECEL_LIMIT = -0.3;
RE_ACCEL_LIMIT = 0.5;
RE_DECEL_LIMIT = -0.5;

% Integral time.
HEAD_TI = 10;

% Derivative time.
HEAD_TD = 0.05;

% Proportional gain.
MIN_AVG_TGT_VEL = 0.4;
MAX_AVG_TGT_VEL = 2.0;
MIN_HEAD_K = 1.0/pi;
MAX_HEAD_K = 5.0/pi;
avg_tgt_vel = mean(w_tgt_vel);
if avg_tgt_vel <= MIN_AVG_TGT_VEL
 head_k = MAX_HEAD_K;
elseif avg_tgt_vel >= MAX_AVG_TGT_VEL
 head_k = MIN_HEAD_K;
else
 head_k = MIN_HEAD_K + ((MAX_HEAD_K-MIN_HEAD_K) / (MAX_AVG_TGT_VEL-MIN_AVG_TGT_VEL)) ...
 * (MAX_AVG_TGT_VEL-avg_tgt_vel);
end;

% If first instruction, initialise variables.
if new_instruction == 2
 w_last_vel = w_tgt_vel;
 modifier = 0;
 w_vel_e(1:2,1:3) = 0;
 w_vel_e_f(1:2,1:3) = 0;
end;

% PID control to derive modifier due to heading error.
if period > 0
 modifier = modifier + head_k * ((1+period/HEAD_TI+HEAD_TD/period) * head_error(1) ...
 - (1+2*HEAD_TD/period) * head_error(2) + HEAD_TD/period * head_error(3));
else
 modifier = 0;
end;

% Impose limits on modifier.
if modifier > 1
 modifier = 1;
elseif modifier < -1
 modifier = -1;
end;

% Limit maximum wheel velocity based on modifier value.
dyn_vel_lim = 2-1.8*abs(modifier);
for i = 1:2
 if w_tgt_vel(i) > dyn_vel_lim

154 The Development of a Control System for an Autonomous Mobile Robot

 w_tgt_vel(i) = dyn_vel_lim;
 elseif w_tgt_vel(i) < -dyn_vel_lim
 w_tgt_vel(i) = -dyn_vel_lim;
 end;
end;

% Apply modifier to target velocity.
if (w_tgt_vel(1) > 0 & w_tgt_vel(2) > 0) ...
 | (w_tgt_vel(1) < 0 & w_tgt_vel(2) < 0)
 if modifier >= 0
 w_tgt_vel = [w_tgt_vel(1)*(1+0*modifier),w_tgt_vel(2)*(1-modifier)];
 else
 w_tgt_vel = [w_tgt_vel(1)*(1+modifier),w_tgt_vel(2)*(1-0*modifier)];
 end;
end;

% Limit wheel acceleration/deceleration.
for i = 1:2
 if w_tgt_vel(i) > w_last_vel(i) + TGT_ACCEL_LIMIT * period
 w_tgt_vel(i) = w_last_vel(i) + TGT_ACCEL_LIMIT * period;
 elseif w_tgt_vel(i) < w_last_vel(i) + TGT_DECEL_LIMIT * period
 w_tgt_vel(i) = w_last_vel(i) + TGT_DECEL_LIMIT * period;
 end;
 if w_tgt_vel(i) > w_velocity(i) + RE_ACCEL_LIMIT * period
 w_tgt_vel(i) = w_velocity(i) + RE_ACCEL_LIMIT * period;
 elseif w_tgt_vel(i) < w_velocity(i) + RE_DECEL_LIMIT * period
 w_tgt_vel(i) = w_velocity(i) + RE_DECEL_LIMIT * period;
 end;
end;

% Calculate wheel velocity errors
w_vel_e(:,3) = w_vel_e(:,2);
w_vel_e(:,2) = w_vel_e(:,1);
w_vel_e(:,1) = w_tgt_vel' - w_velocity';
w_vel_e_f(:,3) = w_vel_e_f(:,2);
w_vel_e_f(:,2) = w_vel_e_f(:,1);
w_vel_e_f(:,1) = w_tgt_vel' - w_vel_filt';
w_vel_error = w_vel_e;
w_vel_error_filt = w_vel_e_f;

% Update last target velocity.
w_last_vel = w_tgt_vel;

B.19 average_angle.m

function [angle] = average_angle(a1,a2,weight)

% Chris Lee-Johnson
%
% Function to calculate the weighted average of two angles
% within the range (-pi:pi].
%
% angle: Weighted average angle
% a1: First angle
% a2: Second angle
% weight: Weighting for 1st angle
% (2nd angle wighting = 1-weight)

if (a1-a2) > pi
 angle = adjust_angle(weight*a1+(1-weight)*(a2+2*pi));
elseif (a1-a2) < -pi
 angle = adjust_angle(weight*a1+(1-weight)*(a2-2*pi));
else
 angle = adjust_angle(weight*a1+(1-weight)*a2);
end;

Source Code 155

B.20 velocity_control.m

function [w_tgt_vel] = velocity_control(new_instruction,w_tgt_vel,w_vel_error, ...
 w_vel_error_filt,w_velocity,w_dir,period,velocity_limit)

% Chris Lee-Johnson
%
% Function to apply PID control to the target wheel velocity.
%
% w_tgt_vel: Target wheel velocities (m/s)
% new_instruction: New instruction flag
% w_vel_error: PID velocity errors (m/s)
% (3x2 array)
% w_vel_error_filt: Filtered PID velocity errors (m/s)
% (3x2 array)
% w_velocity: Actual wheel velocities (m/s)
% w_dir: Wheel direction flags (0:reverse, 1:foward)
% period: Control cycle period (s)

persistent w_last_vel;

% Real acceleration limits.
VEL_DIFF_LIMIT = 0.4;

% Control constants.
W_VEL_K = [1.0,1.0]; % Proportional gain
W_VEL_TI = [0.2,0.2]; % Integral time
W_VEL_TD = [0.01,0.01]; % Derivative time

% If first instruction, initialise variables.
if new_instruction == 2
 w_last_vel = w_tgt_vel;
end;

% PID control.
if period > 0
 prop = w_vel_error(:,1)' - w_vel_error(:,2)';
 integ = (period ./ W_VEL_TI) .* w_vel_error(:,1)';
 deriv = (W_VEL_TD/period) .* w_vel_error_filt(:,1)' - (2*W_VEL_TD/period) .* w_vel_error_filt(:,2)' ...
 + W_VEL_TD/period .* w_vel_error_filt(:,3)';
 w_new_tgt_vel = w_last_vel + W_VEL_K .* (prop + integ + deriv);
else
 w_new_tgt_vel = w_velocity;
end;

for i = 1:2

 % Do not reverse direction while wheel is moving.
 if (w_tgt_vel(i) >= 0 & w_new_tgt_vel(i) < 0) | (w_tgt_vel(i) <= 0 & w_new_tgt_vel(i) > 0) ...
 | (w_velocity(i) > 0 & w_new_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_new_tgt_vel(i) > 0) ...
 | (w_dir(i) == 1 & w_new_tgt_vel(i) < 0) | (w_dir(i) == 0 & w_new_tgt_vel(i) > 0)
 w_new_tgt_vel(i) = 0;
 end;

 % Do not exceed maximum safe velocity.
 if w_new_tgt_vel(i) > velocity_limit+0.2
 w_new_tgt_vel(i) = velocity_limit+0.2;
 elseif w_new_tgt_vel(i) < -velocity_limit-0.2
 w_new_tgt_vel(i) = -velocity_limit-0.2;
 end;

 % Limit wheel acceleration/deceleration.
 if w_new_tgt_vel(i) > w_velocity(i) + VEL_DIFF_LIMIT
 w_new_tgt_vel(i) = w_velocity(i) + VEL_DIFF_LIMIT;
 elseif w_new_tgt_vel(i) < w_velocity(i) - VEL_DIFF_LIMIT
 w_new_tgt_vel(i) = w_velocity(i) - VEL_DIFF_LIMIT;
 end;

end;

% Update target velocities.
w_tgt_vel = w_new_tgt_vel;
w_last_vel = w_tgt_vel;

156 The Development of a Control System for an Autonomous Mobile Robot

B.21 stop_wheels.m

function [brake,w_tgt_vel,w_section] = stop_wheel(brake,w_tgt_vel,w_section,contact_switch, ...
 ir_obj_distance,target_distance,target_angle)

% Chris Lee-Johnson
%
% Function to stop wheels immediately in the event of an impending
% collision or a stop instruction.
%
% brake: Brake flag
% w_tgt_vel: Target wheel velocities (m/s)
% w_section: Velocity profile sections
% contact_switch: Array of switch inputs
% ir_obj_distance: Array of distances measured by rangefinders (m)
% target_distance: Distance between origin & destination (m)
% target_angle: Target angle to turn through (-pi:pi rad)

% Fast stopping distance.
FAST_STOP_DIST = 0.4;

% Brake wheels.
if contact_switch(1) ~= 0 | contact_switch(2) ~= 0 | contact_switch(3) ~= 0 | contact_switch(4) ~= 0
 w_tgt_vel = [0,0];
 w_section = [-1,-1];
 brake = 1;
% Stop wheels.
elseif (target_distance == 0 & target_angle == 0) | w_section(1) == -1 | w_section(2) == -1 ...
 | (ir_obj_distance(3) <= FAST_STOP_DIST & target_distance > 0) ...
 | (ir_obj_distance(6) <= FAST_STOP_DIST & target_distance < 0)
 w_tgt_vel = [0,0];
 w_section = [-1,-1];
end;

B.22 get_motor_power.m

function [w_pwm] = get_motor_power(w_tgt_vel)

% Chris Lee-Johnson
%
% Function to convert target velocities into PWM values to send
% to the micro in order to drive the motors.
%
% w_pwm: PWM setting for wheels
% w_tgt_vel: Target wheel velocities (m/s)

% PWM - velocity relationship slopes and intercepts.
W_PWM_OVER_V_POS = [159.6455,150.9647];
W_PWM_OVER_V_NEG = [159.6455,150.9647];
W_MIN_PWM_POS = [25.1706,24.0155];
W_MIN_PWM_NEG = [-25.1706,24.0155];

% Minimum wheel velocity (m/s).
MIN_VELOCITY = 0.01;

% Convert to PWM value.
for i = 1:2
 if w_tgt_vel(i) < MIN_VELOCITY & w_tgt_vel(i) > -MIN_VELOCITY
 w_pwm(i) = 0;
 elseif w_tgt_vel(i) < 0
 w_pwm(i) = W_PWM_OVER_V_NEG(i) * w_tgt_vel(i) + W_MIN_PWM_NEG(i);
 else
 w_pwm(i) = W_PWM_OVER_V_POS(i) * w_tgt_vel(i) + W_MIN_PWM_POS(i);
 end;
 if w_pwm(i) > 255
 w_pwm(i) = 255;
 elseif w_pwm(i) < -255
 w_pwm(i) = -255;
 end;
end;

Source Code 157

B.23 set_motor_power.m

function [error] = set_motor_power(new_instruction,brake,w_pwm,w_dir,lvserv)

% Chris Lee-Johnson
%
% Function to send pwm values etc to the microcontroller in order
% to drive the motors.
%
% error: Array of error counts returned
% new_instruction: New instruction flag (see marvin_control)
% brake: Brake flag
% w_pwm: PWM setting for wheels
% lvserv: LabVIEW ActiveX server object

% Persistent variables.
persistent set_motor_power_vi;

% If first instruction, initialise variables and set up LABVIEW
% interface.
if new_instruction >= 2

 % Set up Wheel Controller VI.
 set_motor_power_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Set Motor Power.vi');

end;

% Get header bytes and PWM bytes from pwm values.
for i = 1:2
 if brake == 1
 header(i) = 0;
 pwm(i) = 0;
 elseif w_dir(i) == 1
 header(i) = 3 + 2*(i-1);
 pwm(i) = round((w_pwm(i)/2) + 128);
 else
 header(i) = 2 + 2*(i-1);
 pwm(i) = -round((w_pwm(i)/2) - 128);
 end;
end;

% Set LabVIEW control values.
invoke(set_motor_power_vi,'SetControlValue','patterns to write',num2str(header(1)));
invoke(set_motor_power_vi,'SetControlValue','patterns to write 2',num2str(pwm(1)));
invoke(set_motor_power_vi,'SetControlValue','patterns to write 3',num2str(header(2)));
invoke(set_motor_power_vi,'SetControlValue','patterns to write 4',num2str(pwm(2)));

% Run VI.
set_motor_power_vi.Run;

% Read error counts.
error(1) = double(invoke(set_motor_power_vi,'GetControlValue','error'));
error(2) = double(invoke(set_motor_power_vi,'GetControlValue','error 2'));
error(3) = double(invoke(set_motor_power_vi,'GetControlValue','error 3'));
error(4) = double(invoke(set_motor_power_vi,'GetControlValue','error 4'));

B.24 sim_en_count.m

function [w_count_diff,time_diff,time] = sim_en_count(new_instruction,w_sim_vel,COUNTS_PER_M)

% Chris Lee-Johnson
%
% Simulation function to obtain encoder counts.
%
% w_count_diff: Wheel displacements (encoder counts)
% time_diff: Time since last cycle (s)
% time: Total time elapsed (s)
% new_instruction: New instruction flag
% w_sim_vel: Simulated wheel velocities (m/s)
% COUNTS_PER_M: Number of encoder counts in 1m

% Persistent variables
persistent old_time;
persistent first_time;

% If first instruction, initialise variables.
if new_instruction == 2

 % Initialise variables.
 first_time = cputime;
 old_time = 0;

end;

% Get elapsed time between cycles.
time = cputime-first_time;

158 The Development of a Control System for an Autonomous Mobile Robot

time_diff = time-old_time;
while time_diff < 0.08
 time = cputime-first_time;
 time_diff = time-old_time;
end;
old_time = time;

% Get simulated wheel counts
ERROR = [1,1];
w_count_diff = ERROR .* w_sim_vel * time_diff .* COUNTS_PER_M;

B.25 sim_ir_voltage.m

function [ir_voltage] = sim_ir_voltage(new_instruction,x,y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE)

% Chris Lee-Johnson
%
% Simulation function to obtain rangefinder voltages.
%
% ir_voltage: Array of voltages output from rangefinders (V)
% [left back, left front, front,
% right front, right back, back]
% new_instruction: New instruction flag (see marvin_control)
% x: Distance (m)
% y: Offset (m)
% heading: Heading (rad)
% wall_y: Left and right wall offsets (m)

% Persistent variables
persistent ir_inst_voltage;

% Look-up table parameters for IR voltage-distance relationships.
ir_dist_curve = [0.15:0.05:1.5];
ir_volt_curve = [2.790,2.560,2.300,1.950,1.700,1.500,1.350,1.210,1.100, ...
 1.010,0.935,0.865,0.805,0.750,0.700,0.665,0.625,0.595, ...
 0.565,0.540,0.515,0.495,0.480,0.460,0.445,0.430,0.420,0.410;
 2.750,2.500,2.235,1.900,1.650,1.460,1.305,1.175,1.070, ...
 0.990,0.910,0.850,0.790,0.730,0.690,0.650,0.610,0.585, ...
 0.555,0.530,0.505,0.485,0.465,0.445,0.430,0.415,0.400,0.390;
 2.950,2.665,2.300,1.930,1.720,1.520,1.350,1.225,1.120, ...
 1.040,0.955,0.900,0.830,0.775,0.725,0.685,0.640,0.600, ...
 0.565,0.545,0.510,0.495,0.475,0.455,0.445,0.430,0.415,0.410;
 2.800,2.575,2.305,1.990,1.725,1.510,1.370,1.230,1.125, ...
 1.030,0.950,0.885,0.840,0.790,0.745,0.700,0.665,0.630, ...
 0.600,0.575,0.550,0.530,0.510,0.495,0.480,0.465,0.455,0.450;
 2.680,2.460,2.225,1.905,1.650,1.470,1.320,1.180,1.080, ...
 1.000,0.925,0.860,0.810,0.760,0.715,0.670,0.630,0.595, ...
 0.565,0.540,0.515,0.495,0.480,0.465,0.450,0.440,0.430,0.425;
 2.760,2.500,2.240,1.900,1.655,1.475,1.325,1.200,1.085, ...
 0.995,0.920,0.855,0.800,0.750,0.710,0.675,0.645,0.605, ...
 0.580,0.550,0.525,0.500,0.475,0.450,0.430,0.415,0.400,0.390];

M = length(ir_dist_curve);
N = 10;

% If first instruction, initialise all voltages to first voltage.
if new_instruction == 2
 ir_inst_voltage(1:N,:) = 0.1;
end;

for i = N-1:-1:1
 ir_inst_voltage(i+1,:) = ir_inst_voltage(i,:);
end;

% Cartesian coordinates of each IR (adjusted for MARVIN's overall
% position and orientation).
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(x,y,heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE);

% Distance (in m) from wall.
for i = 1:6
 if sin(ir_adj_angle(i)) == 0
 d(i) = Inf;
 elseif ir_adj_angle(i) < 0
 d(i) = abs((wall_y(1)-ir_adj_y(i)) / sin(ir_adj_angle(i)));
 else
 d(i) = abs((wall_y(2)-ir_adj_y(i)) / sin(ir_adj_angle(i)));
 end;
end;

for i = 1:6

 % Record the section that contains the current distance value.
 ir_section(i) = 0;
 for j = [1:M-1]
 if (d(i) <= ir_dist_curve(j+1) & d(i) >= ir_dist_curve(j)) ...
 | (d(i) >= ir_dist_curve(j+1) & d(i) <= ir_dist_curve(j))
 % Record current section.
 ir_section(i) = j;
 end;
 end;

Source Code 159

 % If current position value is outside curve boundaries.
 if ir_section(i) == 0

 if (d(i) < ir_dist_curve(M))
 ir_inst_voltage(1,i) = ir_volt_curve(i,M);
 else
 ir_inst_voltage(1,i) = 0.1;
 end;

 else

 % Calculate distance for current section.
 if ir_dist_curve(ir_section(i)+1) ...
 == ir_dist_curve(ir_section(i))
 ir_inst_voltage(1,i) = ir_volt_curve(i,ir_section(i));
 else
 ir_inst_voltage(1,i) = (d(i) - ir_dist_curve(ir_section(i))) ...
 * (ir_volt_curve(i,ir_section(i)+1) - ir_volt_curve(i,ir_section(i))) ...
 / (ir_dist_curve(ir_section(i)+1) - ir_dist_curve(ir_section(i))) ...
 + ir_volt_curve(i,ir_section(i));
 end;

 end;

end;

% If first instruction, initialise all voltages to first voltage.
if new_instruction == 2
 ir_inst_voltage(2:N,1) = ir_inst_voltage(1,1);
 ir_inst_voltage(2:N,2) = ir_inst_voltage(1,2);
 ir_inst_voltage(2:N,3) = ir_inst_voltage(1,3);
 ir_inst_voltage(2:N,4) = ir_inst_voltage(1,4);
 ir_inst_voltage(2:N,5) = ir_inst_voltage(1,5);
 ir_inst_voltage(2:N,6) = ir_inst_voltage(1,6);
end;

% Software filter to reduce noise.
weight = 0.5;
ir_voltage(1:6) = 0;
for i = 1:N
 ir_voltage = ir_voltage + weight * ir_inst_voltage(i,:);
 if i < N-1
 weight = 0.5*weight;
 end;
end;

B.26 sim_motor_power.m

function [w_sim_vel] = sim_motor_power(new_instruction,w_tgt_vel)

% Chris Lee-Johnson
%
% Simulation function to apply power to motors.
%
% w_sim_vel: Simulated wheel velocities (m/s)
% w_tgt_vel: Target wheel velocities (m/s)
% new_instruction: New instruction flag

% Minimum wheel velocity (m/s)
MIN_VELOCITY = [0.01,0.01];

% If target speed is too low to overcome friction,
% wheel will not move.
for i = 1:2
 if abs(w_tgt_vel(i)) < MIN_VELOCITY(i) | w_tgt_vel(i) == NaN
 w_sim_vel(i) = 0;
 else
 w_sim_vel(i) = w_tgt_vel(i);
 end;
end;

CD Contents 161

Appendix C: CD Contents

The attached CD contains the following:

 This document

• Microsoft Word format

• PDF format

 Test results

• Captured data

• MATLAB figures

• Video samples

 Source code

• MATLAB functions

• LabVIEW VIs

• Microcontroller C code

 Datasheets

• 6025E data acquisition card

• HEDS-5500 optical encoder

• GP2Y0A02YK infrared rangefinder

• P89C51RC2HBP microcontroller

References 163

References

Borenstein, J., & Feng, L., “Measurement and Correction of Systematic Odometry

Errors in Mobile Robots”, IEEE Transactions on Robotics and Automation, October

1996.

Chappell, D., “Introducing ActiveX”, David Chappell & Associates,

http://www.chappellassoc.com, 1997.

Cordes, J.C., “The Creating of an Autonomous Multi-Terrain Mechatron”, MSc

Thesis, Department of Physics and Electronic Engineering, University of Waikato,

2002.

“Dynamic Data Exchange (DDE) and NetDDE FAQ”, RHA (Minisystems) Ltd,

http://www.rhaminisys.com.

Franklin, G.F., Powell, J.D., Emami-Naeini, A., “Feedback Control of Dynamic

Systems”, 4th Edition, Prentice Hall, 2002.

Franklin, G.F., Powell, J.D., Workman M., “Digital Control of Dynamic Systems”,

3rd Edition, Addison Wesley, 1998.

Godjevac, J., “Comparative Study of Fuzzy Control, Neural Network Control and

Neuro-Fuzzy Control”, 1995.

Halici, U., “Introduction to Neural Networks”, Chapter 1, METU Informatics

Institute, Middle East Technical University,

http://euclid.ii.metu.edu.tr/~ion526/demo/demochp.html.

Hurd, S.A., “Laser Range Finding for an Autonomous Mobile Security Device”,

MSc Thesis, Department of Physics and Electronic Engineering, University of

Waikato, 2001.

164 The Development of a Control System for an Autonomous Mobile Robot

Jenson, C.H., Carnegie, D.A., Gaynor, P., “Universal Battery Powered Pulse Width

Modulated H-Bridge Motor Control for Robotic Applications”, Proceedings of

the 10th Electronics New Zealand Conference, Hamilton, New Zealand, September

2003.

King, J.C., “The Development of an AUV”, MSc Thesis, Department of Physics and

Electronic Engineering, University of Waikato, 2002.

Lee-Johnson, C.P., Carnegie, D.A., “The Development of a Control System for an

Autonomous Mobile Robot”, Proceedings of the 10th Electronics New Zealand

Conference, Hamilton, New Zealand, September 2003.

Loughnane, D.J., “Design and Construction of an Autonomous Mobile Security

Device”, MSc Thesis, Department of Physics and Electronic Engineering, University

of Waikato, 2001.

Payne, A.D., Carnegie, D.A., “Design and Construction of a Pair of Tricycle Based

Robots to Investigate Cooperative Robotic Interaction”, Proceedings of the 10th

Electronics New Zealand Conference, Hamilton, New Zealand, September 2003.

Prakash, A., Carnegie, D.A., Chitty, C., “The Humanisation of an Autonomous

Mobile Robot”, Proceedings of the 10th Electronics New Zealand Conference,

Hamilton, New Zealand, September 2003.

Sikking, L.J., Carnegie, D.A., “The Development of an Indoor Navigation

Algorithm for an Autonomous Mobile Robot”, Proceedings of the 10th Electronics

New Zealand Conference, Hamilton, New Zealand, September 2003.

van Dam, J., Dev, A., Dorst, L., Groen, F., Hertzberger, L., van Inge, A., Krose, B.,

Lagerberg, J., Visser, A., Wiering, M., “Organisation and Design of Autonomous

Systems” , Chapter 9, Lecture Notes, University of Amsterdam, 1999.

van Dam, J., Kröse, B., Groen, F., “Neural Network Applications in Sensor Fusion

for an Autonomous Mobile Robot” , University of Amsterdam, 1996.

References 165

Wu, H., Seigel, M., Stiefelhagen, R., Yang, J., “Sensor Fusion using Dempster-

Shafer Theory”, IEEE Instrumentation and Measurement Technology Conference,

Anchorage, AK, USA, May 2002.

Xue, D., “MATLAB’s External Interfacing with Others”, MATLAB Paradise,

http://matlab.myrice.com, 2000.

