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Abstract 
 

The Mobile Autonomous Robotic Vehicle for Indoor Navigation (MARVIN) is the 

subject of a number of graduate research projects in the University of Waikato’s 

Mechatronics Group. This thesis details the development of a control system for 

MARVIN’s two-wheeled differential drive system that autonomously regulates its 

position, heading and velocity based on feedback from odometers, infrared 

rangefinders and tactile sensors. The completed control system operates in 

conjunction with a navigation system that was developed concurrently with this 

project. Together, they provide the most sophisticated autonomous behaviour 

currently implemented on a robot at the Mechatronics Group. 
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1 Introduction 
 

1.1 MARVIN 
 

MARVIN is the flagship of an expanding 

fleet of large-scale autonomous guided 

vehicles developed by the Mechatronics 

Group of the Department of Physics and 

Electronic Engineering at the University of 

Waikato. MARVIN was named after the 

paranoid android from Douglas Adams’s 

“Hitchhikers Guide to the Galaxy” novels 

(Figure 1.1), and in the grand academic 

tradition, a suitably descriptive acronym 

was chosen to match the name (Mobile 

Autonomous Robotic Vehicle for Indoor 

Navigation). 

 

Figure 1.1: Marvin the Paranoid 
Android 

The original long-term objective of the MARVIN project was to develop an 

autonomous mobile security device that would patrol the corridors of the university’s 

science block, detecting and recording the activities of intruders, and recharging itself 

when necessary. However, this goal has since been revised, and it is now less specific 

about the intended application. Although security applications have not been ruled 

out, MARVIN could just as easily be used for tasks such as internal mail delivery. In 

recent years the project’s focus has also shifted towards public relations and human-

machine interaction. 

 

Daniel Loughnane, a former graduate mechatronics student, began development on 

MARVIN in 1999. By early 2001, the basic mechanical structure and electronics had 

been implemented. The robot possessed a rudimentary control system, implemented 

on a Phillips 87C552 microcontroller, that regulated wheel speeds using odometers, 

and utilised infrared rangefinders for object avoidance [Loughnane, 2001]. 
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Former graduate student Shaun Hurd 

concurrently developed a custom laser 

rangefinding system for MARVIN. This 

system utilised a rotating laser and CCD 

camera to detect objects at a range of up to 

10 m over a 360° field of view. Images 

were acquired using a PC image capture 

card, and an image-processing algorithm 

was developed to extrapolate distances 

from the recorded images. The laser 

rangefinder was mounted to MARVIN’s 

upper chassis, as shown in Figure 1.2. 

Although successful, this device was never 

integrated into MARVIN’s control system 

[Hurd, 2001]. 

 

 

Figure 1.2: MARVIN and the 
Laser Rangefinder 

 

 

Development slowed during 2001, because no full-time graduate students were 

assigned to the project at the time. Nevertheless, a number of revisions were 

implemented. The microcontroller was replaced with a PC and a data acquisition 

(DAQ) card, but the control software was not ported over to the new platform. 

Instead, a LabVIEW program was developed to allow remote driving capabilities 

using a wireless LAN connection. This was successfully demonstrated in the Osborne 

Lectures, a tour of secondary schools throughout New Zealand. Unfortunately the 

motor drivers, rangefinders and one of the odometers were subsequently removed for 

use in other projects, so that MARVIN was no longer operational at the onset of this 

thesis project. 
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1.2 Projects 
 

Four separate thesis projects relating to MARVIN, including this one, are being 

conducted in parallel. They interrelate in the loosely defined hierarchy shown in 

Figure 1.3. 

 

Figure 1.3: Project Hierarchy 
 

 

1.2.1 Robot Humanisation 
 

The original design for MARVIN’s outer chassis bore an unfortunate resemblance to 

the Daleks from “Dr Who”. A modern robot should not look like tacky 1960’s science 

fiction, so graduate mechatronics student Ashil Prakash is working with 

Robotechnology Ltd. [http://www.robotechnology.co.nz] to design a chassis that is 

more in line with 21st century expectations (Figure 1.4). In addition to its aesthetic 

improvements, the new chassis will allow MARVIN to exhibit humanlike behaviour 

through motion of the head and torso [Prakash & Carnegie, 2003]. 

 

The second aspect of the robot humanisation project is a human-machine interface. 

This is primarily a voice interface that will utilise commercial speech recognition 

software to interpret spoken commands. Due the complexities of identifying unique 

voice patterns, this system cannot recognise individuals – an essential requirement for 

security applications. Instead, individual access will be provided using a Cardax 

swipe-card system [http://www.cardax.com]. 

Robot Humanisation

Task Planning and Navigation

Localisation and Control

Generic Motor Drivers
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    Daleks         Original Chassis  New Chassis 

Figure 1.4: MARVIN vs. the Daleks 
 

 

1.2.2 Task Planning and Navigation 
 

The task planning and navigation system being designed by graduate student Lucas 

Sikking is the Mechatronics Group’s first attempt at achieving autonomy in a large-

scale mobile robot. Voice commands indicating target destinations must be translated 

into coordinates on an internal map. The navigation system will plot a course for 

MARVIN to travel in order to reach the target coordinates, and resolve it into a 

sequence of instructions that are passed to the control system (Section 1.2.3). If an 

unmapped obstacle is encountered, the map will be updated and a new course will be 

plotted around the obstacle. Infrared beacons are to be placed at strategic locations 

around the operating environment, providing active landmarks that the navigation 

system can use to correct any cumulative odometry errors [Sikking & Carnegie, 

2003]. 

 

 

1.2.3 Localisation and Control 
 

Although a simple control system was developed for MARVIN’s embedded 

controller, it is not implemented on the new PC hardware. The limitations of the 

original control system, coupled with the fact that significant alterations will be made 

to the sensors and motor drivers, mean that converting it to the new platform is not a 
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viable option. This thesis describes the development of a new control system for 

MARVIN that will execute motion instructions delivered by the navigation system, 

and return sensor data and localisation information. 

 

Instructions are translated into velocity profiles and a target trajectory. The control 

system must ensure that MARVIN’s wheels follow the intended velocity profiles as 

closely as possible. Data from multiple sensors must be combined appropriately in 

order to produce an accurate representation of MARVIN’s position and orientation, 

which the control system will use to track MARVIN’s motion along the target 

trajectory. If it drifts off course, the wheel velocities must be adjusted accordingly 

[Lee-Johnson & Carnegie, 2003]. 

 

 

1.2.4 Generic Motor Drivers 
 

One of the main difficulties encountered by the Mechatronics Group has been the 

unreliability of motor driver circuits, particularly when large loads are involved. Craig 

Jensen, a mechatronics graduate student, will design generic H-bridge motor driver 

circuits that can be applied to any robot in the Mechatronics Group’s fleet, including 

MARVIN. This will greatly accelerate the initial stages of development, allowing 

students to focus on high-level design. 

 

Since all the large-scale robots include a PC, the motor drivers will utilise a standard 

DB9 serial interface (which can also be adapted to USB, if necessary). Software will 

be developed that transmits power levels to the motor drivers, and receives odometer 

data. Eventually the software will be utilised by MARVIN’s control system, replacing 

the system-specific hardware interface developed in this thesis [Jensen & Carnegie, 

2003]. 
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1.3 Operating Environment 
 

MARVIN is intended to operate primarily within the first floor corridors of C block at 

the University of Waikato (overhead view given in Figure 1.5, photographs given in 

Figure 1.6). This is of greatest importance to the navigation system, which requires a 

predefined static map of the environment. 

 

 

Figure 1.5: Overhead View of C Block Corridor 
 

  
(a)      (b) 

  
(c)      (d) 

Figure 1.6: C Block Corridor Viewed from Intersection 
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Although it will receive information from the navigation system, which will operate 

only in pre-mapped environments, the control system itself will be less location-

specific, and it should function at full capacity inside any environment with parallel 

walls that are within range of the rangefinders. In an environment where the walls are 

too distant or obscured by obstacles, the control system will still operate, but it must 

rely exclusively on dead reckoning for localisation, and consequently it will become 

more susceptible to cumulative error [Borensten & Feng, 1996]. 

 

 

1.4 Thesis Objectives 
 

The primary objectives of this thesis project are as follows: 

 

• Purchase or design new optical encoders (odometers), infrared rangefinders, 

tactile sensors, beacon receivers and motor drivers. 

• Mount sensors and actuators to the chassis and interface them to the DAQ 

card. 

• Develop LabVIEW software that uses the DAQ card to communicate with the 

sensors and actuators. 

• Establish a means to control LabVIEW from MATLAB. 

• Acquire sensor data in MATLAB. 

• Obtain velocity, position and orientation information from odometer data. 

• Obtain obstacle distances, position and orientation information from 

rangefinder data. 

• Combine localisation information from odometers and rangefinders to produce 

a single representation of MARVIN’s position and orientation. 

• Obtain velocity profiles and an overall trajectory of motion for a given 

instruction 

• Utilise localisation information to maintain MARVIN’s trajectory. 

• Develop a PID control system to maintain wheel velocities at the appropriate 

levels. 

• Incorporate tactile sensor data and obstacle distances in a collision avoidance 

system so that MARVIN can react to a dynamic environment. 
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1.5 Project Planning 
 

Figure 1.7 outlines the development schedule for this project. 

 

 

Figure 1.7: Flowchart of Project Development Process 
 

Simulate sensors and actuators.

Obtain wheel velocity profiles that implement given 
motion instructions. 

Establish communication protocol between control 
system and navigation system. 

Obtain localisation information from simulated 
odometers and rangefinders. 

Control MARVIN’s simulated motion along intended 
trajectory. 

Install and interface real sensors and actuators.

Refine control system for operation in the real world. 

Test control system in conjunction with navigation 
system. 

Improve system performance.
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1.6 Chapter Summary 
 

This thesis is divided into the following chapters: 

 

Chapter 2 – MARVIN’s hardware is discussed, and the alterations and additions 

implemented during this project are described. 

Chapter 3 – The various software interfaces utilised by the control software are 

explained. 

Chapter 4 – The process of obtaining localisation information from sensor data and 

combining data from multiple sensors in a useful manner is discussed. 

Chapter 5 – An algorithm that controls MARVIN’s speed and trajectory is 

described. 

Chapter 6 – Test results of MARVIN’s motion under various conditions are 

presented. 

Chapter 7 – Conclusions are given along with a performance evaluation and 

suggestions for future development. 
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2 Hardware 
 

2.1 Overview 
 

Although MARVIN had been operational in the past, it was in a non-working state at 

the onset of this project. The motor driver PCBs had been salvaged for use in other 

devices. One of the odometers was missing, and neither had been interfaced to the PC. 

Many of the components, including the motherboard, hard disk, DAQ connector 

module, power supply and Uninterruptible Power Supply (UPS), were mounted in a 

temporary manner that was insufficiently robust to withstand the forces that would be 

encountered during real-world operation. Figure 2.1 gives an outline of the 

unfavourable aspects of MARVIN’s original hardware. 

 

 

Figure 2.1: MARVIN 2000 
 

Given MARVIN’s initial state, the decision was made to do a significant hardware 

overhaul. The wheels, chassis, motors and batteries remain largely untouched from 

the original design, but the power supply, PC, DAQ card, wireless LAN module, 

odometers, rangefinders, tactile sensors, beacon receivers, PCB platforms, switches, 

cabling, motor drivers and microcontroller have been replaced or added during the 

course of this project. MARVIN’s new hardware is shown in Figure 2.2. 

UPS 

ATX Power 
Supply 

Cardboard 
Electrical Isolation Odometer 

DAQ Connector 
Block 

Motherboard 

Back Panel 
Hard Drive 
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Figure 2.2: MARVIN XP 
 

 

2.2 Mechanical Details 
 

MARVIN’s frame is 0.777 m high, 0.583 m wide and 0.515 m long. The base of the 

frame is constructed from 25 mm × 25 mm steel tubing, welded together for strength. 

The upper section consists of aluminium struts that are riveted or screwed together for 

easy modifiability. 

 

In order to lower the centre of gravity and improve stability, the heaviest components, 

the motors and batteries, are mounted at MARVIN’s base. The PC is mounted near 

the centre for accessibility reasons. The ATX power supply cannot fit inside the PC, 

so it is attached to two aluminium beams on MARVIN’s side. 

 

Two Perspex platforms are attached above and below the PC, providing non-

conductive surfaces on which to mount the various PCBs. These circuits are attached 

to the platforms using PCB guides, with at least one end left open so that they can be 

removed for repair if necessary. The lower platform houses the motor drivers and 

microcontroller, which ideally should be as close as possible to the motors. DAQ 

connector blocks and sensor-related PCBs are mounted on the upper platform. 

 

Infrared 
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Wireless LAN 

Tactile 
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Supply 
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Locomotion is provided by two wheels in the standard wheelchair configuration, 

supported by castors at the front and rear. MARVIN’s linear velocity and heading are 

controlled by varying the angular velocity of each wheel. This yields tighter turning 

circles and reduced wheel slippage in comparison to other possible arrangements such 

as tricycle or quad wheel configurations [Loughnane, 2001]. The wheels have a radius 

of 0.165 m, and the distance between the centre of each wheel is 0.508 m. The tyre 

pressure of each wheel is 303 kPa (44 lb/in2). 

 

 

2.3 Power Source 
 

MARVIN is powered by two 12 V flooded lead-acid batteries in series (resulting in a 

total of 24 V). These batteries have a Reserve Capacity (RC) of 55 minutes, and a 

Cold Cranking Amperage (CCA) of 310 A. This corresponds to approximately 23 

Amp Hours of useful operation. However, since they are not deep cycle batteries, 

damage will result if they are repeatedly allowed to run flat. 

 

The motor drivers are powered directly from the 24 V battery terminals. The PC, 

microcontroller and sensors require a range of voltages (generally 5 V or 12 V) which 

are provided by an ATX power supply. The power supply was originally connected to             

a 240 V AC mains-equivalent signal produced by a UPS. This approach was relatively 

inefficient, as it involved a conversion from a low DC voltage to a high AC voltage, 

and back again. Another limitation to consider was the significant size and weight of 

the UPS. 

 

Consequently, the standard ATX power supply was replaced with a 24 V ATX power 

supply, the ACE-828C from ICP Electronics (shown in Figure 2.3). This supply’s 

output characteristics are virtually identical to those of a standard ATX supply, but it 

is powered from 18 V to 32 V DC, rather than mains, so it can be connected directly 

to the battery terminals, eliminating the need for a UPS. The ACE-828C is rated up to 

250 W, which is more than adequate for the PC and the limited number of peripherals 

that are driven from it. 
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Figure 2.3: ACE-828C 24 V ATX Power Supply 
 

The ACE-828C, like most modern ATX power supplies, goes into a “soft” shutdown 

mode when the PC is turned off. Due to the power supply’s imperfect efficiency, it 

does draw a small current in this state, which can drain the batteries over time. It is 

therefore necessary to physically disconnect the power supply from the batteries after 

the PC is shut down. This is accomplished using a Double Pole Single Throw (DPST) 

switch mounted on an aluminium panel in an accessible location near the top of 

MARVIN, as shown in Figure 2.4. 

 

A separate DPST switch is used for the motor drivers (mounted in the same location 

for aesthetic and accessibility reasons), since it is often necessary to disable the 

motors while the PC and sensors are running. An LED is mounted to the panel that 

indicates whether the microcontroller (Section 2.6.2) is receiving valid instructions 

from the PC. 

 

 

Figure 2.4: Power Switch Panel 
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2.4 PC Hardware 
 

MARVIN executes its high-level software on a standard PC platform rather than the 

embedded controllers favoured by most of the Mechatronics Group’s smaller mobile 

robots (although it does still use a microcontroller to drive the motors, as described in 

Section 2.6.2). PCs have numerous advantages over embedded controllers, including: 

 

• Processing speed increase of several orders of magnitude. 

• Improved code portability. 

• Wider selection of development tools. 

• Large variety of alternative hardware interfaces. 

• Cheap wireless communication options. 

• Less hardware design necessary. 

 

 

2.4.1 PC 
 

The original PC used for MARVIN was a 466 MHz Celeron with 128 MB RAM, and 

a 6 GB hard disk. A standard PC case is too large to fit inside MARVIN’s chassis, so 

most of the case had been trimmed away, leaving just the motherboard and back 

panel, which were mounted to MARVIN’s chassis on a single corner. 

 

This PC was barely adequate for the complex calculations that would be necessary for 

this and other projects, so it was upgraded. The Shuttle xPC, a Small Form-Factor 

(SSF) computer, was selected rather than a standard PC. This has the advantage that 

no case modifications are necessary for it to fit inside MARVIN’s chassis, and it can 

remain fully enclosed, providing better protection and isolation. Unlike other small-

sized computers such as notebooks and PDAs, SFF computers remain competitive 

with standard PCs in terms of price and performance. 

 

The only significant drawback is that the Shuttle xPC has just one PCI slot (currently 

occupied by the data acquisition card), limiting the potential for future expansion. 

This is of particular significance to Shaun Hurd’s custom-designed laser rangefinding 
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system (Section 1.1), which will be added to MARVIN at a later date. The device 

currently requires a PCI video capture card to operate, so it will be necessary to find 

an alternative means of video capture, or replace the PC. 

 

The specifications for the Shuttle xPC (shown in Figure 2.5) are as follows: 

 

CPU:     Athlon XP 2000+ (1.67 GHz) 

RAM:     512 MB PC2700 DDR (333 MHz) 

Motherboard chipset:   nVidia nForce 2 / MCP-T 

Expansion slots:   1 × PCI 

     1 × AGP 

General purpose I/O Ports:  4 × USB 2.0 

     2 × IEEE 1394 

     1 × Serial DB9 

Hard Disk:    10 GB, 5400 rpm 

 

 

Figure 2.5: Shuttle xPC 
 

 

2.4.2 Data Acquisition (DAQ) Card 
 

The software originally communicated with the sensors and actuators using a National 

Instruments Lab-PC+ DAQ card (Figure 2.6) plugged into the PC’s ISA slot. 

Featuring eight analogue inputs, two analogue outputs, 24 digital I/O lines and three 

configurable timers/counters, the Lab-PC+ is adequate for the purposes of this project. 
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Unfortunately, modern motherboards are no longer manufactured with ISA slots, so 

this card is unsuitable for use in the new PC. 

 

 

Figure 2.6: Lab-PC+ Data Acquisition Card 
 

The replacement card is the 6025E (Figure 2.7), also from National Instruments. 

Chosen for its similarity to the Lab-PC+, the 6025E has the following specifications: 

 

Analogue Inputs 

Number of channels:   16 single-ended or 8 differential 

Resolution:    12 bits 

Maximum sampling rate:  200 kS/s 

ADC Type:    Successive approximation 

Analogue Outputs 

Number of channels:   2 

Resolution:    12 bits 

Digital I/O 

Number of channels:   32 

Counters/Timers 

Number of channels:   2 

Resolution:    24 bits 

Maximum source frequency:  20 MHz 

Type:     Up/down counters 
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Figure 2.7: 6025E Data Acquisition Card 
 

A block diagram representing the hardware functions of the 6025E is given in Figure 

2.8. Unlike the Lab-PC+, the 6025E is a jumperless card, and all of the configuration 

settings are software-selectable. 

 

 

Figure 2.8: 6025E Block Diagram 
 

The analogue inputs in the 6025E DAQ card utilise a Programmable Gain 

Instrumentation Amplifier (PGIA), which can be configured in Referenced Single-

Ended (RSE), Non-Referenced Single-Ended (NRSE), or Differential (DIFF) modes 

of operation. While in RSE mode, the DAQ card ties the PGIA’s negative inputs to 

the Analogue Input Ground (AIGND) terminal. In NRSE mode, the PGIA’s negative 

inputs are tied to Analogue Input Sense (AISENSE). DIFF mode configures the DAQ 
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card so that adjacent analogue inputs are attached to the positive and negative inputs 

of the PGIA. 

 

Most new National Instruments DAQ cards only provide 8 digital I/O lines. However, 

in order to maintain compatibility with legacy cards, the 6025E uses an 82C55A 

Programmable Peripheral Interface (PPI) to provide 24 additional digital I/O lines, 

divided into three 8-bit ports, which can be configured to perform the same functions 

as the Lab-PC+ digital I/Os. Four modes of operation are available: Basic I/O, 

Strobed Input, Strobed Output and Bi-directional. These modes configure various 

automatic handshaking signals on Port C. 

 

The various digital and analogue lines are accessible via two 50-pin I/O connector 

blocks attached to the back of the card with a ribbon cable. 

 

 

2.4.3 Wireless LAN 
 

Until Ashil Prakash’s voice recognition interface is implemented on MARVIN, the 

software is operated remotely from a notebook PC, which communicates with 

MARVIN’s PC over a wireless LAN connection. MARVIN’s PC is accessed using 

the standard Remote Desktop Connection (or Windows Terminal Service) tool that 

ships with Windows XP. This essentially allows the notebook to become MARVIN’s 

keyboard, mouse, monitor and speakers. 

 

There are insufficient PCI slots available for an internal wireless LAN card, so a USB 

module – the ZyAIR B-220 (Figure 2.9) – is used instead. The B-220 has the 

following specifications: 
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Media Access Protocol: IEEE 802.11b 

Data Rate:   11 Mbps / 5.5 Mbps / 2 Mbps / 1 Mbps 

Coverage Area:  Indoor:  50 m @ 11 Mbps 

      80 m @ 5.5 Mbps or lower 

    Outdoor: 150 m @ 11 Mbps 

      300 m @ 5.5 Mbps or lower 

Frequency:   2.4 ~ 2.835 GHz (Industrial Scientific Medical Band) 

Output Power:   17 dBm (typical) 

Receiver Sensitivity:  -82 dBm @ 11 Mbps 

Bit Error Rate:   10-5 @ -82 dBm 

 

 

Figure 2.9: ZyAIR B-220 Wireless LAN Module 
 

 

2.5 Sensors 
 

MARVIN is equipped with a range of sensors – odometers, rangefinders, tactile 

sensors and beacon receivers – that the control and navigation software uses for tasks 

such as localisation, velocity control and obstacle avoidance. A detailed analysis of 

their usage in software is given in Chapter 4. 
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2.5.1 Odometers 
 

MARVIN utilises the HEDS-5500 optical encoder module (Figure 2.10) for wheel 

position and velocity measurements. In an optical encoder, electrical pulses are 

generated from light that passes through holes on the perimeter of a circular disk (the 

code wheel) onto an optical receiver. The change in wheel position is measured by 

counting these pulses. The HEDS-5500 module includes the HEDS-9100 encoder and 

HEDS-5120 code wheel – the same components that were used on MARVIN prior to 

this project – but they are enclosed in a single package, simplifying the design and 

providing additional protection. 

 

 

Figure 2.10: HEDS-5500 Optical Encoder Module 
 

The HEDS-5120 code wheel produces 500 pulses per revolution. Since the odometers 

are mounted on the motors, the gearing ratio results in a resolution of 25780 pulses 

per wheel revolution. Given the wheel circumference of 1.0367 m, this corresponds to 

24867 pulses per metre. 

 

Each encoder includes two output channels that are 90° out of phase, providing a 

means to determine direction. MARVIN only utilises a single channel, because 

directional changes are slow enough that they can be more easily detected using 

software techniques (Section 4.1.1). The encoder outputs are connected to the counter 

source pins (GPCTR0_SOURCE and GPCTR1_SOURCE) on the DAQ card. 
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2.5.2 Rangefinders 
 

MARVIN utilises the Sharp GP2Y0A02YK infrared distance-measuring sensor 

(Figure 2.11) to detect nearby objects. This device has a measurement range of 0.2 m 

to 1.5 m, which is adequate for location sensing and object detection in the intended 

corridor and laboratory environment. 

 

 

Figure 2.11: GP2Y0A02YK Infrared Distance-Measuring Sensor 
 

The GP2Y0A02YK calculates distances using a scheme based on triangulation 

(Figure 2.12). Light from an infrared emitter is reflected off an object onto a Charge 

Coupled Device (CCD) detector. An analogue voltage is generated from the position 

of the detected light along the CCD array. Since the detector is positioned at a known 

location and orientation with respect the emitter, the range of an object can be 

calculated directly from this voltage. The primary advantage that this method has over 

other schemes such as intensity measurement is that the colour and reflectivity of an 

object has little effect on the measured distance. 

 

 

Figure 2.12: Triangulation with the GP2Y0A02YK 
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The voltage-distance relationship (Figure 2.13) reveals that distances less than 0.15 m 

will result in misleading measurements, so the rangefinders are mounted far enough 

from MARVIN’s edge that this “dead region” is never encountered. Six rangefinders 

are mounted at the top of the chassis – one on the front, one on the back, and two on 

each side. The side rangefinders face about 15° away from each other, reducing 

optical crosstalk. 

 

 

Figure 2.13: GP2Y0A02YK Voltage-Distance Relationship 
 

In order to reduce noise on their supply rails, the rangefinders are driven from a 

separate supply rail produced by a 7805 linear regulator. The regulator provides a 

stable 5 V from a 12 V input. The rangefinder outputs are connected to DAQ card’s 

the analogue inputs (ACH0-ACH5). 
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2.5.3 Tactile Sensors 
 

Four tactile sensors are mounted near MARVIN’s base – one at each of the four 

corners. Some tactile sensors are position-dependant, but MARVIN currently uses 

simple binary sensors. These are a temporary safety measure that will be replaced 

with a more robust design once Ashil Prakash’s outer chassis is added. 

 

Each sensor consists of a wire whisker that presses a SPDT switch when it flexes due 

to contact with an object, as shown in Figure 2.14. The switches are connected to four 

digital I/O ports on the DAQ card (DIO0-DIO3). When a switch is pushed (i.e. a 

collision with an object has occurred), the corresponding port is pulled high through 

an internal pull-up resistor on the DAQ card. Otherwise it is pulled low. The software 

can use this signal to implement an emergency stop procedure that executes in the 

event of a collision. 

 

 

Figure 2.14: Tactile Sensor 
 

 

2.5.4 Beacon Receivers 
 

Two Kemo B062E infrared receivers are utilised in conjunction with modified 

versions of the B062S emitter (Figure 2.15). These emitters function as beacons 

(artificial landmarks) for Lucas Sikking’s navigation algorithm, positioned at known 

locations on the corridor walls [Sikking & Carnegie, 2003]. The receivers are 
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mounted on MARVIN’s sides, far enough below the rangefinders to minimise 

interference. They provide signals indicating when MARVIN passes an emitter, so 

that the navigation system can correct any cumulative odometry errors that have 

arisen. 

 

 

Figure 2.15: B062E Infrared Receivers and B062S Emitters 
 

The receiver circuits consist of a photodiode and filtering IC that switches a relay 

when it receives a 14 kHz modulated infrared signal from the emitter. The relay is 

connected to the digital I/O port on the DAQ card in the same manner as the contact 

switches, so that the digital line is pulled high when MARVIN is in the path of a 

beacon. Receiver and emitter schematics are given in Appendix A.1 and Appendix 

A.2 respectively. 

 

 

2.6 Actuators 
 

MARVIN’s wheels are driven independently by two 24 V DC permanent magnet 

brush motors (salvaged from an electric wheelchair), which are controlled using H-

bridge motor driver PCBs designed by graduate Mechatronics student Andrew Payne. 

Pulse Width Modulated (PWM) inputs for the motor drivers are in turn provided by a 

separate 8051 microcontroller PCB, also designed by Andrew Payne. 

 

The motor drivers were originally developed for Itchy and Scratchy; a pair of identical 

robots designed to perform cooperative tasks [Payne & Carnegie, 2003]. Since Itchy 

and Scratchy possess similar motor characteristics to MARVIN, the same designs can 
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be utilised for this project with no significant modifications. Craig Jensen’s generic 

motor drivers may replace them at a later date, depending on comparative test results. 

 

 

2.6.1 Motor Drivers 
 

The motor driver PCBs (Figure 2.16, schematic shown in Appendix A.3) control the 

current supplied to the motors (and therefore the speed of rotation) by varying the 

duty cycle of a PWM signal. As long as the PWM signal’s switching speed is much 

greater than the motor’s time constant, the motor responds in approximately the same 

manner that it would react to a DC voltage that is proportional to the PWM signal’s 

duty cycle. 

 

 

Figure 2.16: Motor Driver PCB 
 

In order to provide the high current signals necessary to drive large motors, the motor 

drivers utilise the H-bridge circuit shown in Figure 2.17. Two diagonal MOSFETs are 

switched from the PWM signal, while the other two remain in the off state. Motor 

direction is controlled by selecting which transistor pair to switch [Payne & Carnegie, 

2003]. 
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Figure 2.17: H-Bridge Circuit 
 

 

2.6.2 Microcontroller 
 

The 6025E DAQ card can generate PWM signals directly from its two onboard 

counters. Unfortunately, the counters are also used to count odometer pulses, and 

there are too few available for both tasks. Instead, an 8051-family microcontroller, the 

Phillips P89C51RC2HBP, is used as a PWM generator (Figure 2.18, schematic shown 

in Appendix A.4). It communicates with the PC’s DAQ card using a 12-bit parallel 

interface, consisting of an 8-bit data connection (PA0-PA7 on the DAQ card), and a 

4-bit handshaking connection (PC4-PC7). 

 

 

Figure 2.18: Microcontroller PCB 
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3 Software Interfaces 
 

MARVIN’s software utilises a number of different applications (HI-TECH C, 

LabVIEW, MATLAB and Microsoft Word) on two different hardware platforms (PC 

and 8051) that each require a means to communicate with each other. The control 

system must acquire data from various analogue and digital signals provided by the 

sensors. Software layers corresponding to the four MARVIN-related projects must 

exchange information. Finally a Graphical User Interface (GUI) and data logging 

system is required for testing purposes. 

 

 

3.1 Applications 
 

3.1.1 HI-TECH C 
 

Programming languages based on C are among the most widely used languages in 

existence today. C was originally developed in 1972 based on two previous 

languages, B and BCPL, but it has since undergone numerous revisions. The language 

is hardware independent, and modified versions are commonly used in embedded 

controllers. MARVIN’s motor driver software was developed using the HI-TECH 

8051 C Compiler (HI-TECH C) by HI-TECH Software. 

 

 

3.1.2 MATLAB 
 

MATLAB (Matrix laboratory, shown in Figure 3.1) is a programming language 

designed for technical computing. Unlike other languages such as C, MATLAB’s 

basic data element is a dynamic array of floating point numbers. Solutions are 

calculated numerically, so there is an error between the exact solution and the 

calculated one, but variables are of such high precision that this error is reduced to 

insignificant levels in most applications. 
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MATLAB provides a large selection of 

specialised toolboxes for applications such 

as control systems, signal processing, 

system identification and data acquisition. 

MATLAB’s level of support in these areas 

makes it an ideal platform on which to base 

MARVIN’s high level software. 
 

Figure 3.1: MATLAB 6.1 
 

 

3.1.3 LabVIEW 
 

LabVIEW (Figure 3.2) is a program development application based on the graphical 

programming language, G, developed by National Instruments. It is designed 

primarily for test and measurement purposes, making it useful as an interface to the 

data acquisition (DAQ) hardware. LabVIEW allows developers to create programs, 

called virtual instruments (VIs) to recreate the appearance and functionality of real 

instruments such as amplifiers and filters. 

 

 

Figure 3.2: LabVIEW 6.1 
 

Data objects are represented by blocks linked together by wires on a block diagram 

rather than lines of text. This form of programming allows developers with limited 

programming experience to create simple programs that perform useful tasks. 

However, an experienced software developer would take longer to implement most 

algorithms in G than they would in a text-based language. G code also tends to be 
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more difficult to follow at a glance than its text-based equivalent because many G 

structures consist of multiple subdiagrams that cannot be observed at the same time. 

Figure 3.3 gives an example of this. 

 

 

 

LabVIEW 

 

 

 

if c > 10 
    a = 0; 
else 
    a = b + 2; 
end; 

MATLAB 

 

Figure 3.3: If Structure MATLAB – LabVIEW Comparison 
 

The inputs and outputs of a VI are called the controls and indicators respectively. 

Controls can be in the form of dials, slide bars, switches, buttons, check boxes or text 

input boxes. Graphs, charts, tables, meters, lights and text output boxes are indicators. 

 

 

3.1.4 Microsoft Word 
 

Microsoft Word is a popular word processor that includes a large selection of auto 

correction options for grammar and spelling. Ashil Prakash’s human-machine 

interface uses Microsoft Word’s inbuilt speech recognition rather than a stand-alone 

package such as Dragon Dictate. Since speech recognition is generally rather 

unreliable, Microsoft Word is useful as a means to automatically correct some of its 

mistakes [Prakash & Carnegie, 2003]. 
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3.2 Inter-Application Interfaces 
 

Prior to the onset of this project, most PC-based robotic software at the Mechatronics 

Group consisted of relatively simple LabVIEW programs. LabVIEW provides many 

user-friendly data acquisition VIs, and it has built in support for National Instruments 

DAQ cards such as the Lab-PC+ and 6025E, so it is well-suited to the task of 

controlling MARVIN’s hardware. However, due to its graphical nature, LabVIEW is 

less suitable for designing the complex logic necessary for MARVIN to become 

autonomous. 

 

A high level of program complexity is more easily accomplished in MATLAB. Due 

to its growing popularity and support in the academic community, MATLAB has 

become the preferred programming language to use for future projects in the 

Mechatronics Group. The eventual goal is to replace all current LabVIEW software 

with Craig Jensen’s MATLAB hardware interface [Jensen & Carnegie, 2003], or an 

equivalent system. However, it will not be ready in time for this project. 

 

In the meantime, an interface between the two programs has been developed. Using 

this interface, LabVIEW provides the low-level hardware interface, while the 

MATLAB code is responsible for the high-level control tasks. A similar interface has 

also been developed between MATLAB and Microsoft Word, so that voice 

commands can be passed to MATLAB for the navigation system to execute. 

 

The following interfaces were considered: 

 

• ActiveX Control Containment 

• ActiveX Automation 

• MATLAB Script Node 

• Dynamic Data Exchange 

• File I/O 
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3.2.1 ActiveX Control Containment 
 

ActiveX is a marketing label that describes a loosely defined set of technologies 

developed by Microsoft to allow interaction between multiple programs without 

requiring developers to have knowledge of each program’s inner workings. It is based 

on two other Microsoft technologies: COM (Component Object Model) and OLE 

(Object Linking and Embedding). Although ActiveX encompasses a very broad range 

of technologies, the only ones that are supported in MATLAB and LabVIEW are 

ActiveX Control Containment and ActiveX Automation. 

 

An ActiveX control is an application that can be embedded in the client’s control 

container. The control can send notifications back to the client in the form of events, 

which can trigger the client’s event handler routine. Since MATLAB’s ActiveX 

Automation lacks support for events, ActiveX Control Containment is potentially the 

more powerful of the two interfaces. 

 

MATLAB can control another application in this manner from within a figure 

window, using the actxcontrol function (refer to Figure 3.4 for an example). 

Similarly, ActiveX control container blocks can be created in LabVIEW. However, 

neither program can itself be an ActiveX control, so this is unsuitable for interfacing 

these two programs. 

 
    % Windows Media Player ActiveX control. 
    hf=figure('Position',[120 370 316 100]); 
    h=actxcontrol('MediaPlayer.MediaPlayer.1',[20,10,260,80],hf); 
    set(h,'FileName','c:\WINNT\Media\Windows Logon Sound.wav'); 
 
 

 

Figure 3.4: Windows Media Player Control in MATLAB Figure Window 
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3.2.2 ActiveX Automation 
 

Like the ActiveX Control Containment, ActiveX Automation allows one program (the 

client) to control another (the server), but an Automation server is generally not 

embedded in the client application. The client simply calls the server like an ordinary 

function, and it must wait for the server to finish its task before it can continue. 

 

MATLAB and LabVIEW support ActiveX Automation as both clients and servers. Of 

particular interest is the MATLAB function actxserver, which can be used to set up a 

LabVIEW server when it is given LabVIEW’s program ID as a parameter. The 

ActiveX program ID is a unique entry in the registry used by other programs to 

identify it. Each ActiveX object has a set of properties, which are variables controlled 

by that object, governing, for instance, the appearance of its GUI or the files and 

directories it can access. Equally important are an object’s methods, similar to 

function calls, which are requests for the object to perform an action, such as 

returning the value of a variable. MATLAB can access LabVIEW’s properties and 

methods, and through them gain read/write access to a LabVIEW VI’s controls and 

indicators. This interface is relatively simple to use, and it allows the two programs to 

communicate with reasonable efficiency. Figure 3.5 shows the creation and 

manipulation of a LabVIEW ActiveX server in MATLAB. 

 
          % Set up LabVIEW ActiveX server. Open VI window. 
          lvserv = actxserver('LabVIEW.Application'); 
          vi = invoke(lvserv,'GetViReference',... 
              'c:\Project\Code\LabVIEW\Wheel Controller.vi');  
          vi.FPWinOpen = 1; 
 

Figure 3.5: LabVIEW ActiveX Automation Server in MATLAB 
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3.2.3 MATLAB Script Node 
 

LabVIEW 5.1 has built in support for MATLAB via script nodes – blocks on the 

LabVIEW block diagram that can execute MATLAB code using ActiveX. An 

example of a MATLAB script node is shown in Figure 3.6 below. 

 

 

Figure 3.6: MATLAB Script Node in LabVIEW 
 

National Instruments recommends the script node as the simplest, most efficient 

interface between the two programs. However, it is not the best approach for this task. 

The high-level code will be in MATLAB, with LabVIEW only providing the interface 

to the hardware. Consequently, MATLAB should be the controlling program, not 

LabVIEW. The problem can be circumvented if the MATLAB functions are called 

from within a main VI’s loop, but this is an inelegant solution. It would result in 

further difficulty when the control system is converted into pure MATLAB code. 

Compatibility issues might also arise with some MATLAB toolboxes. 

 

 

3.2.4 Dynamic Data Exchange 
 

Dynamic Data Exchange (DDE) is a protocol used to send data between programs. 

Unlike ActiveX, it does not give one program direct control over another – a program 

can only be manipulated in this way if it can treat data as commands. The data is 

exchanged asynchronously, so a handshaking or interrupt mechanism is needed to 

ensure that a program receives the data that was sent. 
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MATLAB supports DDE through a group of client functions (ddeadv, ddeexec, 

ddeinit, ddepoke, ddereq and ddeunadv) that set up the link and perform the 

necessary data exchanges. LabVIEW can then be configured as a DDE server using 

the DDE Srv Register Service VI. The disadvantage of this method is that both the 

client and server must be set up and run independently, which introduces unwanted 

complexities such as timing issues. Overall, the difficulties of setting up a reliable 

DDE interface for this project outweigh its advantages. 

 

 

3.2.5 File I/O 
 

This approach involves writing data into a file with one program, and reading it from 

the file with the other. This is the only method that is virtually guaranteed to work 

with any program on any platform. However, disc access is very slow, so this is the 

least efficient method. Moreover, synchronising the two programs this way is 

difficult. It would be used only as a last resort. 

 

MATLAB supports file I/O through functions such as fopen, fclose, fread, fwrite, 

fprintf, and fscanf. Similarly, LabVIEW provides a range of file I/O VIs, including 

Open/Create/Replace File, Write Characters To File and Read Characters From 

File. 

 

 

3.2.6 Selected Interface: ActiveX Automation 
 

Although some of these interfaces are not viable in this application, they each have 

situations where they are useful. File I/O must be used when the programs lack a 

common alternative interface. DDE is useful for communication between programs on 

different machines, or on non-Windows operating systems. MATLAB script nodes 

are the most convenient technique for calling MATLAB functions from LabVIEW 

VIs. ActiveX Control Containment provides a powerful interface for applications that 

support it. 
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However, due to its ease of use, and its level of support in MATLAB, LabVIEW and 

Microsoft Word, ActiveX Automation was selected over these other interfaces. 

 

 

3.2.7 MATLAB – LabVIEW Interface Details 
 

ActiveX Automation is used extensively throughout the control system wherever it 

communicates with the sensor and motor driver VIs. 

 

Some LabVIEW properties and methods can be invoked directly in MATLAB. 

Methods with more than one argument must be accessed using the invoke function. 

This function calls an object’s methods with the given arguments, and outputs the 

methods’ return values. 

 

LabVIEW communicates using two distinct ActiveX classes of object: the 

Application class, and the Virtual Instrument class. The Application class gives 

MATLAB access to the properties and methods that affect LabVIEW as a whole. It 

can be created directly in MATLAB. The Virtual Instrument class allows MATLAB 

to manipulate individual LabVIEW VIs. It cannot be created directly, but it can be 

instantiated using the GetVIReference Application class method. 

 

The FPWinOpen Virtual Instrument class property opens up a front panel window of 

the LabVIEW VI object, so that the VI’s controls and indicators can be manipulated 

and viewed. This is not necessary for the final control system – the GUI is 

implemented in MATLAB – but it is used for testing purposes. 

 

The most important methods for this interface are GetControlValue and 

SetControlValue from the Virtual Instrument class, which can read and write to a 

VI’s controls and indicators. Invoking GetControlValue returns the requested 

variable in its original data format, so care must be taken to only return values in data 

types compatible with MATLAB. For example, in MATLAB versions earlier than 

6.5, Booleans should be converted to integers or floating-point numbers in the 

LabVIEW VI before they are passed to MATLAB. SetControlValue accepts only 
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strings as parameter inputs, so all numeric data types must be converted in MATLAB, 

using the num2str or int2str functions. 

 

After the VI’s controls have been set, the VI is run using the Virtual Instrument class 

method, Run. Then the controls and indicators are passed back to MATLAB, where 

the process is repeated. 

 

 

3.2.8 MATLAB – Microsoft Word Interface Details 
 

Figure 3.7 shows a test program that opens a Microsoft Word document, reads text 

strings into MATLAB to be processed, and deletes them from the Microsoft Word 

document. 

 
% Set up MS Word ActiveX server. Open document. 
wordserv = actxserver('Word.Application'); 
wordserv.Visible = 1; 
set(wordserv.Options,'ReplaceSelection',0); 
invoke(wordserv.Documents,'Open','h:\Project\test.txt'); 
 
% Select text. Return it to MATLAB. Delete text. 
invoke(wordserv.Selection,'SetRange',0,10000); 
strng = get(wordserv.Selection,'Text') 
invoke(wordserv.Selection,'Delete'); 
 
% Quit MS Word. Don't save changes. 
invoke(wordserv,'Quit',0); 
 
% Clean up ActiveX objects to help prevent memory leaks. 
release(wordserv); 

 

Figure 3.7: Sample MATLAB – Microsoft Word Interface 
 

The Word.Application.Visible property opens a Microsoft Word window. It can be 

set directly in MATLAB. However, the Word.Options.ReplaceSelection property 

must be set using the MATLAB set function, since a Word.Options object has not 

been declared. This property sets the option “Typing Replaces Selection”, normally 

accessible from the “Edit” tab of the options menu in Microsoft Word. It causes new 

text to appear in front of the selected text, rather than overwriting it. 

 

Word.Documents.Open is the method used to open a document. 

Word.Selection.SetRange selects characters for processing in Microsoft Word – in 

this case the range is set large enough for every character in the document to be 
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selected. The Word.Selection.Text property returns the selected characters as a text 

string, ignoring any formatting information. It is returned to MATLAB using the get 

function. After it has been retrieved, the selected text is deleted from the document 

using Word.Selection.Delete. 

 

Finally, the application window is closed (without saving changes to the document) 

using Word.Application.Quit, and the ActiveX server is released from memory. 

 

 

3.3 Sensor Interfaces 
 

Before the LabVIEW hardware/software interface VIs were written, the various 

sensor signals were configured in the Measurement and Automation Explorer. This 

utility also includes a test panel (Figure 3.8) that provides direct access to the DAQ 

card’s analogue inputs and outputs, digital I/O ports and counters. 

 

 

Figure 3.8: Measurement and Automation Explorer Test Panel 
 

Following configuration and testing, the following interface VIs were developed for 

MARVIN’s sensors: 

 

• Digital Switch Input 

• Encoder Counter 

• IR Analogue Input 
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3.3.1 Tactile Sensors and Beacon Receivers 
 

The tactile sensors and beacon receivers provide digital signals that are accessed using 

the Digital Switch Input VI (block diagram given in Figure 3.9). This VI simply 

polls the Dig Line library VI for the first six lines on port 0 of the DAQ card. The 

iteration control must be set to 0 during the first call, indicating that Dig Line should 

initialise the line. 

 

 

Figure 3.9: Digital Switch Input VI Block Diagram 
 

 

3.3.2 Optical Encoders 
 

The counters that are attached to the optical encoders are controlled using Encoder 

Counter (block diagram given in Figure 3.11). During the first call (designated by 

setting iteration to zero), each counter is configured to increment on the rising edge 

of the encoder signal using the Event Or Time Counter Config library VI. The 

Counter Start VI sets the counters to begin incrementing on the next rising edge of 

the encoder signal. Counter Read is used to access the counter value in each 

subsequent call. Both Counter Start and Counter Read require a task ID input – a 
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value representing the device being addressed, and the I/O operation. Event Or Time 

Counter Config provides this value during the first call, but a predefined constant is 

used in subsequent calls. 

 

 

Figure 3.10: Encoder Counter VI Block Diagram 
 

 

3.3.3 Infrared Rangefinders 
 

IR Analogue Input measures analogue voltages from the six Analogue to Digital 

Converters (ADCs) attached to the infrared rangefinders. It simply calls the AI 

Sample Channel library VI once for each rangefinder. The DAQ card is configured 

in its RSE mode of operation using the Measurement and Automation Explorer. 

 

 

Figure 3.11: IR Analogue Input VI Block Diagram 
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3.4 Microcontroller Interface 
 

Andrew Payne has developed a protocol for communication between his 

microcontroller board and a PC [Payne & Carnegie, 2003]. The microcontroller 

software was developed in HI-TECH C, and required few modifications to operate on 

MARVIN. However, the PC side of Andrew Payne’s interface, coded in Visual C++, 

was not used because it would require an additional inter-application interface, and 

only a single application can communicate with the DAQ card at a time. Thus, a 

replacement interface was developed in LabVIEW that utilised the same protocol so 

that the microcontroller code could be retained. 

 

 

3.4.1 Communication Protocol 
 

Instructions are delivered to the microcontroller as two bytes of data. The first byte 

controls which motor to address and which direction to drive it, while the second byte 

represents the PWM value. If a valid instruction executes correctly, the 

microcontroller returns the inverse of the received byte (i.e. each bit is toggled), 

otherwise it returns an error signal. This allows the PC software to resend the 

instruction if it fails. The bit pattern of the protocol is given in Table 3.1. 

 

Table 3.1: PC – Microcontroller Communication Protocol 

Instruction Type Bit Pattern Example (Hex) 

Header – Sent* 0 0 0 0 0 L R D 05 

Header – Returned* 1 1 1 1 1 !L !R !D FA 

Data – Sent 1 PWM/2 AD 

Data – Returned 0 !(PWM/2) 52 

Error - Returned 0 1 1 1 1 1 1 1 7F 
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* Left wheel: L = 1, R = 0 

Right wheel: L = 0, R = 1 

Forwards: D = 0 

Reverse: D = 1 

 

 

3.4.2 Microcontroller Software 
 

The microcontroller software translates the received data into a PWM signal and 

direction bit for the selected motor driver. The software also filters out any transient 

direction changes that might result from noise on the data or handshaking lines. 

Additionally, if the microcontroller receives no instructions for 500 ms, the software 

times out and sets the PWM duty cycle to zero. This is a safety precaution to prevent 

collisions in the event of a PC lockup. 

 

If necessary, the PWM duty cycles can be limited by setting the Motor0Limit and 

Motor1Limit variables to nonzero values. An optional acceleration limit also exists 

to protect the motor drivers from damage that could result from rapidly increasing or 

decreasing the PWM duty cycle, or reversing direction. This is implemented using a 

timer interrupt that updates the PWM every 100 ms. The PWM changes are not 

allowed to exceed the values of Motor0AccMax and Motor1AccMax. 

 

 

3.4.3 PC – Microcontroller Interface Software 
 

The microcontroller interface is implemented in the Set Motor Power LabVIEW VI ( 

Figure 3.12). Firstly, the DAQ card’s 82C55A PPI is configured for bi-directional 

communication on Ports A and C using the Digital Group Config library VI. This 

allows the software to utilise the automatic handshaking capabilities of the OBFA, 

ACKA, IBFA and STBA lines on Port C. 

 

Data is written to the microcontroller using Digital Single Write, and read using 

Digital Single Read. These VIs are configured to access Port A only when the 
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handshaking lines indicate that the microcontroller is ready to send or receive data. 

This prevents the PC from writing to the port at the same time as the microcontroller, 

and ensures that data is not lost. The VIs must be called sequentially – a write, 

followed by a read (to ensure that the instruction was received and executed) – but 

LabVIEW does not execute code in an explicit sequence by default. Consequently, the 

VI’s are executed inside a sequence structure – a structure that executes subdiagrams, 

or frames, in a predefined order. 

 

The header and PWM values are written and verified for each motor, yielding a total 

of four read-write operations that are carried out whenever the VI is called. Each time 

a read-write operation is executed, the value returned from the microcontroller is 

compared with the value written to it. If the returned value is not the inverse of the 

written value, the read-write operations are repeated. If an error is returned after 

writing the PWM value, both the header and PWM instructions are redelivered. The 

error corrections are repeated up to ten times using while structures. A small while 

structure that encloses the header operation is in turn enclosed by a larger structure 

that encompasses both operations. 

 

Much of the error correction code could be implemented in MATLAB rather than 

LabVIEW. However, programs that utilise the MATLAB-LabVIEW interface are an 

order of magnitude slower than those that run directly in LabVIEW. In order to ensure 

that erroneous instructions can be redelivered in time to prevent the motors from 

responding to them, it was necessary to implement the error correction directly in 

LabVIEW. 
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Writing to Microcontroller 
 

 

Reading from Microcontroller 
 

Figure 3.12: Set Motor Power VI Bock Diagram 
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3.5 MATLAB Interface 
 

MARVIN’s program structure consists of four layers, as shown in Figure 1.3, loosely 

corresponding to the four elements of MARVIN’s project hierarchy given in Figure 

1.3. The top layer is Ashil Prakash’s speech recognition human-machine interface 

[Prakash & Carnegie, 2003]. The second layer is the navigation system designed by 

Lucas Sikking [Sikking & Carnegie, 2003]. This project consists of the two bottom 

software layers – the control system developed in MATLAB and the LabVIEW 

hardware interface. Craig Jensen’s generic hardware interface [Jensen & Carnegie, 

2003], or an equivalent system, may replace the LabVIEW system at a later date. 

 

Figure 3.13: Program Structure 
 

The three upper layers are implemented in MATLAB (although the human-machine 

interface also utilises Microsoft Word for speech recognition). Since the control 

system does not communicate directly with the human-machine interface, this report 

only details the interface between the control system and the navigation system. 

 

Human-Machine Interface

Navigation System

Control System

Hardware Interface
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3.5.1 MATLAB Interface Details 
 

MATLAB lacks generic support for real-time mechanisms such as interrupts and 

multithreading. It does provide asynchronous behaviour for certain specialised tasks 

such as GUIs and serial communication, in the form of callback functions – functions 

that are called when a particular event occurs. Some toolboxes also provide generic 

real-time support for Simulink, a graphical modelling and simulation tool for 

MATLAB. However, the options for MATLAB itself are more limited. 

 

These limitations, coupled with the complexities inherent in interrupt-driven systems, 

mean that the software relies on polling for most tasks. Each software layer is 

implemented as a function that must be called by the preceding layer often enough to 

operate correctly. The main control system function, marvin_control (Appendix 

B.2), is called by the navigation system at a frequency of at least 10 Hz. A delay loop 

within marvin_control ensures that the control cycle period is approximately 

constant. This system is adequate for the small number of layers involved, but once 

more high-level algorithms are added it will likely become necessary to convert to a 

less sequential approach. 

 

Data that must be maintained between function calls is stored in persistent variables. 

A persistent variable is like a global variable that can only be utilised by the function 

in which it was declared. It remains in memory between function calls, retaining the 

value it held during the previous call. Persistent variables must be initialised during 

the function’s first call, so each function that uses them includes a condition check to 

determine if the current call is the first. This introduces a small overhead, but the main 

system bottlenecks reside elsewhere, so the overall impact on performance is 

negligible. The use of persistent variables greatly reduces the number of arguments 

that must be passed to a function. Unnecessary details can thus be hidden from higher-

level functions, improving code readability and reusability. 
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3.5.2 Control System Inputs 
 

• Instruction Flag – This flag indicates whether the call is the first call, a new 

instruction, an emergency brake instruction or a request to continue executing 

the last instruction that was given. 

• Basic Instruction – Distance and angle variables comprise the simplest form 

of instruction. If a position is delivered with an angle of zero, the control 

system will attempt to move MARVIN in a straight line. An angle given with 

zero distance is a request for a stationary turn. Any combination of non-zero 

values indicates a moving turn along a circular path. 

• Offset Angle – Normal heading corrections require a sequence of two or more 

instructions – first MARVIN is reoriented, then the original instruction is 

resumed. The offset angle provides a simpler alternative that is useful for 

small heading adjustments. A non-zero offset angle indicates a heading error 

that the control system will attempt to correct while in motion. 

• Rangefinder Weights – These indicate the priority level of the infrared 

rangefinders for localisation purposes. 

• Corridor Coordinates – The corridor offset and angle coordinates represent 

MARVIN’s offset from the corridor centre axis and the direction of the centre 

axis respectively. They are only adjusted when MARVIN enters a new section 

of corridor or room. 

• Wall Offsets – This two-element array represents the offset coordinates of the 

corridor walls with respect to the corridor centre axis. 

• Origin Coordinates – These are a set of Cartesian coordinates and an angle 

that represent MARVIN’s initial position and orientation. 
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3.5.3 Control System Outputs 
 

• Time – The time since the first call, in seconds. 

• Absolute Coordinates – A set of Cartesian coordinates and an angle that 

represent MARVIN’s position and orientation with respect to the origin. 

• Relative Coordinates – Distance along the corridor centre axis, offset from 

the centre axis, and heading with respect to the corridor angle. These values 

are reset when the corridor angle changes. 

• Target Coordinates – Relative coordinates representing MARVIN’s intended 

position and orientation on the target trajectory. 

• Rangefinder Coordinates – Offset and heading measured by the 

rangefinders. 

• Wheel Velocities – Measured velocity of each wheel. 

• Rangefinder Data – Raw distances measured by the rangefinders. 

• Tactile Sensor Data – Booleans representing the state of each contact sensor. 

• Beacon Data – Booleans representing the state of each beacon receiver. 

 

 

3.6 Graphical User Interface 
 

Although the control system is designed to receive instructions from the navigation 

system, it must also be manually controllable during testing. The software simulation 

(Section 5.7) requires a real-time graphical output of MARVIN’s motion. This would 

also provide the ability to monitor the localisation algorithm’s accuracy during real-

world testing. 

 

These requirements are fulfilled through the use of a GUI. The MATLAB Layout 

Editor (GUIDE) provides a graphical means to add and adjust GUI elements. It 

generates a generic MATLAB file that can be edited to perform specific tasks. 

MATLAB GUIs utilise callback functions to provide asynchronous responses to user 

inputs. When the user triggers a button or slider on the GUI, the corresponding 

callback function is activated. Input and output states are stored in a data structure that 

is accessible from all the callback functions.  
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The control system GUI is given in Figure 3.14, and the corresponding MATLAB 

file, gui_marvin_control.m, is given in Appendix B.1. The main GUI function 

gui_marvin_control is largely unaltered from the generated function. The only 

additions are initialisations of various elements stored in the main data structure. 

 

 

Figure 3.14: GUI Window for Control System 
 

Each input button or slider has a corresponding callback function that updates its 

value in the main data structure. Slider values are also written to the GUI as text 

strings. The main callback function, run_Callback, is triggered from the GUI’s Run 

button. It calls marvin_control continuously until the Run button is triggered a 

second time. The marvin_control function’s input parameters are continuously 

adjusted to match the values on the sliders and buttons, while its outputs are plotted 

on the GUI’s two figure axes, or displayed as text. 

 

The standard function used for plotting data in MATLAB, plot, is too inefficient for 

real-time plotting because it redraws the entire figure each time it is called, even if the 

data has not changed. Instead, the line function is used to plot a static number of 
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straight-line segments. These line segments are updated in a First-In-First-Out (FIFO) 

arrangement, so that for each program cycle the oldest line is replaced with new 

values using the set function. 

 

MARVIN’s trajectory is plotted in the upper axis of Figure 3.14. Also included in the 

figure is a direction arrowhead with endpoints derived from the current heading using 

Equations 3.1 and 3.2, and a set of lines indicating the range detected by each 

rangefinder. The velocity of each wheel is plotted over time in the lower figure. 

 

)cos( ψθ ±−= aa lxx       Equation 3.1 

)sin( ψθ ±−= aa lyy       Equation 3.2 

 

x: MARVIN’s x coordinate (m) 

y:  MARVIN’s y coordinate (m) 

θ: MARVIN’s heading (rad) 

xa: Arrowhead endpoints’ x coordinates (m) 

ya: Arrowhead endpoints’ y coordinates (m) 

la: Length of arrowhead lines (m) 

ψ: “Sharpness” angle of arrowhead (rad) 

 

As well as being plotted in real time, the data returned from marvin_control is 

logged to a file for debugging purposes. Data is written to file as a table of values 

(stored as strings) separated by tab characters. Unique filenames are generated from 

their creation time using the datestr library function. The ISO 8601 notation given 

below is used because it is the only representation available that includes time values 

but omits characters that are illegal for filenames. 
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ISO 8601 standard notation for date and time stored in a single data field: 

 

yyyymmddTHHMMSS 

 

y: Year 

m: Month 

d: Day 

T: Separator between date and time 

H: Hour 

M: Minute 

S: Second 
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4 Sensor Software 
 

Just as an animal obtains knowledge of its surroundings using one or more of its 

senses (vision, hearing/sonar, smell, taste and touch), a mobile robot uses data from its 

sensors to produce an internal model of its state with respect to its environment. In 

MARVIN this model consists of simple distances, angles and velocities that the robot 

uses to autonomously maintain its intended trajectory, or take evasive action if 

necessary. 

 

The three main steps to building this model are as follows: 

 

• Data Acquisition – Obtaining raw sensor data. 

• Internal Representation – Converting raw data into a usable form. 

• Sensor Fusion – Combining data from multiple sensors. 

 

 

4.1 Data Acquisition 
 

The LabVIEW VIs that interface to the sensor hardware via the data acquisition card 

have already been detailed in Section 3.3. This section deals with the MATLAB 

functions that read data from the VIs. The values returned from these functions are not 

true raw data – various modifications have been made so that useful information can 

be obtained – but they are in the same form as the original data (i.e. counts from the 

optical encoders, voltages from the infrared rangefinders). 
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4.1.1 Odometers 
 

The acq_en_count function (Appendix B.3) reads in counter values from the 

Encoder Counter LabVIEW VI (Section 3.3.2), and outputs the number of counts 

measured since the last call, and the time interval between calls. 

 

MARVIN’s software utilises the cputime library function to measure the time elapsed 

between program cycles. This function outputs the time, in seconds, since the program 

started, with a resolution that depends on the hardware platform. MARVIN’s xPC 

provides millisecond precision, which is adequate for the control cycle period of 93 

ms. 

 

During each call, the time measured during the previous call is subtracted from the 

current value. If the measured time difference is less than the intended control cycle 

period, the function enters a delay loop. This results in an approximately constant 

period (which is necessary for an efficient control algorithm), and it ensures that the 

measured time interval is large enough to yield accurate velocity measurements. 

 

Similarly, the previous counter values for each encoder are subtracted from the 

current values returned from Encoder Counter. Negative values indicate when the 

24-bit counters have overflowed, at which time the values are adjusted accordingly. 

Given the wheel speeds MARVIN encounters, and the control cycle period used, the 

counters never overflow more than once in a single control cycle. 

 

The raw counter values do not take wheel direction into account, so they are adjusted 

according to the direction that the motors are being driven. In order to protect the 

motor drivers, the software does not reverse a wheel’s direction while it is in motion. 

This means that the wheel direction could only be calculated incorrectly if an external 

force moved the wheels in opposition to the driving motors, which is unlikely to occur 

in the intended indoor operating environment. 
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4.1.2 Rangefinders 
 

Utilising the IR Analogue Input VI (Section 3.3.3), acq_ir_voltage (Appendix B.4) 

returns an array of voltages sampled on each of the six analogue input ports attached 

to the IR rangefinders. The only modification made to the raw voltages is a software 

filter that reduces noise. At long ranges a small change in voltage results in a large 

change in the measured distance, so it is necessary to filter out noise before the 

voltage-distance conversion is carried out. A number of different software averaging 

techniques were considered for the filter, including: 

 

• Mean 

• Median 

• Weighted Mean 

 

 

4.1.2.1 Mean 

 

n

E
E

n

i
i∑

== 1        Equation 4.1 

 

Ei: ith sample 

Ē: Mean average of samples 

n: Number of samples 

 

This technique is easily implemented in MATLAB using the library function mean. It 

provides fast response to change, but extreme values can significantly affect the result 

(unless a large number of samples are taken, which would negate the speed benefit). 

Thus the mean is most effective when filtering small amounts of noise. 
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4.1.2.2 Median 

 

2/nmed EE = ,  nn EEEE ≤≤≤≤ −121 ...    Equation 4.2 

 

Emed: Median average of samples 

 

This technique can be applied in MATLAB using the median function. In general, the 

median average is less sensitive to extreme values than the mean, but it is also slower 

to respond. 

 

 

4.1.2.3 Weighted Mean 
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iw      Equation 4.3 

 

wi: ith weighting 

 

No library functions are available to calculate the weighted mean, but the scheme is 

relatively easy to implement using simple arithmetic. A number of different 

techniques can be used to assign weights to each sample. For example, weights can be 

allocated according to the time at which samples were taken – i.e. more recent 

samples are given higher weights. Another possibility is to apply weights according to 

a sample’s proximity to the median value, providing a compromise between the mean 

and median techniques. 
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4.1.2.4 Selected Implementation 

 

Due to factors such as ambient light and electrical crosstalk, a high level of noise can 

be observed on the rangefinder inputs – especially at long range. Consequently, in this 

application the median average is superior to the mean. Depending on the 

implementation, a weighted mean could also be effective. However, the median 

average provides sufficient filtering, and with greater efficiency than a weighted 

average could achieve, so it is the logical choice. The median average is taken over 

ten samples (corresponding to approximately 935 ms), providing an optimal 

compromise between accuracy and speed of response. 

 

 

4.1.3 Tactile Sensors and Beacon Receivers 
 

The tactile sensor switches and beacon receiver relays are both acquired using the 

Digital Switch Input VI (Section 3.3.1). The acq_switch function (Appendix B.5) 

reads in signals from the indicators representing each of the six digital lines, and 

returns them as an array of Boolean values. 

 

Since the MATLAB-LabVIEW interface lacks support for callbacks or interrupts, the 

digital lines must be polled. This situation is less than ideal when responding to 

collisions, since it causes a delay of up to one control cycle period (approximately 100 

ms). In practice however, this delay is insignificant compared to the motors’ response 

time, so its effect on the system is not noticeable. 

 

 

4.2 Internal Representation 
 

If data from multiple sensors is to be combined effectively, it must first be converted 

into an internal representation that is shared by all the sensors. The most significant 

data that can be derived from multiple sensors is a set of coordinates defining 

MARVIN’s position and orientation. Since MARVIN is primarily designed to operate 

in a narrow, rectangular corridor or laboratory environment, its position is given in 
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Cartesian coordinates – distance xM along the corridor or room, and offset yM from its 

centre axis – while its heading is defined as an angle θM, in radians (Figure 4.1). 

 

 

Figure 4.1: Internal Representation Coordinate System 
 

The issue of representation is not entirely limited to overlapping sensor data. Data that 

is unique to a single type of sensor, such as MARVIN’s wheel velocities and object 

distances, must still be provided in a form that the control system can utilise. 

 

 

4.2.1 Odometers 
 

The MATLAB function rep_en_velocity (Appendix B.6) obtains velocity 

information from the encoder counts and time given by acq_en_count. The 

rep_en_coord function (Appendix B.7) converts individual wheel distances to an 

overall position and heading for MARVIN. 

 

 

4.2.1.1 Odometer Conversion Factors 

 

Due to factors such as wheel slippage, missed counts, gear slop and non-uniform tyre 

radii, the theoretical odometer count/distance conversion factor (24867 pulses per 

metre) only approximates the actual count/metre ratio. More accurate conversion 

factors for each wheel are obtained experimentally. 
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A number of straight-line motion instructions with different velocity limits (or peak 

velocities for the velocity profiles) are executed in the same manner as the tests shown 

in Section 6.1. The ratio between the actual distance travelled and the distance 

measured by the encoders for each instruction is plotted in Figure 4.2. 
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Figure 4.2: Obtaining Odometer Correction Factor 

 

The distance ratios are approximately uniform for velocity limits greater than 0.2 m/s, 

which suggests that there is no measurable change in wheel slippage over this range. 

The theoretical conversion factor is multiplied by the average of these ratios to 

eliminate the systematic error. Since 0.2 m/s is the minimum value intended for the 

velocity limit during normal operation, only the distance ratios for velocity limits 

greater than this are averaged. The resulting average distance ratio of 1.1285 yields a 

conversion factor of 28062 pulses per metre. 

 

The real-world conversion factor is not equal for both wheels – an overall drift to the 

left is observed if they are assigned equal values, most likely due to unequal tyre radii. 

Consequently, the value obtained above must be adjusted experimentally for each 

wheel to reduce the systematic error. 

 

A preliminary measure of the degree of odometer asymmetry can be accomplished by 

recording the average ratio of distances measured by each wheel while manually 
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pushing MARVIN along a straight line. However, the results are distorted because the 

forces exerted on the wheels when MARVIN is being pushed are different from those 

provided by the motors during autonomous operation. The average ratio resulting 

from these tests is 0.9817, which yields multipliers of 1.00915 for the left wheel, and 

0.99085 for the right wheel. If they are applied to the conversion factors, these values 

overcompensate for the error, resulting in a significant drift to the right. Consequently, 

the multipliers are adjusted manually until the systematic error is reduced to 

satisfactory levels. The final conversion factors are: 

 

Left Wheel: 28202 pulses per metre 

Right Wheel: 27795 pulses per metre 

 

 

4.2.1.2 Wheel Velocities 

 

The conversion factors given above provide the distance travelled by the perimeter of 

each wheel. These distances divided by the measured time interval provide the wheel 

velocities. 

 

The limited resolution of the time measurement introduces noise into the measured 

velocities, so filtered velocities are also provided for algorithms where low noise is 

more important than speed of response. A weighted mean average is used, where the 

weighting for each value is twice that of the preceding value (0.5, 0.25, 0.125, ...). 

This provides a satisfactory level of filtering while minimising the delay. 

 

 

4.2.1.3 Position and Orientation  

 

Assuming no wheel slippage occurs, each wheel movement results in a change in 

MARVIN’s position and/or heading. If both wheels move the same distance in the 

same direction, MARVIN travels in a straight line – its position changes, but its 

heading remains constant. If each wheel moves the same distance, but in opposite 

directions, a stationary turn results – MARVIN’s position remains constant but its 

heading shifts. Any motion other than these two extremes will result in a moving turn 
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– a shift of both position and heading. The correlation between individual wheel 

movements and MARVIN’s overall motion is given by Equations 4.4-4.6. It is 

illustrated in Figure 4.3. 

 

 

Figure 4.3: Correlation Between MARVIN’s Motion and Wheel Motion 
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φM: Angle travelled by MARVIN’s centre (rad) 

w: MARVIN’s wheel separation distance (m) 

lL: Arc-length travelled by left wheel (m) 

lR: Arc-length travelled by right wheel (m) 

lM: Arc-length travelled by MARVIN’s centre (m) 

dM: Distance travelled by MARVIN’s centre (m) 

 

During testing a small systematic error is observed on the measured angle, possibly 

due to non-uniform tyre radii and/or inaccurate wheel separation measurements. In 
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order to compensate for this, an experimentally obtained correction factor of 0.971 is 

applied to Equation 4.4. 

 

Finally, the calculated distance and angle are converted into a set of Cartesian 

coordinates using Equations 4.7-4.9, which are added to MARVIN’s position and 

orientation. 

 

MM ϕθ =∆        Equation 4.7 

)cos(θDxM =∆       Equation 4.8 

)sin(θDyM =∆       Equation 4.9 

 

θM: MARVIN’s heading (rad) 

xM: MARVIN’s distance along centre axis (m) 

yM: MARVIN’s offset from centre axis (m) 

 

 

4.2.2 Rangefinders 
 

The function rep_ir_distance (Appendix B.8) converts the filtered voltages provided 

by acq_ir_voltage into distances. Two different techniques were considered for the 

voltage-distance software model – polynomials and lookup tables. Localisation 

information is extrapolated from the measured distances using rep_ir_coord 

(Appendix B.9). 

 

 

4.2.2.1 Polynomial Model 

 

Equation 4.10 gives a polynomial that fits relatively closely to the experimentally 

obtained voltage-distance points given in Figure 4.4. However, each rangefinder has a 

slightly different voltage-distance curve, so for best accuracy each rangefinder 

requires a unique polynomial. Also, even on the closest-fitting rangefinders, the 

polynomial begins to diverge from the measured curve when the range is small. This 
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is a significant problem, since at close range the risk of collision is highest, so this is 

where a rangefinder’s accuracy is of utmost importance. 

 

21 IRIR

IR
IR DVCV

BVAd
++

+
=      Equation 4.10 

 

A = 8.271×10-5 

B = 9.369 

C = -3.398 

D = 17.339 

 

dIR: Infrared rangefinder distance (m) 

VIR: Infrared rangefinder voltage (V) 
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Figure 4.4: Polynomial Matched to Data 
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4.2.2.2 Lookup Table 

 

Instead of using a single polynomial to model the entire voltage-distance relationship, 

this technique involves dividing the curve up into a series of straight lines. The upper 

and lower voltage limits of each line segment are recorded in a table (or, in the case of 

a programming language such as MATLAB, an array). Calculating distance from 

voltage then becomes a simple matter of determining which table entry contains the 

measured voltage, and applying the appropriate straight-line equation. 

 

When no low-order polynomial exists that can closely match the data (as is the case 

for MARVIN’s rangefinders), the lookup table results in a closer fit, and therefore 

greater accuracy. Conversely, this method can be computationally less efficient than 

the polynomial, especially if the curve is divided up into a large number of table 

entries. However, in this project, where more significant bottlenecks reside in other 

sections of code, the advantages of this technique outweigh its disadvantages. 

 

The rep_ir_distance function stores a table of voltages for each rangefinder in the 

form of a single 28×6 matrix, with the corresponding distances stored in a 28×1 

matrix. The resulting lookup table curves are plotted in Figure 4.5, along with the 

experimental data from which they were obtained. 

 

The function determines the table entry containing the measured voltage using an 

incremental condition check. If the voltage is below the table’s lowest entry 

(approximately 0.4 V, corresponding to a distance of 1.5 m), the distance is set to 

infinity, indicating that the measured object is out of range. If it is above the highest 

table entry (approximately 2.75 V, corresponding to a distance of 0.15 m), the 

distance is set to zero. Otherwise, the distance is calculated using Equation 4.11. 
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Figure 4.5: Lookup Table Curves Matched to Data 
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VL1: Lookup table entry’s lower voltage limit (V) 

VL2: Lookup table entry’s upper voltage limit (V) 

dL1: Lookup table entry’s lower distance limit (m) 

dL2: Lookup table entry’s upper distance limit (m) 

 

 

4.2.2.3 Localisation Using Rangefinders 

 

Ranges are converted into offset and heading information using the rep_ir_coord 

function. The function calculates offset by comparing measured wall distances with 

the expected position of each wall. Heading is derived from the relative distances 

measured by two or more adjacent rangefinders. 

 

Prior to their use in this function, the rangefinder distances are filtered to eliminate 

transient signals caused by objects momentarily blocking the rangefinders. This helps 

to prevent MARVIN from reacting to people walking past in the corridor. Each range 

is compared with the mean average of the last ten values. If the difference is larger 

than 0.2 m, the range is not used in the offset and heading calculations. 

 

The position and orientation of each rangefinder with respect to MARVIN’s position 

and heading are recorded in a set of coordinate arrays. They are added to the offset 

and heading derived from the odometers to obtain coordinates relative to the corridor 

or room centre axis (Equations 4.12 and 4.13). These coordinates are used in Equation 

4.14 to predict the wall distance that each rangefinder will measure, so that the 

algorithm can reject those rangefinders that are not facing towards a wall. 
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yIR: Rangefinder offset (m) 

θIR: Rangefinder heading (m) 

xIR’: Rangefinder distance with respect to MARVIN (m) 

yIR’: Rangefinder offset with respect to MARVIN (m) 

θIR’: Rangefinder heading with respect to MARVIN (rad) 

yW: Wall offset (m) 

dIR(pr): Predicted distance measured by rangefinder (m) 

 

Equations 4.15 and 4.16 yield the coordinates of measured objects relative to 

MARVIN’s position and orientation. An offset is obtained from each valid 

rangefinder distance using Equation 4.17, while a heading calculation requires valid 

distances from adjacent rangefinder pairs, as shown in Equation 4.18. The heading 

resulting from Equation 4.18 can be equal or opposite to the actual heading, so both 

possibilities are compared with the odometer-measured heading, and the closest match 

is selected. Figure 4.6 summarises the various parameters used in these equations. 

 

 

Figure 4.6: Obtaining Offset and Heading from Rangefinders 
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xob: Object’s distance with respect to MARVIN (m) 

yob: Object’s offset with respect to MARVIN (m) 

yM(IR): MARVIN’s offset calculated from rangefinder (rad) 

θM(IR): MARVIN’s heading calculated from rangefinder (rad) 

 

Each offset and heading is allocated into one of two arrays according to which wall 

the rangefinder is facing. The mean average of each nonempty array is taken, yielding 

four values – an offset and heading for each wall. If an array is empty, the 

corresponding offset or heading is set to NaN, indicating that it should not be used in 

the sensor fusion algorithm. 

 

This algorithm is flexible enough that it can be used for any number of rangefinders in 

any combination of positions and orientations where at least two rangefinders face 

each wall, as long as the appropriate values are recorded in the coordinate arrays. 

 

 

4.2.3 Coordinate Transformations 
 

The control system’s internal representation of MARVIN’s position and orientation is 

calculated relative to the centre axis, and the coordinates are reset when MARVIN 

moves into a room or section of corridor with a different centre axis. This is because 

the rangefinders’ localisation algorithm requires the relative coordinate system to be 

aligned properly with the walls. However, the constant changes in reference frame 

result in difficulties in plotting MARVIN’s internal representation for testing 

purposes. Also, the navigation system requires an absolute set of coordinates for its 
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internal map. Consequently, the control system transforms the relative coordinates 

into absolute coordinates for external use. 

 

The coordinate transformation function coord_trans (Appendix B.10) applies axes 

rotations given in Equations 4.19 and 4.20. Using this function, absolute values are 

obtained for measured and target coordinates, and rangefinder origins. The rel_coord 

function (Appendix B.11) resets MARVIN’s relative coordinates and updates their 

origin on the absolute coordinate axis whenever the centre axis angle changes. 

 

αα sin'cos' yxx −=       Equation 4.19 

αα cos'sin' yxy +=       Equation 4.20 

 

α: Axes rotation angle (rad) 

 

 

4.3 Sensor Fusion 
 

Each of MARVIN’s sensors provides useful data, but their individual importance 

varies with circumstance. For example, odometers are very accurate over short 

distances, but they are susceptible to cumulative error, which limits their long-term 

usefulness. Rangefinders are less accurate, but their error does not increase over time. 

 

In order to minimise these problems, MARVIN utilises sensor redundancy – that is, 

multiple sensors providing the same information, but with different degrees of 

accuracy and precision. Overlapping sensor signals are combined, or fused, in a 

manner that takes advantage of each sensor’s strengths and reduces its weaknesses.  

 

Although this chapter concentrates on the fusion of overlapping data from different 

sensors, the term sensor fusion has a broader meaning that also encompasses non-

redundant sensor signals and multiple samples from a single sensor. In general, a 

sensor data fusion algorithm consists of one or more of the following implementations 

[van Dam et al, 1999]: 
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• Complementary – Fusion of sensor data that does not overlap. Individually, 

each sensor produces only a partial model of the robot’s state, and the 

complete model is assembled from the disparate components. For example, 

MARVIN’s beacons provide distance information, while the rangefinders 

provide offset and heading. In combination, this yields a complete 

representation of MARVIN’s position and orientation. 

• Competitive – Fusion of independent, overlapping sensor data in order to 

reduce errors. This can involve data from different sensors measured at the 

same time, or different measurements carried out by the same sensor over 

time. Given enough sensor redundancies, competitive fusion can allow a robot 

to continue to function at a reduced capacity in the event of individual sensor 

failures. However, none of MARVIN’s overlapping sensors can be fused in a 

strictly competitive manner, since unavoidable dependencies exist between 

them. 

• Cooperative – Fusion of data from sensors that are dependent on each other. 

MARVIN’s rangefinder localisation algorithm (Section 4.2.2.3) fits into this 

category, since individual rangefinders are selected or rejected in accordance 

with information from the odometers, and the rangefinders’ offset and heading 

calculations are directly influenced by the odometers’ heading measurement. 

The navigation system’s beacon identification is also somewhat dependent on 

localisation information provided by the other sensors. 
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4.3.1 Sensor Fusion Techniques 
 

A number of techniques were considered for MARVIN’s sensor data fusion 

algorithm, including: 

 

• Boolean Logic 

• Dynamic Weighted Average 

• Bayesian Inference 

• Dempster-Shafer Inference 

• Fuzzy Logic 

• Neural Network 

 

 

4.3.1.1 Boolean Logic 

 

With this scheme the sensor with the greatest perceived accuracy in a given situation 

is used exclusively. All other sensors are ignored since their data is less likely to 

match the robot’s real-world motion. This is the simplest algorithm to implement, but 

it discards a significant amount of useful data. 

 

If used on MARVIN, the odometers would be favoured most of the time, since they 

are the most accurate sensors for short-term measurements. However, once their 

readings began to deviate from the real-world motion due to cumulative error, the 

odometer data would need to be reset using data from the rangefinders and beacons. 

 

 

4.3.1.2 Dynamic Weighted Average 

 

A weighted average allows each sensor to make a contribution to the internal model, 

but the sensors are still prioritised according to estimated uncertainties. Dynamic 

weights can also be assigned on a situational basis, providing the benefits of the 

purely Boolean logic, without its disadvantages. 
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On MARVIN, the odometer weights would be much higher than the other sensors, 

given their superior accuracy. Even with very low weights, the rangefinders would 

correct odometer errors over time. Selecting the exact rangefinder weights is simply a 

trade-off between accuracy and speed of response. In situations where the rangefinder 

data is misleading – when MARVIN passes a corridor intersection or an open door, 

for example – the weights can be temporarily zeroed. 

 

 

4.3.1.3 Bayesian Inference 

 

In this implementation sensors and their uncertainties are represented as probability 

density functions (often Gaussian distributions, but other functions can also be used). 

Given two overlapping probability density functions, a function for the fused sensors 

can be determined using Equation 4.21 [van Dam et al, 1999]. 
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rzprzp
rrzp =     Equation 4.21 

 

p: Probability density function 

z:  Common internal representation 

r1,r2: Raw sensor data from independent sensors 

 

This technique provides a more structured approach than simpler techniques such as 

the weighted average. However, it is not applicable between the two main sensors 

utilised in MARVIN’s sensor fusion algorithm – the odometers and rangefinders – 

because they are not independent. 
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4.3.1.4 Other Techniques 

 

• Dempster-Shafer Inference – Dempster-Shafer theory is an extension of 

Bayesian inference. It allows probabilities to be applied to groups of states 

(e.g. the sensor detects an object that is likely either “A” or “B”) and unknown 

states (e.g. the object detected is likely undefined) [Wu et al, 2002]. 

• Fuzzy Logic – Unlike Bayesian and Dempster-Shafer techniques, fuzzy logic 

does not depend upon rigid probabilities. Sensors are assigned membership to 

sets whose boundaries are loosely defined, and may overlap. They can be 

prioritised according to intuitive concepts such as “possibly,” “probably” and 

“definitely” [Godjevac, 1995]. 

• Neural Network – A learning algorithm can be trained with the sensor 

measurements as inputs and the internal model as the output. This can 

potentially result in a more intuitive interpretation of the data than traditional 

techniques [van Dam et al, 1996]. 

 

 

4.3.1.5 Selected Implementation: Dynamic Weighted Average 

 

For a complex system with a large number of sensors, high-level techniques such as 

neural networks can produce the most reliable localisation data. However, for a 

system such as MARVIN with relatively few sensors and a comparatively simple 

operating environment, they do not provide enough of an improvement to justify the 

complexity of their implementation, and the increased CPU overhead that would 

result from their use. MARVIN’s sensor data fusion algorithm utilises a form of 

dynamic weighted average, the simplest technique that can be used without sacrificing 

performance. 
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4.3.2 MARVIN’s Implementation 
 

The beacons are utilised in conjunction with the navigation system’s internal map, so 

they are not included in the sensor fusion algorithm detailed in this thesis. Instead, the 

raw beacon data is passed directly to the navigation system. 

 

The sensor_fusion function (Appendix B.12) corrects the odometers’ offset and 

heading data using similar data obtained from the rangefinders. Each corrected value 

is a weighted average of three inputs – the original odometer input and a separate 

rangefinder input for each wall. 

 

Rangefinder weights are comprised of two factors. The first of these, assigned inside 

sensor_fusion, determines the maximum weighting that can be applied to a 

rangefinder offset or heading. This value remains constant throughout normal 

operation, but it is increased during initialisation, so that MARVIN’s initial offset and 

heading can be calibrated from the measured wall positions. 

 

The second factor is received from the navigation system, which uses its internal map 

to decide when to utilise the rangefinders for localisation, and when to ignore them. 

This prevents errors from arising when MARVIN passes an open door, corridor 

intersection or change in corridor wall position. A separate factor is assigned for each 

wall, so a disturbance on one side does not disrupt the other (which is the reason for 

deriving two independent sets of rangefinder localisation data). 

 

MARVIN’s sensor data fusion algorithm can be extended to incorporate additional 

sensors, such as a compass (which would provide an absolute heading reference) and 

a laser rangefinder (which would provide localisation information similar to that 

produced by the infrared rangefinders). Once the new sensor data is converted into 

MARVIN’s distance-offset-heading representation it can be assigned a weighting in 

the same manner as the other sensors. 
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5 Motor Control Software 
 

If a robot’s sensors are its eyes and ears, its actuators are its muscles. Actuators 

provide physical motion, allowing a robot to react to the environment observed by its 

sensors. MARVIN’s primary actuators are its two driving motors, which are used to 

control its overall velocity, position and orientation. The motor control system 

consists of the following steps: 

 

• Motion Planning – Translating a motion instruction into efficient velocity 

profiles and trajectory. 

• Heading Control – Controlling the heading in order to maintain the 

trajectory. 

• Velocity Control – Controlling wheel velocities in order to maintain the 

heading and velocity profiles. 

• Collision Avoidance – Reacting to obstacles in order to avoid collisions. 

• Driving Motors – Supplying power to the motors in order to drive them at the 

intended velocities. 

 

 

5.1 Motion Planning 
 

Motion instructions delivered by the navigation system primarily consist of a distance 

and angle input. From this, the control software generates a target trajectory for 

MARVIN to travel, and a velocity profile for each wheel. The target trajectory 

provides a reference against which MARVIN’s position and orientation can be 

compared, allowing the control system to dynamically correct any deviations that 

occur. Similarly, wheel velocities are compared against the velocity profiles in order 

to provide smooth acceleration and deceleration and maintain their ratio at the value 

necessary to produce the intended motion. 
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5.1.1 Generating Target Trajectory 
 

The function gen_tgt_trj (Appendix B.13) translates a given distance/angle 

instruction into a set of coordinate arrays – distance, offset and heading – representing 

MARVIN’s intended position and orientation at regular intervals along the trajectory. 

The trajectory is characterised as a series of straight lines whose end points are given 

by these coordinates. This representation only approximates curved trajectories, but it 

provides a large degree of flexibility in the trajectories that can be generated. 

 

For moving turns, the radius of the circular path (Figure 5.1) is given by Equation 5.1. 

The heading at each point along the trajectory is calculated in Equation 5.2. Distance 

and offset are then obtained using Equations 5.3 and 5.4. The sign of the ± term of 

each of these equations is selected according to the direction of the given instruction. 

Straight-line trajectories are obtained using Equations 5.5 and 5.6. 

 

 

Figure 5.1: Circular Trajectory from Distance and Angle Inputs 
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Circular Trajectories 
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dtgt: Distance between initial and target positions (m) 

φtgt: Target angle to turn through (rad) 

rtgt: Radius of circular target trajectory (m) 

n: Target trajectory coordinate element number 

N: Total number of target trajectory coordinate elements 

θ0: Initial heading (rad) 

θn: Heading element (rad) 

x0: Initial distance (m) 

xn: Distance element (m) 

y0: Initial offset (m) 

yn: Offset element (m) 

 

If an instruction results in a target trajectory that passes too close to a wall, the 

trajectory is clipped to prevent potential collisions. Any part of the target trajectory 

that exceeds the allowable offset range is converted into a straight-line trajectory 

parallel to the centre axis.  
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5.1.2 Generating Velocity Profile 
 

The wheel_pos function (Appendix B.14) calculates the target wheel position from 

the arc-length that each wheel must travel in order for MARVIN to correctly execute 

the given instruction. This function carries out the inverse of the calculations in 

Section 4.2.1.3. Equation 4.6 is rearranged to obtain a central arc-length from the 

given straight-line distance, while the individual wheel arc-lengths are obtained using 

Equations 5.7 and 5.8, which are derived from Equations 4.4 and 4.5. 
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The target wheel arc-lengths and the velocity limit are utilised in gen_vel_prof 

(Appendix B.15) to generate a velocity profile for each wheel. This algorithm 

operates in the distance domain rather than the time domain, because the most 

important goal is to drive MARVIN to the intended location, whereas the time taken 

to get there is less important. Velocity profiles are represented as arrays of velocities 

and distances, which can be considered a form of lookup table. 

 

The first task of this function is to obtain the maximum velocity that the wheels can 

be safely driven at for a given instruction. This value is highest for straight-line 

instructions and lowest for stationary turns. 

 

In order to maintain a straight trajectory, the wheel velocities should be equal at all 

times. For stationary turns they should be equal in magnitude and opposite in 

direction. For circular trajectories the wheel velocities should be proportional to each 

other, with the proportionality constant for the slower wheel equal to the ratio of the 

target wheel positions. In each case the wheels must arrive at their target positions 

simultaneously. 
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The step response of MARVIN’s wheels (in the time domain) is of the form shown in 

Figure 5.2. However, in order to avoid wheel slippage, and to ensure that one wheel 

does not accelerate or decelerate faster than the other (which would result in heading 

errors), acceleration should be limited to less than the maximum obtainable value. For 

maximum convenience, MARVIN’s velocity profiles are of the linear form given in 

Figure 5.3. 

 

 

Figure 5.2: Wheel Step Response 

 

 

Figure 5.3: Velocity-Time Profile 

 

This form can be divided into up to three sections – acceleration, constant velocity 

and deceleration. Though linear in time, the velocity profile is modelled in the 

distance domain where the acceleration and deceleration sections are not linear. The 

first step to developing the model is to obtain the position where the acceleration and 

deceleration curves would intersect if no upper velocity limit were present (as shown 

in Figure 5.4), using Equation 5.10. The corresponding velocity is calculated using 

Equation 5.9. If this velocity is below the upper velocity limit, the velocity profile will 

be approximately triangular. Otherwise it will be approximately trapezoidal, and the 

positions where the constant velocity line intersects with the acceleration and 

deceleration curves are calculated using Equation 5.11 and 5.12, respectively. In each 

case Equation 5.9 is used to calculate velocities from positions, given the various 

substitutions shown in Table 5.1. 
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Figure 5.4: Velocity-Distance Profile 
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Table 5.1: Substitutions for Equation 5.9 

Original Substitution if vc ≤ vm Substitution if vc > vm 

 l ≤ lc l > lc l < la1 la1 ≤ l ≤ la2 l > la2 
      

v0 vi vc vi vm vm 

a a1 a2 a1 0 a2 

l0 0 lc 0 la1 la2 
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lf: Final position (m) 

vi: Initial velocity (m/s) 

vm: Upper velocity limit (m/s) 

a1: Acceleration (m/s2) 

a2: Deceleration (m/s2) 

vc: Velocity at acceleration-deceleration intersection (m/s) 

lc: Position at acceleration-deceleration intersection (m) 

la1: Position at acceleration-upper velocity limit intersection (m) 

la2: Position at deceleration-upper velocity limit intersection (m) 

 

The final task that this function performs is to update the direction flags for each 

wheel. Ordinarily this would be unnecessary since wheel velocities are recorded as 

signed values. However, the microcontroller returns an error if the wheel direction bit 

is inverted while the current PWM magnitude is nonzero, even if the new magnitude 

is zero. Without the direction flags it would not be possible to indicate the sign of a 

zero velocity instruction. 

 

 

5.2 Control Theory 
 

Two control loops are implemented in MARVIN’s control algorithm. The outer loop, 

heading control (Section 5.3), adjusts target wheel velocities so that MARVIN is 

always facing the direction necessary to follow the target trajectory. The inner loop, 

velocity control (Section 5.4), ensures that the wheels are driven at the target 

velocities. Several alternative control techniques were considered for these control 

loops: 

 

• PID 

• Fuzzy Logic 

• Neural Networks 

• Neuro-Fuzzy 
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5.2.1 PID 
 

PID control utilises three different feedback elements – Proportional, Integral, and 

Derivative – to produce an output (called the control variable) that depends on the 

tracking error between a target value (called the set point) and a measured value 

(called the process variable). 

 

With proportional control (Equation 5.13) the control variable is proportional to the 

error. Proportional control is generally fast and stable (for low proportional gains), but 

it results in a steady-state offset error. Increasing the proportional gain can reduce the 

offset error, but it also increases the system’s instability. In many systems the stability 

requirements limit the proportional gain to a value that yields an unacceptably large 

offset error. 

 

)(tKeu(t) =        Equation 5.13 

 

u(t): Control variable 

e(t): Tracking error 

K: Proportional gain 

 

Integral control (Equation 5.14) involves the summation of errors over time. Unlike 

proportional control, it does not produce an offset error, but it is slower to reach 

steady state than proportional control. In most control algorithms the integral sum 

should be limited to prevent integrator windup, an effect where it can increase 

indefinitely when the system is in saturation. 

 

∫=
t

I

dηe(η
T
Ku(t)

0

)       Equation 5.14 

 

TI: Integral time. 

 

Derivative control (Equation 5.15) is dependent on the rate of change of error. It is 

generally faster than both proportional and integral control, so the derivative element 
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of PID control is primarily responsible for a system’s speed of response. Derivative 

control greatly amplifies noise, so it is usually applied only to filtered signals. 

 

)(teKTu(t) D &=       Equation 5.15 

 

TD: Derivative time. 

 

Combining the three control elements allows a system to exploit their advantages, and 

eliminate their disadvantages. Equations 5.13-5.15 are added together to form 

Equation 5.16, which represents the entire PID control system. This yields the transfer 

function (in the Laplace domain) given in Equation 5.17. 
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5.2.2 Fuzzy Logic 
 

Fuzzy logic involves the use of qualitative reasoning instead of purely quantitative 

measurements. It is particularly useful when dealing with systems that are ill-defined 

or difficult to model. Like Boolean logic, fuzzy logic involves selecting an action if a 

set of conditions is satisfied. However, rather than deciding whether the conditions are 

true or false, fuzzy logic estimates each condition’s degree of truth (generally a 

number between 0 and 1), and calculates output values based on the relative estimates. 

 

Process variables are assigned membership to one or more fuzzy sets, which are 

labelled with qualitative descriptions such as “small”, “medium” and “large”. The 

degree of truth of a given set is calculated from its membership function, which can be 

a number of shapes, including triangular, trapezoidal and Gaussian. Various 

techniques can be used to obtain an output value from the membership functions. One 
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of the simplest methods is to apply a weighted average of the target value for the 

relevant fuzzy sets. Weights can be derived from their relative degrees of truth. 

 

 

5.2.3 Neural Network 
 

A neural network utilises simplified models of biological neurons in an attempt to 

simulate the adaptive processes that occur in the brain. The main advantage of a 

neural network is its ability to learn through training instead of requiring the 

developer to design a hard-coded algorithm. 

 

A model for an artificial neuron is given in Figure 5.5. A weighted sum of each of the 

neuron’s inputs is calculated, a threshold, θ, is subtracted and the result is fed into an 

activation function, f(a). Activation functions that are commonly utilised include step, 

ramp, sigmoid and Gaussian functions. The neuron’s output may represent the control 

variable, or it may pass to another neuron, where the process is repeated. Training a 

neural network is generally accomplished by adjusting the weights until the output of 

the network matches the target output. 

 

 

Figure 5.5: Artificial Neuron 
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5.2.4 Neuro-Fuzzy 
 

One of the main disadvantages of fuzzy control systems is the lack of a systematic 

design approach. Tuning these systems is a time-consuming process. One solution to 

this problem is to use neural networks to tune a system automatically. These self-

tuning controllers can be developed faster than conventional systems, and they often 

provide better performance [Godjevac, 1995]. 

 

 

5.2.5 Selected Implementation: PID 
 

The simplest and most widely used technique, PID control, is selected due to its ease 

of implementation. Although a PID control system does not necessarily provide the 

best response characteristics, it is sufficient for the purposes of this project. The same 

discrete PID algorithm is utilised by each of the control loops, but they are tuned 

independently, resulting in different control constants. 

 

The digital PID control algorithm is derived from Equation 5.16 in its differential 

form (Equation 5.18). This is approximated in the discrete domain using Euler’s 

method, resulting in Equation 5.19, which can be implemented directly in MATLAB. 
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Equation 5.19 
 

In order to prevent integrator windup, upper and lower thresholds can be imposed on 

the control variable so that the integral sum does not add to the control variable if it is 

already at the maximum value that can have an effect on the system. Alternatively, the 

three control elements can be singled out, with separate limits imposed on each. 

Separating out the components also allows the algorithm to assign different levels of 
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filtering to each element’s error signal. Thus, noise can be reduced on the derivative 

element’s error signals without adversely affecting the speed of the proportional and 

integral components. 

 

 

5.3 Heading Control 
 

MARVIN’s heading control algorithm is implemented in three steps. Firstly, 

uncorrected target wheel velocities are obtained using the velocity profiles. Then a 

heading error is obtained, representing the difference between the measured heading 

and the heading necessary to maintain the correct trajectory. Finally, the heading error 

is utilised in conjunction with the uncorrected target velocities to produce a set of 

velocity errors for each wheel. 

 

 

5.3.1 Uncorrected Target Wheel Velocities 
 

The uncorrected target velocity for each wheel is obtained from the velocity profile 

using tgt_velocity (Appendix B.16). This function applies an algorithm similar to that 

used to obtain rangefinder distances from the lookup table described in Section 

4.2.2.2. The velocity for a given distance is calculated from the velocity profile 

lookup table using Equation 5.20. 
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lL1: First velocity profile position (m) 

lL2: Second velocity profile position (m) 

vL1: First velocity profile velocity (m/s) 

vL2: Second velocity profile velocity (m/s) 

 

Two minimum velocity thresholds are required to start the wheels moving correctly, 

and to prevent them from stopping prematurely. The rising velocity threshold 
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represents the velocity that the wheels must be driven at in order to overcome static 

friction and start moving. The falling velocity threshold represents the minimum 

velocity that the wheels can be driven at once they are in motion. Thus, the rising 

velocity threshold is applied during the acceleration phase of the velocity profile, and 

the falling velocity threshold is applied at all other times, unless the target position has 

been reached. The nature of the velocity control system means that these thresholds 

can be lower than the physical thresholds of the system, but they must be nonzero to 

ensure smooth operation. 

 

 

5.3.2 Heading Error 
 

The target trajectory provides a reference that is used to ensure that MARVIN’s 

position and orientation coordinates are as close as possible to the correct values at all 

times. If MARVIN begins to drift off course, it becomes necessary to adjust its 

heading in order to return to the correct path. 

 

The heading_error function’s (Appendix B.17) first task is to locate the target point 

– the point on the target trajectory that is closest to the measured position. Equation 

5.21 is intended for instructions that involve a significant physical displacement (i.e. 

straight line motion, or moving turns where the centre of rotation lies outside 

MARVIN’s perimeter). It utilises the measured position in conjunction with each set 

of coordinates comprising the target trajectory to obtain the separation distance for 

each point. For instructions where rotation is more easily measured than displacement 

(i.e. stationary turns), the heading separation (Equation 5.22) is calculated instead. 

 

22 )()( yyxxd nnn −+−=      Equation 5.21 

|| θθϕ −= nn        Equation 5.22 

 

dn: Separation distance for target trajectory element n (m) 

φn: Separation angle for target trajectory element n (rad) 
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The elements that produce the two smallest separation distances or separation angles 

are obtained using the library function min. The corresponding coordinates form the 

endpoints of a line that is orthogonal to the line connecting the measured coordinates 

to the target point, as shown in Figure 5.6. The point of closest approach is the 

intersection between these two lines, as calculated in Equations 5.23-5.26. This point 

of intersection may be outside the two endpoints if MARVIN is outside the range of 

the target trajectory. Certain calculations require that the target point be inside the 

target trajectory, while this limitation causes problems with other calculations. Thus, 

two sets of coordinates are generated – one for each of the conflicting requirements. 

 

 

Figure 5.6: Closest Point on Target Trajectory 
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m1: Gradient of line connecting two points on target trajectory 

m2: Gradient of line connecting measured position to target point 

xtgt: Target distance coordinate (m) 

ytgt: Target offset coordinate (m) 

 



Motor Control Software  89 
 

   

Because the target trajectory is divided into straight lines, the target position 

coordinates are only approximations of the ideal value, but the resolution of the target 

trajectory is high enough to ensure sufficient accuracy. These coordinates yield two 

important values: separation heading and separation distance. The separation heading 

is the heading that MARVIN must obtain in order to move towards the target position. 

It is calculated using the four-quadrant inverse tangent function atan2 in conjunction 

with Equation 5.27. The separation distance – the distance between the actual and 

target positions – is calculated using Equation 5.28. 
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22 )()( yyxxd tgttgts −+−=     Equation 5.28 

 

θs: Separation heading (rad) 

ds: Separation distance (m) 

 

The third important value for heading error calculations is the target heading – the 

heading that corresponds to the target position on the trajectory. Like the target 

position, the target heading derived in this algorithm is not equal to the ideal value. It 

is approximated as a weighted average of the endpoint headings, with the weighting 

derived from the position of the target point relative to the endpoint positions, as 

shown in Equations 5.29-5.31. A weighted average of two angles is not as simple as 

the equivalent calculation for ordinary numbers, because angles overflow after a 

single rotation. The function average_angle (Appendix B.18) was created for this 

purpose – it applies the necessary modifiers so that the angles being averaged are in 

the same range. 
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p1: Position of target point relative to first endpoint (m) 

p2: Position of target point relative to second endpoint (m) 

θtgt: Target heading coordinate (rad) 

 

To correct heading errors for reverse motion along the trajectory, MARVIN needs to 

turn in the opposite direction from that required for forward motion. Consequently, if 

MARVIN is travelling in reverse, the target heading coordinate is folded over an axis 

formed by the measured heading. 

 

An ideal trajectory to follow in order to correct position and heading errors is of the 

form given in Figure 5.7. This trajectory is achieved by incrementally adjusting 

MARVIN’s heading error, which is the difference between the intended heading and 

the measured heading. The intended heading at a given time is a weighted average of 

the target heading and separation heading, with the weights proportional to the 

separation distance. Thus, if MARVIN is far from its target position, the separation 

heading is given higher priority than the target heading so that the position error can 

be reduced quickly. However, if MARVIN’s position is approximately correct, its 

heading must be maintained at the correct value in order to prevent it from drifting 

away from the target trajectory – in this situation the target heading is given higher 

priority than the separation heading. Equation 5.32 gives the overall heading error 

calculation. The three most recent heading errors are output for the PID control 

algorithm to utilise. 

 

 

Figure 5.7: Reacquiring Target Trajectory 
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θθθθ −−+= tgtssssse dKdK )1(     Equation 5.32 

 

θe: Heading error (rad) 

Ks: Proportionality constant for separation distance (0.5 m-1) 

 

The final variable produced by this function is a value representing the proportion of 

the trajectory that MARVIN has covered at a given time (Equation 5.33). If certain 

parameters exceed their predefined thresholds, MARVIN is halted prematurely by 

setting the proportion to 1. This indicates that MARVIN is unable to complete the 

instruction accurately, so it awaits a new instruction from the navigation system. 
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Tp: Proportion of trajectory covered 

n: First trajectory element 

N: Total number of trajectory elements 

 

 

5.3.3 PID Heading Control 
 

The function heading_control (Appendix B.19) adjusts the target wheel velocities by 

applying a PID control algorithm to the heading error information. A modifier 

representing the fractional change in wheel velocities required to correct a given 

heading error is obtained using the basic PID algorithm given in Equation 5.19. The 

heading errors are relatively clean signals, so no additional filtering is necessary for 

the derivative control element. Consequently, the control algorithm is implemented as 

a single equation. 

 

The modifier is converted into a multiplication factor that is applied to a single wheel, 

reducing its velocity to the value required to implement the heading correction, as 

shown in Table 5.2. It is limited to a magnitude of 1 or less, preventing the wheel 

from reversing direction, and protecting the system from integrator windup. 
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Table 5.2: Wheel Velocity Multiplication Factors 

 Left wheel Right wheel 

modifier < 0 1+modifier 1 

modifier ≥ 0 1 1-modifier 

 

The heading control system is tuned through experimentation using the simulation 

(Section 5.7). An appropriate proportional gain is obtained that results in a reasonable 

response time with minimal oscillation. The integral time is adjusted to reduce the 

steady-state offset from the target trajectory (Figure 5.8). Finally, the derivative time 

is adjusted to a value that improves the response time without adversely affecting 

system stability. 
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Figure 5.8: Using Simulation to Tune Heading Control System 
 

The optimal low-velocity control gains result in instability at high velocities, so the 

proportional gain is not kept constant over the full range. Instead, the high-velocity 

gain becomes inversely proportional to the target velocity. 
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Limits are imposed on the wheels’ acceleration in order to maintain stability and 

minimise wheel slippage. Two different measures of acceleration are limited: target 

acceleration and real acceleration. Target acceleration is derived from the change in 

target velocity since the last control cycle. Real acceleration involves the difference 

between the measured velocity and the target velocity. The limit for real acceleration 

is less stringent than that for target acceleration, given the amount of noise on the real 

velocity measurement. Thus, the target acceleration limit is favoured during normal 

operation, and the real acceleration limit is only imposed if an error or external 

disturbance causes the measured velocity to diverge significantly from the target 

velocity. 

 

Once the target velocities are finalised, heading_control produces a set of velocity 

errors representing the differences between each wheel’s measured velocities and 

target velocities for the last three control cycles. 

 

 

5.4 Velocity Control 
 

As long as the velocity-PWM relationships are modelled accurately, the measured 

wheel velocities will closely match the target velocities under normal conditions. 

However, external disturbances such as uneven floors affect the loading experienced 

by the wheels, which in turn have a significant impact on the measured velocities. 

Rather than waiting until a disturbance causes MARVIN to drift off course before 

correcting it, a second PID control loop monitors and corrects the wheel velocities 

directly. 

 

The PID algorithm given in Equation 5.19 is applied to the target wheel velocities in 

the function velocity_control (Appendix B.20). The proportional and integral 

elements are applied directly to the control errors produced by the heading_control 

function, but derivative control is applied only to filtered errors (which are obtained 

from the filtered velocities described in Section 4.2.1) in order to reduce the 

destabilising effects of noise. 
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Upper and lower velocity thresholds are imposed to prevent the wheel velocities from 

exceeding safety limits or changing direction while in motion, as well as protecting 

against integrator windup. The difference between applied velocity and measured 

velocity is also limited for safety reasons. This prevents the applied velocity from 

ramping up indefinitely if the odometers or motor drivers fail, or if the wheels are 

obstructed. 

 

The velocity control algorithm must be tightly tuned, since it is the primary factor that 

limits the performance of the heading control algorithm. Tuning the velocity control 

loop is accomplished in approximately the same manner as for heading control: the 

proportional gain, integral time and derivative time are selected experimentally in 

order to provide a satisfactory trade-off between stability, offset and speed of 

convergence. Once preliminary tuning is complete, the two control loops are tested in 

combination, and final adjustments are made to each. 

 

 

5.5 Collision Avoidance 
 

The control system’s collision avoidance scheme halts MARVIN’s forward motion in 

the event of an impending (or actual) collision, and awaits further instructions from 

the navigation system. It does not attempt to plot a course around the obstacle, since 

the navigation system is better suited to this task. 

 

Impending collisions are grouped into three levels of threat according to the proximity 

of a measured obstacle. The first level is implemented in the heading_error function 

(Section 5.3.2, Appendix B.17). If the rangefinder facing the direction of motion (i.e. 

the front sensor for forward motion, and the rear sensor for reverse motion) detects an 

obstacle within 0.8 m, and the trajectory crosses the measured obstacle, the instruction 

ends prematurely. Due to various acceleration limits imposed on the control system, 

MARVIN will decelerate smoothly. This prevents wheel slippage and protects the 

motor drivers from the current surges that accompany rapid changes in applied power. 
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The two higher threat levels are implemented in the stop_wheel function (Appendix 

B.21). Medium level collision avoidance is implemented if the rangefinder facing the 

direction of motion measures an obstacle within a range of 0.4 m, or if the navigation 

sends a stop instruction (by setting the distance and angle inputs to zero). In this 

situation the target velocity is set to zero. However, the microcontroller contains its 

own acceleration limits that prevent the PWM duty cycles from decreasing too 

quickly. 

 

If one or more of the contact sensors detect a collision, or if the navigation system 

sends an emergency brake instruction, the brake flag is set, which instructs the 

microcontroller to ignore its acceleration limits and stop the wheels immediately. The 

strain on the motor drivers is preferable to the damage that would result from a 

collision. 

 

 

5.6 Driving Motors 
 

The target velocity must be converted into a value representing the PWM duty cycle 

that would drive the wheels at that velocity. The microcontroller represents this PWM 

value as an 8-bit integer, so the duty cycle is given by Equation 5.34. 

 

255
PD =        Equation 5.34 

 

D: PWM duty cycle 

P: PWM value 

 

The microcontroller is configured to limit the PWM to half duty cycle (or a value of 

128) to prevent high-speed collisions. The duty cycle limit also protects the motor 

drivers from excessive current surges during acceleration and deceleration. This 

precaution is doubly necessary because three separate thesis projects would be 

compromised if MARVIN were seriously damaged. 
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5.6.1 Velocity-PWM Relationship 
 

If a given PWM value does not drive a wheel at the target velocity, the PID control 

system compensates by adjusting it until the velocity is correct. However, the wheel 

will settle on the correct velocity more slowly if the mismatch between PWM value 

and target velocity is large, so for optimal performance a close match under normal 

conditions is necessary. In order to obtain the velocity-PWM relationships for each 

wheel, a range of step responses are recorded (refer to Figure 5.2 for samples). 
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Figure 5.9: Freewheeling and Loaded Step Responses 
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The average steady-state velocity is measured for each step response, and the resulting 

data is plotted in Figure 5.10. Both the freewheeling and loaded relationships are 

linear except where they cross the PWM axis. 
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Figure 5.10: Loaded and Freewheeling Velocity-PWM Plots 
 

The function get_motor_power (Appendix B.22) models the relationship as a pair of 

straight lines with equal gradients but different PWM-intercepts for each wheel 

direction (Equations 5.35 and 5.36). 
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2.256.159 ±×= ll vP       Equation 5.35 

0.240.151 ±×= rr vP       Equation 5.36 

 

Pl: Left wheel’s PWM value 

Pr: Right wheel’s PWM value 

 

 

5.6.2 Writing PWM Value to Microcontroller 
 

PWM values produced by get_motor_power are signed floating-point numbers 

between –255 and 255. These are converted into header and data bytes for the 

microcontroller communication protocol using set_motor_power (Appendix B.23). 

The header byte is set to a value between 2 and 5, selecting the appropriate motor and 

direction according to the protocol detailed in Section 3.4.1. The data byte is derived 

from the raw PWM value using Equation 5.37, with the sign of the ± term depending 

on direction. A direction flag (Section 5.1.2) is utilised for this purpose rather than the 

sign of the raw value, because it provides direction information even if the PWM 

value is zero. If the brake flag is set to 1, the header and data bytes are zeroed, 

indicating that an emergency stop is necessary. 

 

128
2

|| ±= PB        Equation 5.37 

 

B: Data byte 

 

The header and data bytes are written to the microcontroller using the Set Motor 

Power VI (Section 3.4.3). Set Motor Power returns four error counts indicating the 

number of times each header or data byte was redelivered. 
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5.7 Simulation 
 

A number of factors necessitated the development of a software simulation of 

MARVIN’s behaviour, including: 

 

• Delays with the motor driver hardware. 

• The simultaneous testing requirements of multiple developers. 

• The need for an ideal, controllable environment in which to test algorithms. 

 

This simulation consists of a series of MATLAB functions that model the responses 

of MARVIN’s sensors and actuators, replacing the hardware interface functions. The 

main function marvin_control (Section 3.5.1, Appendix B.2) is structured so that a 

single flag switches between simulation mode and real mode, and the program selects 

between the simulation functions and hardware interface functions accordingly. 

 

The odometers are simulated using sim_en_count (Appendix B.24), which is a 

replacement for acq_en_count (Section 4.1.1, Appendix B.3). The encoder pulse 

count over a given control cycle is calculated using Equation 5.38. For testing 

purposes, cumulative error can be simulated by multiplying a count by a known 

factor. 

 

TECvc ss =        Equation 5.38 

 

cs: Simulated encoder count (pulses/m) 

E: Cumulative error factor 

C: Conversion factor (26996 pulses/m) 

vs: Simulated wheel velocity (m/s) 

T: Control cycle period (s) 

 

The sim_ir_voltage function (Appendix B.25) replaces acq_ir_voltage (Section 

4.1.2, Appendix B.4), simulating the infrared rangefinders’ voltage outputs. Since the 

control system lacks an internal map, simulated corridor walls are placed at positions 
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given by the navigation system or the user. Simulated rangefinder distance 

calculations are the same as those performed by the rangefinder localisation algorithm 

to predict distances (Section 4.2.2.3, Equations 4.12-4.14). They are then converted 

into voltages using the same lookup table as rep_ir_distance (Section 4.2.2.2, 

Appendix B.8). Equation 4.11 is rearranged to obtain voltage from distance (Equation 

5.39). 
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The tactile sensors and beacons are not simulated by the control system. MARVIN’s 

tactile sensors are only useful as an emergency collision warning system, which is not 

necessary in simulation. The control system does not utilise the beacons, and they 

cannot be simulated accurately without a map, so the navigation system is better 

equipped to simulate them. 

 

The function sim_motor_power (Appendix B.26) replaces set_motor_power 

(Section 5.6.2, Appendix B.23). Accurate motor driver characteristics were not known 

at the time this function was developed, so the simulation is not used to test the 

velocity control algorithm. Instead, it provides an ideal response, setting the velocity 

of each wheel to the target velocity. The only real-world properties that are simulated 

are velocity thresholds, representing the slowest velocities that the wheels will tolerate 

before they stop. 

 

Plots of MARVIN’s simulated motion are presented in Chapter 6, where they are 

compared with data obtained from real world tests. 

 



Results  101 
 

   

6 Results 
 

To measure the control system’s performance, a number of tests are performed in 

simulated and real environments. The enclosed CD (detailed in Appendix C) contains 

captured data, figures and video footage obtained from these tests. 

 

 

6.1 Open Environment Test Results 
 

The first set of tests is performed inside a 6 × 4 m section of laboratory that is treated 

as an open environment because the various desks and other obstructions along the 

walls, as well as the large wall separation, mean that the rangefinders cannot be used 

for localisation purposes. Various motion instructions are delivered to the control 

system to execute at 0.2 m/s, 0.4 m/s and 0.6 m/s. 

 

The maximum velocity limit for these tests, 0.6 m/s, approximates the speed that the 

left wheel (the slowest wheel for any given PWM value) travels at when the PWM 

value is set to half duty cycle (the present upper limit – refer to Section 5.6 for 

details). 

 

The control system utilises only the odometers for localisation during these tests, so it 

is susceptible to a number of errors, including: 

 

• Initial Misalignments – The odometers can only measure changes in position 

and orientation, so the control system cannot detect or correct initial position 

or heading errors. While position errors contribute little to the final position 

error, even small initial heading errors can significantly alter the final position. 

An origin point is marked on the floor as a reference so that MARVIN can be 

aligned consistently, minimising the heading error. Using the floor markings, 

the errors due to position misalignments can be reduced to approximately 1 cm 

in either direction. Initial heading errors are limited to approximately 1.5o. For 

a 4 m linear trajectory this yields an offset error of 10 cm. 
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• Odometry Errors – Odometry errors can be both random and systematic. An 

attempt has been made to reduce the systematic errors through odometer 

calibrations. Random errors are unavoidable in tests such as these that rely on 

dead reckoning for localisation. Undetected heading errors caused by wheel 

slippage or missed counts on a single wheel are the most significant source of 

position error, especially if they occur near the start of the trajectory. 

 

 

6.1.1 Linear Forward Trajectory 
 

Figure 6.1 gives the result of a simulated 4 m straight-line instruction executed at 0.4 

m/s. The equivalent instruction implemented in the real world is shown in Figure 6.2. 

The simulation can be considered an ideal response that the real-world results should 

aspire to match. A comparison of Figure 6.1 and Figure 6.2 shows that the real-world 

results do closely match the behaviour of the simulation after taking the signal noise 

and motor response characteristics into account. 
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Figure 6.1: Simulation, Distance = 4 m/s, Velocity Limit = 0.4 m/s 
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Figure 6.2: Real World, Distance = 4 m/s, Velocity Limit = 0.4 m/s 
 

The target trajectory is plotted for each of these results along with control software’s 

internal representation of the path travelled (the measured trajectory). For the real-

world test, the actual trajectory that MARVIN follows is not shown, because it is 

impractical to externally measure MARVIN’s position while it is in motion. Instead, 

only MARVIN’s real-world destination position is plotted. Since this is within 3 cm 

of the internal measurement of MARVIN’s final position, it can be seen that the real-

world motion does closely match the internal representation of the trajectory. 

 

The lower plot in each figure contains the velocity profiles measured for each wheel. 

The only “imperfections” in the simulation velocity profiles are caused by the lower 

velocity limits in the acceleration and deceleration stages. These limits are in place to 

prevent the control system from driving the wheels at such low velocities that 

oscillations occur. They are not visible on the real-world velocity profiles because the 

motor responses smooth out sharp edges such as these. Much of the noise observed on 

the real-world velocity profiles (including the small spike at the centre of the left 
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wheel’s profile) is likely due to the limited resolution of the PC’s timer (Section 

4.2.1.2) than rather than actual variations in wheel velocity. 

 

 

6.1.2 Linear Reverse Trajectory 
 

A real-world instruction executed at 0.4 m/s in the reverse direction is plotted in 

Figure 6.3. The result is very similar to the forward motion, with MARVIN 

maintaining a straight trajectory and arriving within 5 cm of the internal measurement 

of position. In this test, a slight velocity mismatch during deceleration results in a -1o 

heading error at the end of the trajectory, but since the system detects the error it can 

be corrected in subsequent instructions. 
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Figure 6.3: Real World, Distance = -4 m, Velocity Limit = 0.4 m/s 
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6.1.3 Moving Turn 
 

Figure 6.4 shows an 18o moving left turn instruction executed with a 0.6 m/s velocity 

limit in the real world. The left wheel is maintained at a slightly lower velocity than 

the right wheel in order to produce a controlled drift to the left. A small disturbance is 

apparent at the beginning of the left wheel’s velocity profile as the control system 

ramps up the applied velocity to overcome static friction, then slows the wheel to 

compensate for the initial “velocity surge”. 
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Figure 6.4: Real World, Turning Angle = -18o, Velocity Limit = 0.6 m/s 
 

 

6.1.4 Linear Trajectory with Offset Angle 
 

A linear distance instruction with a 7.2o initial offset angle executed at 0.6 m/s is 

given in Figure 6.5. Of the instructions shown, this is the only instruction that results 

in significant deviation from the target trajectory. This is to be expected, since the 

offset angle is implemented as a means to dynamically correct an initial heading error. 
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MARVIN begins the trajectory aligned horizontally, so the right wheel velocity is 

reduced in order to steer MARVIN to the right. The left wheel velocity then reduces 

to line MARVIN up with the target trajectory. 
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Figure 6.5: Real World, Offset Angle = 7.2o, Velocity Limit = 0.6 m/s 
 

 

6.1.5 Position Errors 
 

A thorough analysis of the system’s accuracy requires that a range of instructions be 

executed multiple times at each speed. The resulting position errors for each test are 

given in Figure 6.6. These plots generally show the final positions clustered around 

the target position. The errors are spread more widely across the y-axis (error range = 

-14→13 cm, average error magnitude = 5 cm) than the x-axis (error range = -9→8 

cm, average error magnitude = 2 cm) because undetected heading errors due to initial 

misalignment and odometry errors affect the MARVIN’s offset more than the overall 

distance it travels. There is no obvious correlation between velocity and position 
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error, which is further evidence that changes in velocity do not affect wheel slippage 

over the measured range. 
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Figure 6.6: Position Errors in an Open Environment 
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6.2 Corridor Environment Test Results 
 

The coordinate system that the navigation system uses for MARVIN’s primary 

intended operating environment, the corridors on the first floor of C Block at the 

University of Waikato, is shown in Figure 6.7. Although the navigation system is not 

utilised in the tests detailed in this section, these results are presented in the same 

coordinate system. The largest straight section of corridor is selected for these tests so 

that the expected wall positions can be set to constant values. In an environment as 

restrictive as these corridors, the only motion instructions that can be executed safely 

are linear trajectories and stationary turns. 
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Figure 6.7: Corridor Coordinate System 

 

 

6.2.1 Linear Trajectories 
 

A simulated 6 m trajectory executed at 0.4 m/s is given in Figure 6.8. Figure 6.9 

shows the same instruction executed in the real world with the rangefinder weights 

zeroed so that they do not contribute to the localisation algorithm. Figure 6.10 is a plot 

of the instruction executed on the completed system that localises MARVIN using 

fused odometer and rangefinder data. These plots are similar to those obtained in 

Section 6.1, but they also include object positions detected by each rangefinder. Like 

the measured trajectory, the object positions indicate the software’s internal 

measurement of position rather than an actual location in the real world. 



Results  109 
 

   

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

0 1 2 3 4 5 6 7 8 9 10

4

5

6

7

8

x (m)

y 
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

 

Figure 6.8: Simulation, Velocity Limit = 0.4 m/s 
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Figure 6.9: Real World, Odometers Only, Velocity Limit = 0.4 m/s 
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Figure 6.10: Real World, Odometers and Rangefinders, Velocity Limit = 0.4 m/s 
 

The simulation result shown in Figure 6.8 assumes that the wall positions remain 

constant throughout the entire test, which is not the case in the real world. The 

rangefinder objects shown in Figure 6.10 give a good indication of the true shape of 

the corridor walls. The depressions on either side of MARVIN near the mid-point of 

the trajectory are doors. The raised surface on the left side of the second half of the 

trajectory is a wall-mounted notice board. 

 

The measured wall positions begin to drift away from their expected positions in 

Figure 6.9 because MARVIN has drifted to the left due to odometry errors and/or 

initial misalignment. This no longer occurs in Figure 6.10 because the rangefinder 

localisation algorithm is continuously correcting any offset and heading errors 

encountered by the odometer localisation algorithm. 

 

Overall, ten instructions are executed at each speed. Half only utilise the odometers 

for localisation, while the other half also incorporate the rangefinder data. The 

resulting position errors, plotted in Figure 6.11, show that the rangefinders reduce the 
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system’s offset (y-axis) error range from –11→18 cm to -7→2 cm. The average offset 

error magnitude reduces from 7 cm to 3.5 cm. 
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Figure 6.11: Position Errors and Measurement Errors in a Corridor 
Environment 

 

Instructions executed at slower velocities appear to benefit more from the rangefinder 

data than those executed at faster speeds. This could be due to the delay associated 

with the filtering on the rangefinder voltage signals. However, the most likely cause is 

that the sensor fusion scheme does not take MARVIN’s velocity into account. 

Although the weights remain the same, the rangefinders’ contribution is effectively 

being reduced at higher speeds because the corrections are being applied at fewer 

positions along the trajectory. The rangefinder weights could become speed-

dependant, but increased weights would result in more rapid variations in measured 

offset and heading. MARVIN’s manoeuvrability decreases as its speed increases, so it 

may react unfavourably to these changes. 

 

Figure 6.11 also includes measurement errors (the differences between the actual 

positions and the software’s internal measurements) for each test. The odometer-only 

measurement errors are approximately the same as the position errors (error range = –

11→18 cm, average error magnitude = 7 cm) – this means that MARVIN’s position 

error is not detected by the software. However, the measurement errors for the results 
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that incorporate rangefinder data have an average magnitude of only 2 cm, and they 

are spread over a very narrow range (-4→0 cm) centred around the –2 cm point on the 

y-axis. The notice board on the left wall is the most likely cause of this minor 

systematic error. Since the expected wall positions are set to constant values for these 

tests, the rangefinder localisation algorithm cannot take into account the slight 

variation in expected wall positions. If it was utilised for these tests, the navigation 

system could adjust the expected wall positions using information from its internal 

map, eliminating this error. 

 

 

6.2.2 Stationary Turns 
 

The rangefinder localisation algorithm is very effective at correcting offset and 

heading errors for motion that is parallel to the walls, but its usefulness diminishes for 

other types of motion, as demonstrated by the sequence of two 90o stationary turns 

shown in Figure 6.12. In this test, a 470 ms delay due to the filtering on the 

rangefinder signals distorts the measured wall positions while MARVIN is turning. 

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2
Velocity Profiles

time (s)

ve
lo

ci
ty

 (m
/s

)

Left Wheel
Right Wheel

-1 0 1 2 3 4 5 6 7 8 9

4

5

6

7

8

x (m)

y 
(m

)

Trajectory and Object Positions

Wall Positions
Target Trajectory
Measured Trajectory
Back Left Object
Front Left Object
Front Object
Front Right Object
Back Right Object
Back Object

 

Figure 6.12: 90o Right Turns in Corridor 
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6.2.3 Extreme Tests 
 

In order to gauge the true effectiveness of the rangefinder localisation algorithm, tests 

are performed under extreme conditions that the odometers alone would be unable to 

withstand. Deliberate misinformation about the initial heading is delivered to the 

software, and the rangefinder localisation algorithm must detect the true heading so 

that the control system can apply the appropriate course corrections. These tests are 

performed at low velocities (0.2 m/s) for safety reasons. Figure 6.13 shows the results 

of a test performed with MARVIN oriented approximately 20o away from the 

expected horizontal heading. Figure 6.14 is a similar test performed with an initial 60o 

heading error. In both cases MARVIN corrects the initial heading error within the first 

3 m of the trajectory and arrives within 10 cm of the target position. The exact 

position errors for each test are given in Table 6.1. 

 

 

Figure 6.13: Correcting Initial 20o Heading Error 
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Figure 6.14: Correcting Initial 60o Heading Error 
 

Table 6.1: Position Errors for Extreme Tests 

Initial Heading Error Position Error, x-axis Position Error, y-axis 

20o -3 cm 0 cm 

60o 10 cm 0 cm 

 

 

6.2.4 Collision Avoidance 
 

The collision avoidance tests involve placing a hapless victim in front of MARVIN as 

it executes a normal instruction. Figure 6.15 shows that MARVIN stops within 40 cm 

of the lucky individual when travelling at 0.6 m/s. The same individual has also 

learned through bitter experience that when all else fails the tactile sensors do indeed 

function correctly. 
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Figure 6.15: Collision Avoidance 
 

 

6.3 Combined System Test Results 
 

In order to travel long distances down a corridor while utilising the rangefinder 

localisation algorithm, the wall positions must be updated dynamically. Also, the 

rangefinder weights must be temporarily zeroed whenever MARVIN passes through 

regions such as the corridor intersection that may yield misleading measurements. 

Controlling these inputs manually does not produce reliable or repeatable results, so 

these tests can only be performed in conjunction with the navigation system. 

 

Phew! 
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6.3.1 Single Instruction 
 

The first tests performed on the combined navigation system and control system are 

linear distance trajectories that traverse the entire corridor. The navigation system 

delivers a single 29.3 m instruction to the control system and adjusts the wall 

positions and rangefinder weights as it executes. Figure 6.16 shows the simulated 

trajectory executed at 0.6 m/s. Figure 6.17 shows the equivalent instruction executed 

in the real world. 

 

The fact that the measured object distances line up with the expected wall positions in 

the y-axis shows that MARVIN maintains a relatively straight trajectory over the 

entire distance, which would not be possible using odometers only. False readings are 

apparent on some of the measured object positions. The “objects” detected by the 

front and rear rangefinders near the start and the end of the trajectory are most likely 

due to ambient light or reflections from the windows at each end of the corridor. The 

disturbance on the left wall near the end of the trajectory is a glass cabinet.  

 

 

Figure 6.16: Simulation, Single Instruction, Velocity Limit = 0.6 m/s 
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Figure 6.17: Real World, Single Instruction, Velocity Limit = 0.6 m/s 
 

Position and measurement errors for a number of similar tests are plotted in Figure 

6.18. Given the large distance travelled, it is expected the distance errors should be 

larger than the errors measured in previous tests, and the results confirm this (error 

range = -22→7 cm, average error magnitude = 11 cm).  

 

Offset errors should ordinarily be corrected based on the rangefinder data, but the 

offset errors for these tests (error range = -15→5 cm, average error magnitude = 8 cm) 

show a general increase from those obtained in the previous tests. The most likely 

cause of this discrepancy is that the rangefinder weights on the left side are zeroed 

over a large section of corridor close to the final position to prevent the control system 

from reacting to the shifting wall positions and the glass cabinet. Since the left wall is 

only utilised briefly at the end of the trajectory, the control system does not have time 

to detect and correct the offset errors. This also explains why the errors are corrected 

more successfully at 0.2 m/s than at the higher velocities. 
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Figure 6.18: Errors for Single Instructions 

 

 

6.3.2 Sequence of Instructions 
 

The final tests involve a sequence of three instructions delivered by the navigation 

system – a linear distance, followed by a 90o left turn, then another linear distance. 

Due to odometry errors MARVIN is unlikely to be exactly in the centre of the 

corridor intersection following the left turn, nor will it be facing the correct direction, 

so the control system must acquire the intended position and orientation after it enters 

the new section of corridor. The resulting simulated trajectory is given in Figure 6.19 

and the real-world trajectory is plotted in Figure 6.20. 

 

The primary disturbances observed on the measured object positions occur in the 

corridor intersection. This is because the lag introduced by the rangefinders’ software 

filter smears the measured corner positions when MARVIN executes a stationary turn. 

The slight disturbance on the right wall next to the final position is produced by a 

drinking fountain. 
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Figure 6.19: Simulation, Sequence of Instructions, Velocity Limit = 0.6 m/s 
 

 

Figure 6.20: Real World, Sequence of Instructions, Velocity Limit = 0.6 m/s 
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Due to odometry errors, MARVIN enters the second section of corridor slightly to the 

left of the corridor centre axis. Once the navigation system sets the rangefinder 

weights to nonzero values, the control system detects the position error and steers 

MARVIN to the right, as evidenced by the reduced velocity of the right wheel shown 

on the velocity profile. The measured trajectory actually appears straighter than the 

observed motion in the real world because the rangefinder localisation algorithm 

shifts the measured position towards the left at the same time as MARVIN moves to 

the right to correct the error. 

 

A slight drift to the left is observed as MARVIN travels through the corridor 

intersection (where it cannot use the rangefinders for localisation) before it executes 

the left turn instruction, resulting in an initial position error that the control system 

cannot detect or correct. This causes MARVIN to overshoot the target position by 

approximately 4 cm. 
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Figure 6.21: Errors for Sequences of Instructions 

 

Figure 6.21 gives the position and measurement errors for a number of similar tests. 

Unlike the previous results, the position errors shown for these tests do not represent 

the final positions with respect to a single target position because the navigation 

system instructs the control system to drive MARVIN to a slightly different target 

position for each test. The x-axis represents the final offset errors for these tests, since 
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MARVIN turns into the vertically oriented section of corridor. The measurement 

errors are spread widely across the x-axis (error range = -12→12 cm, average error 

magnitude = 6 cm), probably due to the non-uniform wall positions in the target 

section of corridor, as well as the fountain. 
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7 Conclusions 
 

7.1 Objectives Achieved 
 

The following thesis objectives have been achieved: 

 

• New HEDS-5500 optical encoder modules, Sharp GP2Y0A02YK infrared 

rangefinders, custom-built tactile sensors, Kemo B062E beacon receivers, 

custom-designed H-bridge motor drivers and a Phillips P89C51 

microcontroller were installed on MARVIN and interfaced to the DAQ card. 

The hardware has remained stable throughout months of testing. 

• LabVIEW software was developed that utilises the DAQ card’s internal 

counters to measure pulses from the odometers. The software obtains voltage 

readings from the infrared rangefinder voltages using the DAQ card’s built-in 

ADC. Values indicating the logic states of the tactile sensor switches and 

beacon receiver relays are received on the digital I/O ports. Software was 

created to interface with the microcontroller using the communication protocol 

established by Andrew Payne, performing the appropriate error corrections 

when necessary. 

• A number of alternative inter-application interfaces were investigated: 

ActiveX Control Containment, ActiveX Automation, MATLAB Script Nodes, 

Dynamic Data Exchange and File I/O. A robust software interface was 

established between MATLAB, LabVIEW and Microsoft Word using ActiveX 

Automation. 

• The sensor data measured by LabVIEW is delivered to MATLAB, where the 

raw signals are conditioned for use by the localisation algorithms. A technique 

was developed to apply direction information to the raw odometer counts. 

Several alternative software filters were investigated for the rangefinder 

signals, and a median average scheme was selected. 

• Distance measurements were obtained from the odometer counts, and the 

corresponding conversion factors were calibrated to reduce the errors. 

Equations were derived to obtain MARVIN’s distance, offset, heading and 
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wheel velocities from the individual displacements measured by each wheel 

over time. 

• The voltage-distance relationship for each rangefinder was measured, and 

lookup tables were created that obtain distance measurements from the voltage 

signals. An algorithm was developed to obtain offset and heading information 

from the measured wall positions in a corridor environment. Offsets can be 

obtained from individual rangefinder measurements, whereas headings are 

derived from the relative wall positions measured by two or more adjacent 

rangefinders. 

• An algorithm was developed that combines the odometer and rangefinder 

localisation information intelligently. Various sensor fusion techniques were 

considered, including Bayesian inference, Dempster-Shafer inference, fuzzy 

logic and neural networks. A dynamic weighted average scheme was selected. 

• Algorithms were developed to obtain target motion trajectories and velocity 

trajectories from arbitrary distance and angle inputs. The target trajectory is 

used to ensure that MARVIN’s position and orientation is correct at all times. 

The velocity profile provides an intended velocity for each wheel that will 

result in smooth acceleration and deceleration while driving MARVIN along 

the target trajectory. 

• Various control schemes were researched for MARVIN’s motion control 

system, including PID, fuzzy logic, neural network and neuro-fuzzy. Two 

separate PID control loops were implemented. The outer loop controls 

MARVIN’s heading, maintaining its motion along the target trajectory based 

on localisation information obtained by the sensor fusion algorithm. The inner 

loop controls MARVIN’s wheel velocities in an attempt to match the velocity 

profiles while applying course corrections obtained by the heading control 

system. 

• A collision avoidance system was implemented that groups perceived 

obstacles into three levels of threat according to their measured proximity, and 

takes evasive action. 

• Extensive tests and calibrations were performed in the real world in order to 

measure and refine the system’s performance. 
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In addition to these fulfilling all the intended objectives, the project has achieved the 

following: 

 

• MARVIN’s PC hardware has undergone an extensive overhaul, receiving a 

new ACE-828C 24V power supply, Shuttle xPC, 6025E DAQ card and 

ZyAIR B-220 wireless LAN module. 

• A software simulation was developed that models the behaviour of 

MARVIN’s sensors and actuators. It integrates seamlessly with the control 

system, allowing developers to switch between simulated and real 

environments by adjusting a single variable. A MATLAB GUI was created so 

that MARVIN’s motion and perceived environment, both in simulation and in 

the real world, can be tracked in real time. A data logging system was created 

to record the relevant data for future analysis. 

• The control system was successfully interfaced with the navigation system, 

resulting in a combined system that can navigate autonomously throughout a 

corridor and laboratory environment, avoiding any obstacles it encounters 

along the way.  

 

 

7.2 Future Work 
 

The completed control system has proven successful, but there are a number of 

improvements that could be made in the future: 

 

• Additional Sensors 

• Motor Driver Improvements 

• Simulation Improvements 

• Improved Sensor Algorithms 
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7.2.1 Additional Sensors 
 

The following sensors could be added to MARVIN to improve its localisation and 

navigation capabilities: 

 

• Laser Rangefinder – Shaun Hurd’s custom laser rangefinding system [Hurd, 

2001] must be interfaced to MARVIN’s new PC. The device can be utilised 

for localisation purposes in the same manner as the infrared rangefinders. 

However, its capabilities are more easily exploited by the navigation system 

than the control system. Due to its comparatively long (10 m) measurement 

range, the laser rangefinder is useful as a means to map the environment 

dynamically. It will also allow the navigation system to detect impending 

obstacles in time to plot a course around them without halting the robot. 

• Compass – A compass will be useful as an absolute heading reference if the 

interference issues can be overcome. Magnetic fields generated by objects 

inside the operating environment (or generated by MARVIN itself) will 

interfere with a standard magnetic compass. A compass module designed 

specifically for robotic applications that can compensate for magnetic 

interference, such as the P2UsCMP120 from ActivMedia Robotics 

[http://www.activrobots.com], may prove an ideal solution. Alternatively, an 

inertial sensor such as a gyrocompass could be used. 

• Optical Mouse – A standard optical mouse contains a CCD camera and a DSP 

that measures changes in position from the shifting patterns on a moving 

surface. If an optical mouse is positioned close to the floor or focussed through 

a lens, it could provide an alternative form of dead reckoning localisation that 

is not susceptible to the same errors as the odometers (e.g. wheel slippage). 
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7.2.2 Motor Driver Improvements 
 

If future projects require MARVIN to travel at faster velocities than the present 

software limits allow, extra precautions may become necessary to prevent high-speed 

collisions. The microcontroller software may also require modifications so that the 

duty cycle limit can be safely removed without risking damage to the motor driver 

circuits. Reducing the acceleration limit is one solution, but this would compromise 

the system’s speed of response at all velocities. A more favourable alternative is to 

implement a speed-dependent acceleration limit. Since the emergency brake signal 

and the communication timeout bypass the acceleration limit, future developers must 

ascertain the safest course of action to take in the event of a collision or a PC lockup. 

 

Further investigations are also required to determine whether MARVIN’s present 

motor drivers should be replaced with Craig Jensen’s generic motor drivers. 

 

 

7.2.3 Simulation Improvements 
 

MARVIN’s hardware is now functional, so the simulation is no longer essential, but it 

is still very useful for the initial testing stage whenever a significant modification or 

addition is implemented on MARVIN’s software. The simulation will allow future 

developers to debug the software in a safe environment where errors do not result in 

physical damage. However, due to the simplicity of the present simulation, many 

errors are not detected until the code is executed on real hardware. It might therefore 

be useful to expand the simulation to incorporate additional real-world properties such 

as motor response characteristics. As new sensors and actuators are installed on 

MARVIN, simulation functions should also be developed to model their behaviour. 
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7.2.4 Improved Sensor Algorithms 
 

New sensors that are installed on MARVIN can be added to the sensor fusion 

algorithm by assigning the appropriate weights. However, as the number of sensors 

increases, the weighted average scheme will become less effective. At some point a 

more complex algorithm such as a Bayesian or Dempster-Shafer scheme or a neural 

network may become necessary. 

 

One potential improvement that could be applied to the rangefinder localisation 

algorithm is to extrapolate MARVIN’s position and orientation from measured wall 

positions over time, instead of (or as well as) those measured by multiple sensors at a 

single point in time. Figure 7.1 superimposes the measured wall positions for two 

separate trajectories, and shows that the data points are generally grouped into straight 

lines. A line representing a detected wall can be fitted to these data points using the 

MATLAB function polyfit, and compared with the line representing the expected 

wall position. Any transformation that is applied to the measured line in order to 

match it to the expected wall position could then be applied to MARVIN’s position 

and orientation. 

 

 

Figure 7.1: Wall Positions Measured over Time 
 

The main advantage of this technique is that it reduces errors due to sensor noise and 

wall disturbances. It also allows the localisation algorithm to measure MARVIN’s 

heading even if only a single rangefinder is facing the wall. However, a significant 

drawback is that it will slow the algorithm’s response to changes in offset or 
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orientation. The rangefinders’ software filters already result in distortions when a 

stationary turn is executed in the corridor, and any further delays would exaggerate 

the problem further. These advantages and disadvantages should be carefully 

considered before such a revision is implemented. 

 

 

7.3 Summary 
 

The result of this project is a hardware and software platform that smoothly executes a 

range of motion instructions in a corridor or laboratory environment at a maximum 

velocity of 0.6 m/s. In a corridor environment the control system guides MARVIN to 

its target position with 99% accuracy under normal conditions. If it is given false 

starting information the accuracy remains within 98%. The collision avoidance 

algorithm allows the control system to stop within 40 cm of a detected obstacle when 

travelling at its maximum speed. 

 

Throughout the course of this project, MARVIN has been transformed from a (non-

working) remotely guided vehicle into an autonomous device. The completed 

navigation and control system allows MARVIN to plan and execute a sequence of 

motion instructions that drive MARVIN to a designated location in a corridor or 

laboratory environment. Overall, the project can be considered a significant success, 

meeting (and in some cases exceeding) its objectives, and providing a robust system 

that can be expanded upon in future projects undertaken by the Mechatronics Group. 
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Appendix A: Circuit Schematics 
 

A.1 Beacon Receiver Schematic 
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A.2 Beacon Emitter Schematic 
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A.3 Motor Diver Schematic 
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A.4 Motor Driver Schematic 
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Appendix B: Source Code 
 

B.1 gui_marvin_control.m 
 
function varargout = gui_marvin_control(varargin) 
 
% Chris Lee-Johnson 
% 
% GUI_MARVIN_CONTROL Application M-file for gui_marvin_control.fig 
% FIG = GUI_MARVIN_CONTROL launch gui_marvin_control GUI. 
% GUI_MARVIN_CONTROL('callback_name', ...) invoke the named callback. 
 
if nargin == 0  % LAUNCH GUI 
     
    fig = openfig(mfilename,'reuse');         
     
    % Generate a structure of handles to pass to callbacks, 
    % and store it.  
    handles = guihandles(fig); 
    handles.run = 0; 
    handles.stop = 0; 
    handles.execute = 0; 
    handles.target_distance = 0; 
    handles.target_angle = 0; 
    handles.offset_angle = 0; 
    handles.ir_weighting = 1; 
    handles.corridor_angle = 0; 
    handles.corridor_offset = 0; 
    handles.wall_distance_1 = 0.84; 
    handles.wall_distance_2 = 0.84; 
    guidata(fig,handles); 
     
    if nargout > 0 
        varargout{1} = fig; 
    end 
     
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
     
    try 
        if (nargout) 
            [varargout{1:nargout}] = feval(varargin{:}); 
        else 
            feval(varargin{:}); 
        end 
    catch 
        disp(lasterr); 
    end 
     
end 
 
 
% -------------------------------------------------------------------- 
function varargout = run_Callback(h, eventdata, handles, varargin) 
 
handles.run = get(h,'Value'); 
guidata(h,handles); 
 
if handles.run == 1 
     
    % Constants. 
    N = 100; 
    M = 1; 
    X0 = 1.200;%14.1;%27;% 
    Y0 = 6.025;%1.5;% 
    HEADING0 = 0; 
    X_WALL = [0.300,13.280,13.280,14.95,14.95,19.695,19.695,22.105,22.105,24.525,24.525,27.385,27.385,30.425, ... 
            31.364,31.244,32.464,33.3588,31.7709,14.950,14.95,13.28,13.28,8.52,8.52,0.825,0.825,0.3,0.3]; 
    Y_WALL = [5.185,5.185,0.6,0.6,5.185,5.185,4.885,4.885,5.185,5.185,4.885,4.885,5.185,5.185,4.7865, ... 
            4.6265,4.1085,6.2165,6.8650,6.865,11.45,11.45,6.865,6.865,7.165,7.165,6.865,6.865,5.185]; 
     
    % Initialise variables. 
    x(1:2) = X0; 
    y(1:2) = Y0; 
    heading(1:2) = HEADING0; 
    corridor_angle(1:2) = 0; 
    w_vel_array = [0,0;0,0]; 
    time_plot = [0,0]; 
    line_count = 1; 
    draw_count = 1; 
     
    % Generate unique filename from time and date. 
    fn_data = strcat(datestr(clock,30),'.txt'); 
     
    % Open file. 
    file_data = fopen(strcat('c:\Project\Code\Data\',fn_data),'a'); 
     
    % Initialise marvin_control function. 
    [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_velocity, ... 
        ir_y,ir_heading,ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] ... 
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        = marvin_control(2,0,0,0,[0,0],handles.corridor_offset,handles.corridor_angle*pi, ... 
        [-handles.wall_distance_1,handles.wall_distance_2],X0,Y0,HEADING0); 
     
    % Draw corridor walls etc. 
    axes(handles.position); 
    set(gca,'YDir','reverse'); 
    set(gca,'XTick',[0:2:34]); 
    line(X_WALL,Y_WALL,'LineStyle','-'); 
    line([0.300,31.244],[6.025,6.025],'LineStyle','--'); 
    line([14.115,14.115],[11.450,0.600],'LineStyle','--'); 
    axis image; 
    axis([0,34,0,12]); 
     
    % Draw MARVIN's path, heading and IRs. 
    for i = (1:N) 
        traj_line(i) = line(X0,Y0,'Color','k'); 
    end; 
    arrow_line = line(X0,Y0,'Color','k'); 
    for i = 1:6 
        ir_line(i) = line(X0,Y0,'Color','r'); 
    end; 
     
    % Draw velocity profiles. 
    axes(handles.velocity); 
    for i = (1:N) 
        vel_line_1(i) = line(0,0,'Color','b'); 
        vel_line_2(i) = line(0,0,'Color','r'); 
    end; 
     
    % Update screen plot. 
    set(gcf,'DoubleBuffer','on'); 
    drawnow; 
     
    while handles.run == 1 
         
        % Get GUI handles. 
        handles = guidata(h); 
         
        % Set marvin_control inputs. 
        if handles.stop == 1 
            new_instruction = -1; 
            target_distance = 0; 
            target_angle = 0; 
            offset_angle = 0; 
        elseif handles.reset == 1 
            new_instruction = 2; 
            target_distance = 0; 
            target_angle = 0; 
            offset_angle = 0; 
        else 
            new_instruction = handles.execute; 
            target_distance = handles.target_distance; 
            target_angle = handles.target_angle*pi; 
            offset_angle = handles.offset_angle*pi; 
        end; 
        ir_weighting = [handles.ir_weighting,handles.ir_weighting]; 
        corridor_offset = handles.corridor_offset; 
        corridor_angle = handles.corridor_angle*pi; 
        wall_y = [-handles.wall_distance_1,handles.wall_distance_2]; 
         
        % Reset button handles. 
        handles.reset = 0; 
        handles.execute = 0; 
        handles.stop = 0; 
         
        % Call marvin_control. 
        [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_velocity, ... 
            ir_y,ir_heading,ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] ... 
            = marvin_control(new_instruction,target_distance,target_angle,offset_angle,ir_weighting, ... 
            corridor_offset,corridor_angle,wall_y,X0,Y0,HEADING0); 
         
        % Set current and last values for plotting. 
        x(2) = x(1); 
        y(2) = y(1); 
        heading(2) = heading(1); 
        x(1) = abs_x; 
        y(1) = abs_y; 
        heading(1) = abs_heading; 
        w_vel_array(2,:) = w_vel_array(1,:); 
        w_vel_array(1,:) = w_velocity; 
        time_plot(2) = time_plot(1); 
        time_plot(1) = time; 
         
        % Convert integers to doubles so that fprinf can process them. 
        contact_switch = double(contact_switch); 
        beacon = double(beacon); 
         
        % Save data to file. 
        % 
        % time:             1 
        % tgt_x:            2 
        % tgt_y:            3 
        % tgt_heading:      4 
        % abs_x:            5 
        % abs_y:            6 
        % abs_heading:      7 
        % rel_x:            8 
        % rel_y:            9 
        % rel_heading       10 
        % w_velocity:       11-12 
        % ir_y:             13-14 
        % ir_heading:       15-16 
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        % ir_adj_x:         17-22 
        % ir_adj_y:         23-28 
        % ir_adj_angle:     29-34 
        % ir_obj_distance:  35-40 
        % contact_switch:   41-44 
        % beacon:           45-46 
        % 
        
fprintf(file_data,'%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t
%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n',... 
            [time;tgt_x;tgt_y;tgt_heading;abs_x;abs_y;abs_heading;rel_x;rel_y;rel_heading;w_velocity';ir_y'; ... 
            ir_heading';ir_adj_x';ir_adj_y';ir_adj_angle';ir_obj_distance';contact_switch';beacon']); 
         
        % Set text handles. 
        set(handles.x,'String',num2str(x(1),'x = %0.3f m')); 
        set(handles.y,'String',num2str(y(1),'y = %0.3f m')); 
        set(handles.heading,'String',num2str(heading(1)/pi,'h = %0.3f*pi')); 
        set(handles.xr,'String',num2str(rel_x,'xr = %0.3f m')); 
        set(handles.yr,'String',num2str(rel_y,'yr = %0.3f m')); 
        set(handles.hr,'String',num2str(rel_heading/pi,'hr = %0.3f*pi')); 
        set(handles.ir_y_1,'String',num2str(ir_y(1),'IR y = %0.3f m')); 
        set(handles.ir_h_1,'String',num2str(ir_heading(1)/pi,'IR h = %0.3f*pi')); 
        set(handles.ir_y_2,'String',num2str(ir_y(2),'IR y = %0.3f m')); 
        set(handles.ir_h_2,'String',num2str(ir_heading(2)/pi,'IR h = %0.3f*pi')); 
        set(handles.ir1,'String',num2str(ir_obj_distance(1),'bl = %0.3f m')); 
        set(handles.ir2,'String',num2str(ir_obj_distance(2),'fl = %0.3f m')); 
        set(handles.ir3,'String',num2str(ir_obj_distance(3),'f = %0.3f m')); 
        set(handles.ir4,'String',num2str(ir_obj_distance(4),'fr = %0.3f m')); 
        set(handles.ir5,'String',num2str(ir_obj_distance(5),'br = %0.3f m')); 
        set(handles.ir6,'String',num2str(ir_obj_distance(6),'b = %0.3f m')); 
        if contact_switch(1) == 1 
            set(handles.bump,'String','COLLISION, back left'); 
        elseif contact_switch(2) == 1 
            set(handles.bump,'String','COLLISION, front left'); 
        elseif contact_switch(3) == 1 
            set(handles.bump,'String','COLLISION, front right'); 
        elseif contact_switch(4) == 1 
            set(handles.bump,'String','COLLISION, back right'); 
        end; 
         
        % Write data to GUI. 
        guidata(h,handles); 
         
        % Get arrowhead line coordinates 
        arrow_x = [x(1)-0.5*cos(adjust_angle(heading-pi/8)),x(1),x(1)-0.5*cos(adjust_angle(heading+pi/8))]; 
        arrow_y = [y(1)-0.5*sin(adjust_angle(heading-pi/8)),y(1),y(1)-0.5*sin(adjust_angle(heading+pi/8))]; 
         
        % Absolute positions of detected objects. 
        for i = 1:6 
            if ir_obj_distance(i) > 1.5 
                ir_obj_x(i) = NaN; 
                ir_obj_y(i) = NaN; 
            else 
                ir_obj_x(i) = ir_adj_x(i) + ir_obj_distance(i)*cos(ir_adj_angle(i)); 
                ir_obj_y(i) = ir_adj_y(i) + ir_obj_distance(i)*sin(ir_adj_angle(i)); 
            end; 
        end; 
         
        % Draw MARVIN's path, heading and IRs. 
        axes(handles.position); 
        set(traj_line(line_count),'XData',x,'YData',y); 
        set(arrow_line,'XData',arrow_x,'YData',arrow_y); 
        for i = 1:6 
            set(ir_line(i),'XData',[ir_adj_x(i),ir_obj_x(i)],'YData',[ir_adj_y(i),ir_obj_y(i)]); 
        end; 
         
        % Draw velocity profile. 
        axes(handles.velocity); 
        set(vel_line_1(line_count),'XData',[time_plot(1),time_plot(2)], ... 
            'YData',[w_vel_array(1,1),w_vel_array(2,1)]); 
        set(vel_line_2(line_count),'XData',[time_plot(1),time_plot(2)], ... 
            'YData',[w_vel_array(1,2),w_vel_array(2,2)]); 
         
        % Update screen plot every M cycles. 
        if draw_count == 1 
            drawnow; 
        end; 
         
        % Increment counters. 
        draw_count = mod(draw_count,M)+1; 
        line_count = mod(line_count,N)+1; 
         
    end; 
     
    % Close data file. 
    fclose(file_data); 
     
end; 
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B.2 marvin_control.m 
 
function [time,tgt_x,tgt_y,tgt_heading,abs_x,abs_y,abs_heading,rel_x,rel_y,rel_heading,w_vel,ir_y,ir_heading, ... 
    ir_adj_x,ir_adj_y,ir_adj_angle,ir_obj_distance,contact_switch,beacon] = marvin_control(new_instruction, ... 
    new_tgt_distance,new_tgt_angle,new_ofst_angle,ir_weighting,corridor_y,corridor_angle,wall_y,init_x, ... 
    init_y,init_heading) 
 
% Chris Lee-Johnson 
% 
% marvin_control.m - Main motion control system for MARVIN. 
% Note: On first call, new_instruction must be set to 2. 
% 
% ----------------------------------------------------------- 
% Outputs 
% ----------------------------------------------------------- 
% time:             Time elapsed (s) 
% abs_x:            Absolute x position coordinate (m) 
% abs_y:            Absolute y position coordinate (m) 
% abs_heading       Absolute heading (rad) 
% rel_x:            Distance along corridor (m) 
% rel_y:            Offset from corridor centre axis (m) 
% rel_heading:      Heading relative to centre axis (rad) 
% tgt_x:            Distance on target trajectory (m) 
% tgt_y:            Offset on target trajectory (m) 
% tgt_heading:      Heading on target trajectory (rad) 
% w_vel:            Velocity of MARVIN's wheels (m/s) 
%                   [left, right] 
% ir_obj_distance:  Array of IR rangefinder distances (m) 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% contact_switch:   Array of contact switch values (0,1) 
%                   [left back, left front, 
%                   right front, right back] 
% ----------------------------------------------------------- 
% Inputs 
% ----------------------------------------------------------- 
% new_instruction:  New instruction flag 
%                   -1: brake 
%                    0: no new instruction 
%                    1: new instruction 
%                    2: first instruction 
% new_tgt_distance: Distance between origin & destination (m) 
% new_tgt_angle:    Target angle to turn through (-pi:pi rad) 
% new_ofst_angle:   Offset of target angle (-pi:pi rad) 
%                   (use for small heading adjustments) 
% ir_weighting:     Weightings for IR rangefinders (0:1) 
%                   [left,right (facing corridor angle)] 
% corridor_y:       Offset from centre axis of corridor (m) 
% corridor_angle:   Absolute direction of corridor (rad) 
% wall_y:           Wall offsets from centre axis (m) 
%                   [left,right (facing corridor angle)] 
% init_x:           Initial absolute x coordinate (m) 
% init_y:           Initial absolute y coordinate (m) 
% init_heading:     Initial absolute heading (rad) 
 
% Simulation flag (0:real, 1:simulation) 
SIM = 1;                 
 
% Encoder counts per metre. 
COUNTS_PER_M = 28062*[1.0035,0.9965];  
 
% Distance between MARVIN's wheels (m) 
W_SEPARATION = 0.508;    
 
% IR rangefinder origins (relative to MARVIN's origin). 
% (left back, left front, front, right front, right back, back) 
TILT = 0.12062; 
IR_OGN_X = [-0.0745,0.0745,0.1445,0.0745,-0.0745,-0.1445]; 
IR_OGN_Y = [-0.1415,-0.1415,0,0.1415,0.1415,0]; 
IR_OGN_ANGLE = [-pi/2-TILT,-pi/2+TILT,0,pi/2-TILT,pi/2+TILT,pi]; 
 
% Persistent variables. 
persistent lvserv; 
persistent target_distance; 
persistent target_angle; 
persistent offset_angle; 
persistent w_pos_prof; 
persistent w_vel_prof; 
persistent w_section; 
persistent w_tgt_pos; 
persistent w_tgt_vel; 
persistent w_velocity; 
persistent w_dir; 
persistent velocity_limit; 
persistent x; 
persistent y; 
persistent heading; 
persistent x0; 
persistent y0; 
persistent heading0; 
persistent abs_x0; 
persistent abs_y0; 
persistent abs_heading0; 
persistent tgt_trj_x; 
persistent tgt_trj_y; 
persistent tgt_trj_heading; 
persistent head_error; 
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persistent brake; 
persistent w_sim_vel; 
 
% If first instruction, set up LABVIEW interface and initialise 
% variables. 
if new_instruction >= 2 
     
    % Initialise persistent variables. 
    abs_x0 = init_x + corridor_y*sin(corridor_angle); 
    abs_y0 = init_y - corridor_y*cos(corridor_angle); 
    abs_heading0 = corridor_angle; 
    x = 0; 
    y = corridor_y; 
    heading = adjust_angle(init_heading-corridor_angle); 
    w_velocity = [0,0]; 
    w_tgt_vel = [0,0]; 
    head_error = [0,0,0]; 
    w_dir = [1,1]; 
    brake = 0; 
     
    if SIM 
         
        % Simulation - initialise "actual" wheel speeds. 
        w_sim_vel = [0,0]; 
         
    else 
         
        % Set up LabVIEW ActiveX server. 
        lvserv = actxserver('LabVIEW.Application'); 
         
    end; 
     
end; 
 
if SIM 
     
    % Simulation - Get wheel encoder counts. 
    [w_count_diff,time_diff,time] = sim_en_count(new_instruction,w_sim_vel,COUNTS_PER_M); 
     
    % Simulation - Read infra-red rangefinders. 
    [ir_voltage] = sim_ir_voltage(new_instruction,x,y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE); 
     
    % Simulation - Read contact switch. 
    contact_switch = [0,0,0,0]; 
    beacon = [0,0]; 
     
else 
     
    % Get wheel encoder counts from LabVIEW VI. 
    [w_count_diff,time_diff,time] = acq_en_count(new_instruction,lvserv,w_velocity,w_tgt_vel); 
     
    % Read infra-red rangefinders. 
    [ir_voltage] = acq_ir_voltage(new_instruction,lvserv); 
     
    % Read contact switch. 
    [contact_switch,beacon] = acq_switch(new_instruction,lvserv); 
     
end; 
 
% Calculate MARVIN's wheel velocities. 
[w_velocity,w_vel_filt,period] = rep_en_velocity(new_instruction,w_velocity,w_count_diff,time_diff,COUNTS_PER_M); 
 
if new_instruction ~= 0 
     
    % Set/reset brake flag. 
    if new_instruction == -1 
        brake = 1; 
    else 
        brake = 0; 
    end; 
     
    % Record target distance and angles. 
    target_distance = new_tgt_distance; 
    target_angle = new_tgt_angle; 
    offset_angle = new_ofst_angle; 
     
    % If corridor direction changes, reset distance, offset & heading. 
    [abs_x0,abs_y0,abs_heading0,x,y,heading] = rel_coord(new_instruction,abs_x0,abs_y0,abs_heading0,x,y, ... 
        heading,corridor_y,corridor_angle); 
     
    % Record initial conditions. 
    x0 = x; 
    y0 = y; 
    heading0 = heading; 
     
    % Initialise velocity profile section variable to first section. 
    w_section = [1,1]; 
     
    % Get target position of each wheel. 
    [w_tgt_pos] = wheel_pos(target_distance,target_angle,W_SEPARATION); 
     
    % Calculate velocity profile for fastest wheel. 
    [w_pos_prof,w_vel_prof,w_dir,velocity_limit] = gen_vel_prof(target_distance,target_angle, ... 
        w_dir,w_tgt_pos,w_velocity,velocity_limit); 
     
    % Plot target trajectory. 
    [tgt_trj_x,tgt_trj_y,tgt_trj_heading] = gen_tgt_trj(target_distance,target_angle, ... 
        offset_angle,x0,y0,heading0,w_tgt_pos,wall_y); 
     
end; 
 
% Calculate MARVIN's cartesian coordinates and heading. 
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[x,y,heading] = rep_en_coord(x,y,heading,w_count_diff, ... 
    COUNTS_PER_M,W_SEPARATION); 
 
if SIM 
    % Simulation - Prevent MARVIN from crossing walls. 
    HALF_WIDTH = 0.292;   % Half of MARVIN's width 
    if y < wall_y(1) + HALF_WIDTH 
        y = wall_y(1) + HALF_WIDTH; 
    elseif y > wall_y(2) - HALF_WIDTH 
        y = wall_y(2) - HALF_WIDTH; 
    end; 
end; 
 
% Measure IR distances. 
[ir_obj_distance] = rep_ir_distance(ir_voltage); 
 
% Measure offset and heading from IR values. 
[ir_y,ir_heading] = rep_ir_coord(new_instruction,ir_obj_distance,y,heading,wall_y, ... 
    IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE); 
 
% Adjust coordinates and heading by comparing sensor data. 
[x,y,heading] = sensor_fusion(new_instruction,x,y,heading,ir_y,ir_heading,ir_weighting); 
 
% Get difference between target and actual headings. 
[head_error,proportion,tgt_x,tgt_y,tgt_heading] = heading_error(head_error,target_distance,x,y,heading, ... 
    tgt_trj_x,tgt_trj_y,tgt_trj_heading,ir_obj_distance,w_tgt_pos); 
 
% Get uncorrected target wheel velocities from velocity profile. 
[w_tgt_vel,w_section] = tgt_velocity(w_section,proportion,w_tgt_pos,w_pos_prof,w_vel_prof,w_vel_filt,period); 
 
% Get PID control errors for each wheel. 
[w_vel_error,w_vel_error_filt] = heading_control(new_instruction,period,w_tgt_vel,w_velocity, ... 
    w_vel_filt,head_error,time_diff); 
 
if SIM 
    % Simulation - Set target velocity. 
    w_tgt_vel = w_vel_error(:,1)' + w_velocity; 
else 
    % Apply PID control to target velocities. 
    [w_tgt_vel] = velocity_control(new_instruction,w_tgt_vel,w_vel_error,w_vel_error_filt,w_velocity,w_dir, ... 
        period,velocity_limit); 
end; 
 
% Stop wheels immediately in the event of an impending collision or a stop instruction. 
[brake,w_tgt_vel,w_section] = stop_wheel(brake,w_tgt_vel,w_section,contact_switch, ... 
    ir_obj_distance,target_distance,target_angle); 
 
% Convert speeds into PWM values. 
[w_pwm] = get_motor_power(w_tgt_vel); 
 
if SIM 
    % Simulation - Set motor power. 
    [w_sim_vel] = sim_motor_power(new_instruction,w_tgt_vel); 
else 
    % Set motor power in LabVIEW VI. 
    [error] = set_motor_power(new_instruction,brake,w_pwm,w_dir,lvserv); 
end; 
 
% Coordinates conversions. 
[abs_x,abs_y,abs_heading] = coord_trans(abs_x0,abs_y0,abs_heading0,x,y,heading); 
[tgt_x,tgt_y,tgt_heading] = coord_trans(abs_x0,abs_y0,abs_heading0,tgt_x,tgt_y,tgt_heading); 
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(abs_x,abs_y,abs_heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE); 
 
% Assign new variable names for returned persistant variables 
% (since MATLAB doesn't allow uninitialised variables to be 
% returned). 
rel_x = x; 
rel_y = y; 
rel_heading = heading; 
w_vel = w_velocity; 
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B.3 acq_en_count.m 
 
function [w_count_diff,time_diff,time] = acq_en_count(new_instruction,lvserv,w_velocity,w_tgt_vel) 
 
% Chris Lee-Johnson 
% 
% Function to obtain wheel counts from a LabVIEW VI 
% 
% w_count_diff:     Wheel displacements since last cycle (counts) 
% time_diff:        Time since last cycle (s) 
% time:             Total time elapsed (s) 
% new_instruction:  New instruction flag 
% lvserv:           LabVIEW ActiveX server object 
% w_velocity:       Wheel velocities (m/s) 
% w_tgt_vel:        Target wheel velocities (m/s) 
 
% Persistent variables 
persistent old_time; 
persistent first_time; 
persistent w_count; 
persistent encoder_counter_vi; 
 
% If first instruction, initialise variables, set up LABVIEW 
% interface and initialise counters. 
if new_instruction == 2 
     
    % Initialise variables. 
    first_time = cputime; 
    old_time = 0; 
    w_count = [0,0;0,0]; 
     
    % Encoder Counter VI. 
    encoder_counter_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Encoder Counter.vi'); 
     
    % Initialise counters. 
    invoke(encoder_counter_vi,'SetControlValue','iteration',num2str(0)); 
     
else 
    invoke(encoder_counter_vi,'SetControlValue','iteration',num2str(1)); 
end; 
 
% Get elapsed time between cycles. 
time = cputime-first_time; 
time_diff = time-old_time; 
while time_diff < 0.08 
    time = cputime-first_time; 
    time_diff = time-old_time; 
end; 
old_time = time; 
 
% Run Encoder Counter VI. 
encoder_counter_vi.Run; 
 
% Get current and last counter values. 
w_count(2,:) = w_count(1,:); 
w_count(1,1) = invoke(encoder_counter_vi,'GetControlValue','count 1'); 
w_count(1,2) = invoke(encoder_counter_vi,'GetControlValue','count 2'); 
 
for i = 1:2 
     
    % Get difference between current and last counter values. 
    if w_count(1,i) >= w_count(2,i) 
        w_count_diff(i) = w_count(1,i) - w_count(2,i); 
    else 
        % If counter overflows. 
        w_count_diff(i) = w_count(1,i) - w_count(2,i) + 16777216; 
    end; 
     
    % Set encoder counts according to wheels' turning directions. 
    if (w_velocity(i) == 0 & w_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_tgt_vel(i) <= 0) 
        w_count_diff(i) = -w_count_diff(i); 
    elseif (w_velocity(i) > 0 & w_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_tgt_vel(i) > 0) 
        w_count_diff(i) = 0; 
    end; 
     
end; 
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B.4 acq_ir_voltage.m 
 
function [ir_voltage] = acq_ir_voltage(new_instruction,lvserv) 
 
% Chris Lee-Johnson 
% 
% Function to obtain each infrared rangefinder's voltage from 
% a LabVIEW VI. 
% 
% ir_voltage:       Array of voltages output from rangefinders 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% new_instruction:  New instruction flag 
% lvserv:           LabVIEW ActiveX server object 
 
% Persistent variables 
persistent ir_analogue_input_vi; 
persistent ir_inst_voltage; 
 
N = 9; 
 
% If first instruction, set up LABVIEW interface. 
if new_instruction == 2 
     
    % IR Analogue Input VI. 
    ir_analogue_input_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\IR Analogue Input.vi'); 
     
    % Initialise variables. 
    ir_inst_voltage(1:N,1:6) = 0; 
     
end; 
 
for i = N-1:-1:1 
    ir_inst_voltage(i+1,:) = ir_inst_voltage(i,:); 
end; 
 
% Run IR Analogue Input VI. 
ir_analogue_input_vi.Run; 
 
% Get voltage values. 
ir_inst_voltage(1,1) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 1'); 
ir_inst_voltage(1,2) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 2'); 
ir_inst_voltage(1,3) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 3'); 
ir_inst_voltage(1,4) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 4'); 
ir_inst_voltage(1,5) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 5'); 
ir_inst_voltage(1,6) = invoke(ir_analogue_input_vi,'GetControlValue','Analogue Input 6'); 
 
% Software filter to reduce noise. 
ir_voltage = median(ir_inst_voltage); 

 

 

B.5 acq_switch.m 
 
function [contact_switch,beacon] = acq_switch(new_instruction,lvserv) 
 
% Chris Lee-Johnson 
% 
% Function to obtain the states of tactile sensors and beacon 
% receivers. 
% 
% contact_switch:   Array of switch inputs 
%                   [left back, left front, 
%                   right front, right back] 
% beacon:           Array of beacon receiver inputs 
%                   [left, right] 
% new_instruction:  New instruction flag 
% lvserv:           LabVIEW ActiveX server object 
 
% Persistent variables 
persistent digital_switch_input_vi; 
persistent iteration; 
 
% If first instruction, set up LABVIEW interface and initialise 
% variables. 
if new_instruction == 2 
     
    % Digital Switch Input VI. 
    digital_switch_input_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Digital Switch Input.vi'); 
     
    iteration = 0; 
     
end; 
 
% Set iteration variable. 
invoke(digital_switch_input_vi,'SetControlValue','iteration (0:initialize)',num2str(iteration)); 
 
% Run Digital Switch Input VI. 
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digital_switch_input_vi.Run; 
 
% Get switch values. 
contact_switch(1) = invoke(digital_switch_input_vi,'GetControlValue','switch 1'); 
contact_switch(2) = invoke(digital_switch_input_vi,'GetControlValue','switch 2'); 
contact_switch(3) = invoke(digital_switch_input_vi,'GetControlValue','switch 3'); 
contact_switch(4) = invoke(digital_switch_input_vi,'GetControlValue','switch 4'); 
beacon(1) = invoke(digital_switch_input_vi,'GetControlValue','switch 5'); 
beacon(2) = invoke(digital_switch_input_vi,'GetControlValue','switch 6'); 
 
iteration = iteration + 1; 

 

 

B.6 rep_en_velocity.m 
 
function [w_velocity,w_vel_filt,period] = rep_en_velocity(new_instruction, ... 
    w_velocity,w_count_diff,time_diff,COUNTS_PER_M) 
 
% Chris Lee-Johnson 
% 
% Function to obtain MARVIN's wheel velocities from the 
% odometer data. 
% 
% w_velocity:       Wheel velocities (m/s) 
% w_vel_filt:       Filtered wheel velocities (m/s) 
% period:           Control cycle period (s) 
% new_instruction:  New instruction flag 
% w_count_diff:     Wheel displacements (encoder counts) 
% time_diff:        Time since last cycle (s) 
% COUNTS_PER_M:     Number of encoder counts in 1m 
 
% Convert wheel counts to metres. 
w_dist_diff = w_count_diff ./ COUNTS_PER_M; 
 
% Calculate wheel velocities. 
if time_diff > 0 
    w_velocity = w_dist_diff / time_diff; 
end; 
 
% Persistent variables. 
persistent w_vel_array; 
persistent time_diff_array; 
 
% Number of samples for averaging. 
N = 10; 
 
% Initialise FIFO arrays. 
if new_instruction == 2 
    w_vel_array(1:N,1) = w_velocity(1); 
    w_vel_array(1:N,2) = w_velocity(2); 
    time_diff_array(1:N) = time_diff; 
end; 
 
% Update FIFO arrays. 
for i = N-1:-1:1 
    w_vel_array(i+1,:) = w_vel_array(i,:); 
    time_diff_array(i+1) = time_diff_array(i); 
end; 
 
% Filter measured velocities. 
w_vel_array(1,:) = w_velocity; 
weight = 0.5; 
w_vel_filt = [0,0]; 
for i = 1:N 
   w_vel_filt = w_vel_filt  + weight * w_vel_array(i,:); 
   if i < N-1 
       weight = 0.5*weight; 
   end; 
end; 
 
% Obtain median control cycle period. 
time_diff_array(1) = time_diff; 
period = median(time_diff_array); 

 



142 The Development of a Control System for an Autonomous Mobile Robot 
 

B.7 rep_en_coord.m 
 
function [x,y,heading] = rep_en_coord(x,y,heading,w_count_diff,COUNTS_PER_M,W_SEPARATION) 
 
% Chris Lee-Johnson 
% 
% Function to obtain MARVIN's cartesian coordinates and 
% heading from the encoder data. 
% 
% x:            Distance along axis parallel to corridor (m) 
% y:            Distance from corridor centre axis (m) 
% heading:      Heading (radians) 
% w_count_diff: Wheel displacements (encoder counts) 
% COUNTS_PER_M: Number of encoder counts in 1m 
% W_SEPARATION: Distance between wheels (m) 
 
% Angle correction factor. 
ANGLE_MOD = 0.97148639449454; 
 
% Convert wheel counts to metres. 
w_dist_diff = w_count_diff ./ COUNTS_PER_M; 
 
% Convert individual wheel displacements to overall arclength and angle. 
angle = ANGLE_MOD * (w_dist_diff(1) - w_dist_diff(2)) / W_SEPARATION; 
arclength = 0.5 * (w_dist_diff(1) + w_dist_diff(2)); 
 
% Obtain straight line distance from arclength and angle. 
if abs(angle) < 0.0001 
    distance = arclength; 
else 
    if arclength >= 0 
        distance = abs(arclength/angle) * sqrt(2*(1-cos(angle))); 
    else 
        distance = -abs(arclength/angle) * sqrt(2*(1-cos(angle))); 
    end; 
end; 
 
% Update co-ordinates from distance and angle. 
heading = adjust_angle(heading+angle); 
x = x + distance * cos(heading); 
y = y + distance * sin(heading); 

 

 

B.8 rep_ir_distance.m 
 
function [ir_obj_distance] = rep_ir_distance(ir_voltage) 
 
% Chris Lee-Johnson 
% 
% Function to convert rangefinder voltage readings into distances. 
% 
% ir_obj_distance:  Array of distances measured by rangefinders (m) 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% ir_voltage:       Array of voltages output from rangefinders (V) 
 
% Look-up table parameters for IR voltage-distance relationships. 
ir_dist_curve = [0.15:0.05:1.5]; 
ir_volt_curve = [2.790,2.560,2.300,1.950,1.700,1.500,1.350,1.210,1.100, ... 
                 1.010,0.935,0.865,0.805,0.750,0.700,0.665,0.625,0.595, ... 
                 0.565,0.540,0.515,0.495,0.480,0.460,0.445,0.430,0.420,0.410; 
                 2.750,2.500,2.235,1.900,1.650,1.460,1.305,1.175,1.070, ... 
                 0.990,0.910,0.850,0.790,0.730,0.690,0.650,0.610,0.585, ... 
                 0.555,0.530,0.505,0.485,0.465,0.445,0.430,0.415,0.400,0.390; 
                 2.950,2.665,2.300,1.930,1.720,1.520,1.350,1.225,1.120, ... 
                 1.040,0.955,0.900,0.830,0.775,0.725,0.685,0.640,0.600, ... 
                 0.565,0.545,0.510,0.495,0.475,0.455,0.445,0.430,0.415,0.410; 
                 2.800,2.575,2.305,1.990,1.725,1.510,1.370,1.230,1.125, ... 
                 1.030,0.950,0.885,0.840,0.790,0.745,0.700,0.665,0.630, ... 
                 0.600,0.575,0.550,0.530,0.510,0.495,0.480,0.465,0.455,0.450; 
                 2.680,2.460,2.225,1.905,1.650,1.470,1.320,1.180,1.080, ... 
                 1.000,0.925,0.860,0.810,0.760,0.715,0.670,0.630,0.595, ... 
                 0.565,0.540,0.515,0.495,0.480,0.465,0.450,0.440,0.430,0.425; 
                 2.760,2.500,2.240,1.900,1.655,1.475,1.325,1.200,1.085, ... 
                 0.995,0.920,0.855,0.800,0.750,0.710,0.675,0.645,0.605, ... 
                 0.580,0.550,0.525,0.500,0.475,0.450,0.430,0.415,0.400,0.390]; 
 
N = length(ir_dist_curve); 
 
for i = 1:6 
     
    % Record the section that contains the current voltage value. 
    ir_section(i) = 0; 
    for j = [1:N-1] 
        if (ir_voltage(i) <= ir_volt_curve(i,j+1) & ir_voltage(i) >= ir_volt_curve(i,j)) ... 
                | (ir_voltage(i) >= ir_volt_curve(i,j+1) & ir_voltage(i) <= ir_volt_curve(i,j)) 
            % Record current section. 
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            ir_section(i) = j; 
        end; 
    end; 
     
    % If current position value is outside curve boundaries. 
    if ir_section(i) == 0 
         
        if (ir_voltage(i) < ir_volt_curve(i,N)) 
            ir_obj_distance(i) = Inf; 
        else 
            ir_obj_distance(i) = 0; 
        end; 
         
    else 
         
        % Calculate distance for current section. 
        if ir_volt_curve(i,ir_section(i)+1) == ir_volt_curve(i,ir_section(i)) 
            ir_obj_distance(i) = ir_dist_curve(ir_section(i)); 
        else 
            ir_obj_distance(i) = (ir_voltage(i) - ir_volt_curve(i,ir_section(i))) ... 
                * (ir_dist_curve(ir_section(i)+1) - ir_dist_curve(ir_section(i))) ... 
                / (ir_volt_curve(i,ir_section(i)+1) - ir_volt_curve(i,ir_section(i))) ... 
                + ir_dist_curve(ir_section(i)); 
        end; 
         
    end; 
     
end; 

 

 

B.9 rep_ir_coord.m 
 
function [ir_y,ir_heading] = rep_ir_coord(new_instruction,ir_obj_distance, ... 
    y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE) 
 
% Chris Lee-Johnson 
% 
% Function to obtain the offset and heading from the readings 
% of the IR rangefinders. 
% 
% new_instruction:  New instruction flag 
% ir_y:             Offset measured by IR rangefinders (m) 
%                   [left,right (facing corridor angle)] 
% ir_heading:       Heading measured by IR rangefinders (rad) 
%                   [left,right (facing corridor angle)] 
% ir_obj_distance:  Array of distances measured by rangefinders (m) 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% y:                Corridor offset (m) 
% heading:          Heading (rad) 
% wall_y:           Left and right wall offsets (m) 
 
persistent ir_inst_obj_dist; 
 
N = 10; 
MAX_OBJ_DIFF = 0.2; 
 
% Maximum difference between encoder and IR values allowed before 
% IRs are rejected. 
MAX_Y_DIFF = 0.5; 
MAX_HEAD_DIFF = 0.5*pi; 
 
% Offset and orientation of each IR (adjusted for MARVIN's overall 
% position and orientation). 
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(0,y,heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE); 
 
% If first instruction, set up LABVIEW interface. 
if new_instruction == 2 
     
    % Initialise variables. 
    for i = 1:N 
        ir_inst_obj_dist(i,:) = ir_obj_distance; 
    end; 
     
end; 
 
% Update old instantaneous IR object distance measurements. 
for i = N-1:-1:1 
    ir_inst_obj_dist(i+1,:) = ir_inst_obj_dist(i,:); 
end; 
 
% Update new instantaneous measurements. 
for i = 1:6 
    if ir_obj_distance(i) <= 1.5 
        ir_inst_obj_dist(1,i) = ir_obj_distance(i); 
    else 
        ir_inst_obj_dist(1,i) = 1.5; 
    end; 
end; 
 
% Average of instantaneous measurements. 
ir_mean_obj_dist = mean(ir_inst_obj_dist); 
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for i = 1:6 
     
    % Expected object distances due to walls. 
    if ir_adj_angle(i) < 0 
        ir_ex_obj_dist(i) = abs( (wall_y(1)-ir_adj_y(i)) / sin(ir_adj_angle(i)) ); 
    elseif ir_adj_angle(i) > 0 
        ir_ex_obj_dist(i) = abs( (wall_y(2)-ir_adj_y(i)) / sin(ir_adj_angle(i)) ); 
    else 
        ir_ex_obj_dist(i) = Inf; 
    end; 
     
    % If expected distance is greater than 1.2m, or if measured 
    % distance changes too quickly, don't use that IR for 
    % heading/offset measurements. 
    if ir_ex_obj_dist(i) <= 1.2 & abs(ir_obj_distance(i)-ir_mean_obj_dist(i)) <= MAX_OBJ_DIFF 
        ir_sel_obj_dist(i) = ir_obj_distance(i); 
    else 
        ir_sel_obj_dist(i) = Inf; 
    end; 
     
end; 
 
% Detected object coordinates (relative to MARVIN's origin). 
for i = 1:6 
    if ir_sel_obj_dist(i) <= 1.5 
        obj_x(i) = IR_OGN_X(i) + ir_sel_obj_dist(i) * cos(IR_OGN_ANGLE(i)); 
        obj_y(i) = IR_OGN_Y(i) + ir_sel_obj_dist(i) * sin(IR_OGN_ANGLE(i)); 
    else 
        obj_x(i) = NaN; 
        obj_y(i) = NaN; 
    end; 
end; 
 
ir_y_count(1:2) = 0; 
ir_head_count(1:2) = 0; 
ir_y_array(1:6,1:2) = 0; 
ir_head_array(1:6,1:2) = 0; 
 
for i = 1:6 
     
    j = mod(i,6)+1; 
     
    % Measured offset. 
    ir_wall_dist = obj_x(i)*sin(heading) + obj_y(i)*cos(heading); 
    if ir_adj_angle(i) < 0 
        ir_y_tmp = wall_y(1) - ir_wall_dist; 
        k = 1; 
    else 
        ir_y_tmp = wall_y(2) - ir_wall_dist; 
        k = 2; 
    end; 
     
    % Select IR heading that is closest to encoder heading. 
    ir_head(1) = -atan2(obj_y(j)-obj_y(i),obj_x(j)-obj_x(i)); 
    ir_head(2) = adjust_angle(ir_head(1)+pi); 
    [head_diff,index] = min(abs(heading-ir_head)); 
    ir_head_tmp = ir_head(index); 
     
    % Rejected IR values. 
    if ir_sel_obj_dist(i) > 1.5 
        ir_y_tmp = NaN; 
        ir_head_tmp = NaN; 
    elseif (ir_adj_angle(i) > 0 & ir_adj_angle(j) < 0) | (ir_adj_angle(i) < 0 & ir_adj_angle(j) > 0) 
        ir_head_tmp = NaN; 
    end; 
     
    % Difference between IR and encoder coordinates. 
    y_diff = abs(y-ir_y_tmp); 
    head_diff = abs(heading-ir_head_tmp); 
     
    % Reject IR offsets that deviate too far from encoder offset. 
    if y_diff < MAX_Y_DIFF 
        ir_y_count(k) = ir_y_count(k) + 1; 
        ir_y_array(ir_y_count(k),k) = ir_y_tmp; 
    end; 
     
    % Reject IR headings that deviate too far from encoder heading. 
    if head_diff < MAX_HEAD_DIFF 
        ir_head_count(k) = ir_head_count(k) + 1; 
        ir_head_array(ir_head_count(k),k) = ir_head_tmp; 
    end; 
     
end; 
 
for k = 1:2 
     
    % Final IR offset is mean average of valid IR offsets. 
    if ir_y_count(k) > 0 
        ir_y(k) = mean(ir_y_array(1:ir_y_count(k),k)); 
    else 
        ir_y(k) = NaN; 
    end; 
     
    % Final IR heading is mean average of valid IR headings. 
    if ir_head_count(k) > 0 
        ir_heading(k) = mean(ir_head_array(1:ir_head_count(k),k)); 
    else 
        ir_heading(k) = NaN; 
    end; 
     
end; 
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B.10 coord_trans.m 
 
function [axis1_x,axis1_y,axis1_theta] = coord_trans(axis1_x0,axis1_y0,axis1_theta0,axis2_x,axis2_y,axis2_theta) 
 
% Chris Lee-Johnson 
% 
% Function to apply coordinate transformations. 
% 
% axis1_x:          First axis x coordinate 
% axis1_y:          First axis y coordinate 
% axis1_theta:      First axis theta coordinate 
% axis1_x0:         First axis x origin 
% axis1_y0:         First axis y origin 
% axis1_theta0:     First axis theta origin 
% axis2_x:          Second axis x coordinate 
% axis2_y:          Second axis y coordinate 
% axis2_heading:    Second axis theta coordinate 
 
axis1_x = axis1_x0 + axis2_x*cos(axis1_theta0) - axis2_y*sin(axis1_theta0); 
axis1_y = axis1_y0 + axis2_x*sin(axis1_theta0) + axis2_y*cos(axis1_theta0); 
axis1_theta = adjust_angle(axis2_theta+axis1_theta0); 

 

 

B.11 rel_coord.m 
 
function [abs_x0,abs_y0,abs_heading0,x,y,heading] = rel_coord(new_instruction,abs_x0,abs_y0, ... 
    abs_heading0,x,y,heading,corridor_y,corridor_angle) 
 
% Chris Lee-Johnson 
% 
% Function to obtain relative coordinates and absolute origin. 
% 
% abs_x0:           Absolute x position of origin (m) 
% abs_y0:           Absolute y position of origin (m) 
% abs_heading0:     Absolute heading of origin (rad) 
% x:                Distance along corridor centre axis (m) 
% y:                Offset from centre axis of corridor (m) 
% heading:          Heading relative to corridor angle (rad) 
% new_instruction:  New instruction flag 
% corridor_y:       Offset from centre axis of new corridor (m) 
% corridor_angle:   Absolute direction of new corridor (rad) 
 
% Persistent variables. 
persistent cor_ang_array; 
persistent cor_ang_diff; 
 
% If first instruction, initialise. 
if new_instruction == 2 
    cor_ang_array = [corridor_angle,corridor_angle]; 
end; 
 
% Update corridor angles. 
cor_ang_array(1) = cor_ang_array(2); 
cor_ang_array(2) = corridor_angle; 
cor_ang_diff = adjust_angle(cor_ang_array(2)-cor_ang_array(1)); 
 
if cor_ang_diff ~= 0 
     
    % Get absolute origins of relative values. 
    abs_x0 = abs_x0 + x*cos(abs_heading0) - y*sin(abs_heading0) + corridor_y*sin(abs_heading0+cor_ang_diff); 
    abs_y0 = abs_y0 + x*sin(abs_heading0) + y*cos(abs_heading0) - corridor_y*cos(abs_heading0+cor_ang_diff); 
    abs_heading0 = adjust_angle(abs_heading0+cor_ang_diff); 
     
    % Reset relative values. 
    x = 0; 
    y = corridor_y; 
    heading = adjust_angle(heading-cor_ang_diff); 
     
end; 
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B.12 sensor_fusion.m 
 
function [x,y,heading] = sensor_fusion(new_instruction,x,y,heading,ir_y,ir_heading,ir_weighting) 
 
% Chris Lee-Johnson 
% 
% Function to obtain the offset and heading from the readings 
% of the IR rangefinders. 
% 
% x:                Distance along axis parallel to corridor (m) 
% y:                Offset from corridor centre axis (m) 
% heading:          Heading relative to corridor axis (rad) 
% ir_y:             Offset measured by IR rangefinders (m) 
%                   [left,right (facing corridor angle)] 
% ir_heading:       Heading measured by IR rangefinders (rad) 
%                   [left,right (facing corridor angle)] 
% ir_weighting:     Weightings for IR rangefinders (0:1) 
%                   [left,right (facing corridor angle)] 
 
IR_Y_TOL = 0; 
IR_HEAD_TOL = 0; 
 
% During initialisation IR weightings are increased. 
if new_instruction >= 2 
    ir_y_factor = 0.500; 
    ir_head_factor = 0.500; 
else 
    ir_y_factor = 0.020; 
    ir_head_factor = 0.010; 
end; 
 
% Weighted average of valid IR offsets. 
ir_y_valid = [abs(ir_y(1)) < Inf, abs(ir_y(2)) < Inf]; 
if ir_y_valid(1) & ir_y_valid(2) 
    if ir_weighting(1) == 0 & ir_weighting(2) == 0 
        ir_y_av = 0.5*(ir_y(1)+ir_y(2)); 
    else 
        ir_y_av = (ir_y(1) * ir_weighting(1) + ir_y(2) * ir_weighting(2)) ... 
            / (ir_weighting(1) + ir_weighting(2)); 
    end; 
elseif ir_y_valid(1) 
    ir_y_av = ir_y(1); 
elseif ir_y_valid(2) 
    ir_y_av = ir_y(2); 
else 
    ir_y_av = y; 
end; 
 
% Weighted average of valid IR headings. 
ir_head_valid... 
    = [abs(ir_heading(1)) < Inf, abs(ir_heading(2)) < Inf]; 
if ir_head_valid(1) & ir_head_valid(2) 
    if ir_weighting(1) == 0 & ir_weighting(2) == 0 
        ir_head_av = 0.5*(ir_heading(1)+ir_heading(2)); 
    else 
        ir_head_av = (ir_heading(1) * ir_weighting(1) + ir_heading(2) * ir_weighting(2)) ... 
            / (ir_weighting(1) + ir_weighting(2)); 
    end; 
elseif ir_head_valid(1) 
    ir_head_av = ir_heading(1); 
elseif ir_head_valid(2) 
    ir_head_av = ir_heading(2); 
else 
    ir_head_av = y; 
end; 
 
for i = 1:2 
     
    % If valid IR offset is sufficiently different from encoder 
    % offset, include it in weighted average. 
    if abs(ir_y_av-y) > IR_Y_TOL & ir_y_valid(i) 
        ir_y_weight(i) = ir_y_factor * ir_weighting(i); 
    else 
        ir_y_weight(i) = 0; 
        ir_y(i) = 0; 
    end; 
     
    % If valid IR heading is sufficiently different from encoder 
    % heading, include it in weighted average. 
    if abs(ir_head_av-heading) > IR_HEAD_TOL & ir_head_valid(i) 
        ir_head_weight(i) = ir_head_factor * ir_weighting(i); 
    else 
        ir_head_weight(i) = 0; 
        ir_heading(i) = 0; 
    end; 
     
end; 
 
% Apply weighted averages. 
y = (1 - ir_y_weight(1) - ir_y_weight(2)) * y + ir_y_weight(1) * ir_y(1) + ir_y_weight(2) * ir_y(2); 
heading = (1 - ir_head_weight(1) - ir_head_weight(2)) * heading + ir_head_weight(1) * ir_heading(1) ... 
    + ir_head_weight(2) * ir_heading(2); 
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B.13 gen_tgt_trj.m 
 
function [tgt_trj_x,tgt_trj_y,tgt_trj_heading] = gen_tgt_trj(target_distance,target_angle, ... 
    offset_angle,x0,y0,heading0,w_tgt_pos,wall_y) 
 
% Chris Lee-Johnson 
% 
% Function to plot the target trajectory for a given movement 
% instruction. 
% 
% tgt_trj_x:        Array of x coordinates on target trajectory (m) 
% tgt_trj_y:        Array of y coordinates on target trajectory (m) 
% tgt_trj_heading:  Array of headings on target trajectory (rad) 
% target_distance:  Distance between initial and target positions (m) 
% target_angle:     Target angle to turn through (rad) 
% offset_angle:     Offset of target angle (rad) 
% x0:               Initial distance (m) 
% y0:               Initial offset (m) 
% heading0:         Initial heading (rad) 
% wall_y:           Left and right wall offsets (m) 
 
% Minimum allowable distance from corridor walls. 
WALL_DIST_THRESH = 0.7; 
 
% Number of points on target trajectory. 
N = 100; 
i = [1:N+1]; 
 
% Apply offset to initial heading. 
tgt_trj_heading0 = adjust_angle(heading0+offset_angle); 
 
% Get target coordinates and heading. 
if cos(abs(target_angle)) == 1 
     
    % Heading for each point along target line. 
    tgt_trj_heading(i) = tgt_trj_heading0; 
     
    % Cartesian coordinates for each point along target line. 
    tgt_trj_x = ((i-1)/N) * target_distance * cos(tgt_trj_heading0) + x0; 
    tgt_trj_y = ((i-1)/N) * target_distance * sin(tgt_trj_heading0) + y0; 
     
else 
     
    % Radius of MARVIN's circular trajectory. 
    radius =  abs(target_distance) / sqrt(2*(1-cos(target_angle))); 
     
    % Heading for each point along target curve. 
    [tgt_trj_heading] = adjust_angle( tgt_trj_heading0 ... 
        + ((i-1)/N) * target_angle ); 
     
    % Cartesian coordinates for each point along target curve. 
    if (target_distance >= 0 & target_angle > 0) | (target_distance < 0 & target_angle < 0) 
        tgt_trj_x = radius * ( sin(tgt_trj_heading) + sin(-tgt_trj_heading0) ) + x0; 
        tgt_trj_y = radius * ( cos(-tgt_trj_heading0) - cos(tgt_trj_heading) ) + y0; 
    else 
        tgt_trj_x = -radius * ( sin(tgt_trj_heading) + sin(-tgt_trj_heading0) ) + x0; 
        tgt_trj_y = -radius * ( cos(-tgt_trj_heading0) - cos(tgt_trj_heading) ) + y0; 
    end; 
     
end; 
 
% If target trajectory passes too close to corridor walls, 
% follow trajectory parallel to walls. 
max_y(1) = wall_y(1)+WALL_DIST_THRESH; 
max_y(2) = wall_y(2)-WALL_DIST_THRESH; 
if abs(target_distance) > 0.005 
    for j = i 
        if (tgt_trj_y(j) < max_y(1) | tgt_trj_y(j) > max_y(2)) & ((w_tgt_pos(1) > 0 & w_tgt_pos(2) > 0) ... 
                | (w_tgt_pos(1) < 0 & w_tgt_pos(2) < 0)) 
            if tgt_trj_heading(j) <= pi/2 & tgt_trj_heading(j) > -pi/2 
                tgt_trj_heading(j) = 0; 
            else 
                tgt_trj_heading(j) = pi; 
            end; 
            if tgt_trj_y(j) < max_y(1) 
                tgt_trj_y(j) = max_y(1); 
            else 
                tgt_trj_y(j) = max_y(2); 
            end; 
        end; 
    end; 
end; 
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B.14 wheel_pos.m 
 
function [w_tgt_pos] = wheel_pos(target_distance,target_angle,W_SEPARATION) 
 
% Chris Lee-Johnson 
% 
% Function to obtain the target position of each wheel from 
% MARVIN's target distance and angle. 
% 
% w_position:       Wheel positions (m) 
% target_distance:  Distance between origin & destination (m) 
% target_angle:     Target angle to turn through (-pi:pi rad) 
% W_SEPARATION:     Distance between MARVIN's wheels (m) 
 
% Obtain arclength from input distance and angle. 
if cos(target_angle) ~= 1 
    if target_distance < 0 
        arclength = -abs( target_angle * target_distance / sqrt(2*(1-cos(target_angle))) ); 
    else 
        arclength = abs( target_angle * target_distance / sqrt(2*(1-cos(target_angle))) ); 
    end; 
else 
    arclength = target_distance; 
end; 
 
% Target wheel positions. 
w_tgt_pos(1) = arclength + 0.5 * W_SEPARATION * target_angle; 
w_tgt_pos(2) = arclength - 0.5 * W_SEPARATION * target_angle; 

 

 

B.15 gen_vel_prof.m 
 
function [w_pos_prof,w_vel_prof,w_dir,velocity_limit] = gen_vel_prof(target_distance,target_angle,w_dir, ... 
    w_tgt_pos,w_velocity,velocity_limit) 
 
% Chris Lee-Johnson 
% 
% Function to obtain wheel velocity profiles from MARVIN's 
% target position and angle. 
% 
% w_pos_prof:       Velocity profile position parameters (m) 
% w_vel_prof:       Velocity profile velocity parameters (m/s) 
% w_dir:            Wheel direction flags (0:reverse, 1:foward) 
% velocity_limit:   Overall velocity limiter (m/s) 
% target_distance:  Distance instruction (m) 
% target_angle:     Angle instruction (rad) 
% w_tgt_pos:        Wheel target positions (m) 
% w_velocity:       Wheel velocities (m/s) 
 
% Number of points per acceleration/deceleration section. 
N = 100; 
 
% Acceleration and deceleration of fastest wheel (m/s^2). 
ACCELERATION = 0.15; 
DECELERATION = -0.15; 
 
% Maximum allowable velocity. 
if abs(target_angle) > 0 
    if abs(target_distance) < 0.5 
        velocity_limit = 0.1; 
    else 
        velocity_limit = 0.4; 
    end; 
else 
    velocity_limit = 0.4; 
end; 
 
% Flag to prevent function from replotting the velocity profile 
% for the 2nd wheel if an illegal instruction is given to the 1st. 
stop_flag = 0; 
 
for i = 1:2 
     
    if stop_flag == 0 
         
        % If i = 1, j = 2 and vice versa. 
        j = mod(i,2)+1; 
         
        % Slower wheel's acceleration is proportional to ratio of 
        % target positions. 
        if abs(w_tgt_pos(i)) >= abs(w_tgt_pos(j)) 
            tgt_pos_ratio = 1; 
        else 
            tgt_pos_ratio = abs(w_tgt_pos(i) / w_tgt_pos(j)); 
        end; 
        accel = tgt_pos_ratio * ACCELERATION; 
        decel = tgt_pos_ratio * DECELERATION; 
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        max_velocity = tgt_pos_ratio * velocity_limit; 
        pos_overshoot = 0; 
         
        % Get initial velocity and final position. 
        % If target position is negative, invert everything. 
        if w_tgt_pos(i) > 0 | (w_tgt_pos(i) == 0 & w_dir(i) == 1) 
            end_pos = w_tgt_pos(i); 
            start_vel = w_velocity(i); 
        else 
            end_pos = -w_tgt_pos(i); 
            start_vel = -w_velocity(i); 
        end; 
        if end_pos >= pos_overshoot 
            end_pos = end_pos - pos_overshoot; 
        else 
            end_pos = 0; 
        end; 
         
        % Limit initial velocity. 
        pseudo_max_vel = sqrt(abs(2*decel*end_pos)); 
        if start_vel > pseudo_max_vel 
            start_vel = pseudo_max_vel; 
        end; 
        if start_vel > max_velocity 
            start_vel = max_velocity; 
        end; 
         
        % If new motion instruction oppposes current wheel direction, 
        % stop both wheels. 
        if start_vel < 0 
            clear w_pos_prof w_vel_prof; 
            w_pos_prof(1:2,1:2) = 0; 
            w_vel_prof(1:2,1:2) = 0; 
            stop_flag = 1; 
        else 
             
            % Point of intersection between acceleration and 
            % deceleration sections. 
            mid_pos = (start_vel^2 + 2*decel*end_pos) / (2*(decel-accel)); 
            mid_vel = sqrt(start_vel^2 + 2*accel*mid_pos); 
             
            % If point of intersection is less than velocity limit, 
            % velocity profile will be roughly triangular. 
            if mid_vel <= max_velocity 
                 
                if mid_pos == 0 
                    w_pos_prof(i,1:N+1) = 0; 
                else 
                    w_pos_prof(i,1:N+1) = [0:mid_pos/N:mid_pos]; 
                end; 
                w_vel_prof(i,1:N+1) = sqrt(start_vel^2 + 2*accel*w_pos_prof(i,1:N+1)); 
                 
                if mid_pos-end_pos == 0 
                    w_pos_prof(i,N+2:2*N+2) = 0; 
                else 
                    w_pos_prof(i,N+2:2*N+2) = [mid_pos:(end_pos-mid_pos)/N:end_pos]; 
                end; 
                w_vel_prof(i,N+2:2*N+2) = sqrt(mid_vel^2+2*decel*(w_pos_prof(i,N+2:2*N+2)-mid_pos)); 
                 
            % If point of intersection exceeds velocity limit, 
            % velocity profile will be roughly trapezoidal. 
            else 
                 
                accel_pos = (max_velocity^2 - start_vel^2) / (2*accel); 
                decel_pos = end_pos + (max_velocity^2) / (2*decel); 
                 
                if accel_pos == 0 
                    w_pos_prof(i,1:N+1) = 0; 
                else 
                    w_pos_prof(i,1:N+1) = [0:accel_pos/N:accel_pos]; 
                end; 
                w_vel_prof(i,1:N+1) = sqrt(start_vel^2 + 2*accel*w_pos_prof(i,1:N+1)); 
                 
                if end_pos-decel_pos == 0 
                    w_pos_prof(i,N+2:2*N+2) = 0; 
                else 
                    w_pos_prof(i,N+2:2*N+2) = [decel_pos:(end_pos-decel_pos)/N:end_pos]; 
                end; 
                w_vel_prof(i,N+2:2*N+2) = sqrt(max_velocity^2 + 2*decel*(w_pos_prof(i,N+2:2*N+2)-decel_pos)); 
                 
            end; 
        end; 
         
        % If target position is negative, invert everything back again. 
        if w_tgt_pos(i) < 0 | (w_tgt_pos(i) == 0 & w_dir(i) ~= 1) 
            w_pos_prof(i,:) = -w_pos_prof(i,:); 
            w_vel_prof(i,:) = -w_vel_prof(i,:); 
        end; 
         
    end; 
     
end; 
 
% If target wheel position is nonzero, update wheel direction flag. 
for i = 1:2 
    M = length(w_pos_prof(i,:)); 
    if w_pos_prof(i,M) > 0 
        w_dir(i) = 1; 
    elseif w_pos_prof(i,M) < 0 
        w_dir(i) = 0; 
    end; 
end; 
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B.16 tgt_velocity.m 
 
function [w_tgt_vel,w_section] = tgt_velocity(w_section, ... 
    proportion,w_tgt_pos,w_pos_prof,w_vel_prof,w_vel_filt,period) 
 
% Chris Lee-Johnson 
% 
% Function to obtain the target velocity of the wheels for the 
% current program cycle, given its current position and velocity 
% profile. 
% 
% w_tgt_vel:    Target wheel velocities (m/s) 
% w_section:    Velocity profile sections 
% proportion:   Proportion of the trajectory covered so far 
% w_tgt_pos:    Target wheel positions (m) 
% w_pos_prof:   Velocity profile position parameters (m) 
% w_vel_prof:   Velocity profile velocity parameters (m/s) 
% w_vel_filt:   Filtered wheel velocities (m/s) 
% period:       Control cycle period (s) 
 
% Velocity thresholds (m/s). 
RISING_VEL_THRESH = 0.05; 
FALLING_VEL_THRESH = 0.03; 
 
for i = 1:2 
     
    % Number of velocity profile array elements. 
    N = length(w_pos_prof(i,:)); 
     
    % New wheel position. 
    position = proportion * w_tgt_pos(i) + w_vel_filt(i) * period; 
    if w_tgt_pos(i) >= 0 
        if position > w_tgt_pos(i) 
            position = w_tgt_pos(i); 
        elseif position < 0 
            position = 0; 
        end; 
    else 
        if position < w_tgt_pos(i) 
            position = w_tgt_pos(i); 
        elseif position > 0 
            position = 0; 
        end; 
    end; 
     
    % If wheel has finished instruction or an emergency stop command 
    % has been given, stop wheel. 
    if w_section(i) >= N | w_section(i) < 0 
         
        w_tgt_vel(i) = 0; 
         
    else 
         
        % Record the section that contains the current position value. 
        % If position value is borderline, choose the highest section. 
        w_section(i) = 0; 
        for j = [1:N-1] 
            if (position <= w_pos_prof(i,j+1) & position >= w_pos_prof(i,j)) ... 
                    | (position >= w_pos_prof(i,j+1) & position <= w_pos_prof(i,j)) 
                % Record current section. 
                w_section(i) = j; 
            end; 
        end; 
         
        % If current position value is out of bounds of velocity profile, 
        % assume error has occurred. 
        if w_section(i) == 0 
             
            if (w_pos_prof(i,N) >= 0 & position > w_pos_prof(i,N)) ... 
                    | (w_pos_prof(i,N) < 0 & position < w_pos_prof(i,N)) 
                w_section(i) = N; 
            end; 
            w_tgt_vel(i) = 0; 
             
        else 
             
            % Calculate wheel's speed for current section. 
            if w_pos_prof(i,w_section(i)+1) == w_pos_prof(i,w_section(i)) 
                w_tgt_vel(i) = w_vel_prof(i,w_section(i)); 
            else 
                w_tgt_vel(i) = (position - w_pos_prof(i,w_section(i))) * (w_vel_prof(i,w_section(i)+1) ... 
                    - w_vel_prof(i,w_section(i))) / (w_pos_prof(i,w_section(i)+1) ... 
                    - w_pos_prof(i,w_section(i))) + w_vel_prof(i,w_section(i)); 
            end; 
             
            if proportion >= 1 
                w_section(i) = N; 
                w_tgt_vel(i) = 0; 
            else 
                % Set minimum velocity during acceleration (to start wheels moving) 
                % and deceleration (to prevent wheels from stopping prematurely). 
                if w_vel_prof(i,w_section(i)+1) >= w_vel_prof(i,w_section(i)) ... 
                        & w_tgt_vel(i) < RISING_VEL_THRESH & w_tgt_pos(i) > 0 
                    w_tgt_vel(i) = RISING_VEL_THRESH; 
                elseif w_vel_prof(i,w_section(i)+1) <= w_vel_prof(i,w_section(i)) ... 
                        & w_tgt_vel(i) > -RISING_VEL_THRESH & w_tgt_pos(i) < 0 
                    w_tgt_vel(i) = -RISING_VEL_THRESH; 
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                elseif w_vel_prof(i,w_section(i)+1) < w_vel_prof(i,w_section(i)) ... 
                        & w_tgt_vel(i) < FALLING_VEL_THRESH & w_tgt_pos(i) > 0 
                    w_tgt_vel(i) = FALLING_VEL_THRESH; 
                elseif w_vel_prof(i,w_section(i)+1) > w_vel_prof(i,w_section(i)) ... 
                        & w_tgt_vel(i) > -FALLING_VEL_THRESH & w_tgt_pos(i) < 0 
                    w_tgt_vel(i) = -FALLING_VEL_THRESH; 
                end; 
            end; 
             
        end; 
         
    end; 
     
end; 

 

 

B.17 heading_error.m 
 
function [head_error,proportion,tgt_x,tgt_y,tgt_heading] = heading_error(head_error,target_distance, ... 
    x,y,heading,tgt_trj_x,tgt_trj_y,tgt_trj_heading,ir_obj_distance,w_tgt_pos) 
 
% Chris Lee-Johnson 
% 
% Determines a heading error dependant on the difference between 
% MARVIN's position & orientation and the target trajectory. 
% 
% head_error:       Array of heading errors (rad) 
% proportion:       Proportion of the trajectory covered so far 
% tgt_x:            Distance on target trajectory (m) 
% tgt_y:            Offset on target trajectory (m) 
% tgt_heading:      Heading on target trajectory (rad) 
% target_distance:  Distance between origin & destination (m) 
% x:                Distance along axis parallel to corridor (m) 
% y:                Offset distance (m) 
% heading:          Heading angle (rad) 
% tgt_trj_x:        Array of distances n target trajectory (m) 
% tgt_trj_y:        Array of offsets on target trajectory (m) 
% tgt_trj_heading:  Array of headings on target trajectory (rad) 
% ir_obj_distance:  Array of distances measured by rangefinders (m) 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% w_tgt_pos:        Target wheel positions (m) 
 
% Constants. 
POS_ERROR_LIMIT = 0.5; 
SLOW_STOP_DIST = 0.8; 
SAFE_MARG_DIST = 0.1; 
 
% Number of points in target trajectory. 
N = length(tgt_trj_x)-1; 
 
% Get indeces of the two points on the target curve closest to 
% current coordinates. 
if (w_tgt_pos(1) > 0 & w_tgt_pos(2) < 0) | (w_tgt_pos(1) < 0 & w_tgt_pos(2) > 0) 
    heading_separation = abs(adjust_angle(tgt_trj_heading-heading)); 
    [temp(1),tgt_trj_index(1)] = min(heading_separation); 
    heading_separation(tgt_trj_index(1)) = Inf; 
    [temp(2),tgt_trj_index(2)] = min(heading_separation); 
    heading_separation(tgt_trj_index(1)) = temp(1); 
else 
    position_separation = sqrt( (tgt_trj_x-x).^2 + (tgt_trj_y-y).^2 ); 
    [temp(1),tgt_trj_index(1)] = min(position_separation); 
    position_separation(tgt_trj_index(1)) = Inf; 
    [temp(2),tgt_trj_index(2)] = min(position_separation); 
    position_separation(tgt_trj_index(1)) = temp(1); 
end; 
 
% Get the target point. 
x1 = tgt_trj_x(tgt_trj_index(1)); 
y1 = tgt_trj_y(tgt_trj_index(1)); 
x2 = tgt_trj_x(tgt_trj_index(2)); 
y2 = tgt_trj_y(tgt_trj_index(2)); 
if (x2-x1) == 0 
    m1 = Inf; 
else 
    m1 = (y2-y1) / (x2-x1); 
end; 
if (y2-y1) == 0 
    m2 = Inf; 
else 
    m2 = (x1-x2) / (y2-y1); 
end; 
if m1 == Inf 
    tgt_x = x1; 
    if m2 == Inf 
        tgt_y = y1; 
    else 
        tgt_y = y; 
    end; 
elseif m2 == Inf 
    tgt_x = x; 
    tgt_y = y1; 
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else 
    tgt_x = ( m1*x1 - m2*x + y - y1 ) / ( m1 - m2 ); 
    tgt_y = ( m1*y - m2*y1 + x - x1 ) / ( m1 - m2 ); 
end; 
 
% Confine point to target curve for angle/proportion 
% calculations. 
if (tgt_x < x1 & tgt_x < x2 & x1 <= x2) | (tgt_x > x1 & tgt_x > x2 & x1 >= x2) ... 
        | (tgt_y < y1 & tgt_y < y2 & y1 <= y2) | (tgt_y > y1 & tgt_y > y2 & y1 >= y2) 
    p_x = x1; 
    p_y = y1; 
elseif (tgt_x < x1 & tgt_x < x2 & x1 > x2) | (tgt_x > x1 & tgt_x > x2 & x1 < x2) ... 
        | (tgt_y < y1 & tgt_y < y2 & y1 > y2) | (tgt_y > y1 & tgt_y > y2 & y1 < y2) 
    p_x = x2; 
    p_y = y2; 
else 
    p_x = tgt_x; 
    p_y = tgt_y; 
end; 
 
% Get target angle. 
a1 = tgt_trj_heading(tgt_trj_index(1)); 
a2 = tgt_trj_heading(tgt_trj_index(2)); 
if (w_tgt_pos(1) > 0 & w_tgt_pos(2) < 0) | (w_tgt_pos(1) < 0 & w_tgt_pos(2) > 0) 
    a = is_inside_arc(tgt_trj_heading(1),tgt_trj_heading(round(N/2)),tgt_trj_heading(N+1),heading); 
    if a == 0 
        p1 = abs(adjust_angle(heading-a2)); 
        p2 = abs(adjust_angle(heading-a1)); 
    elseif a == 1 
        p1 = 0; 
        p2 = 1; 
    else 
        p1 = 1; 
        p2 = 0; 
    end; 
else 
    p1 = sqrt((p_x-x1)^2+(p_y-y1)^2); 
    p2 = sqrt((p_x-x2)^2+(p_y-y2)^2); 
end; 
if p1+p2 == 0 
    p_ratio = 0; 
else 
    p_ratio = p1/(p1+p2); 
end; 
tgt_heading = average_angle(a1,a2,p_ratio); 
 
% If travelling in reverse, fold target heading over actual 
% heading axis. 
fwd_tgt_heading = tgt_heading; 
if target_distance < 0 
    tgt_heading = adjust_angle(heading-adjust_angle(tgt_heading-heading)); 
end; 
 
% Get angle of line linking actual and target positions. 
x_diff = tgt_x-x; 
y_diff = tgt_y-y; 
if x_diff == 0 
    if y_diff >= 0 
        separation_angle = pi/2; 
    else 
        separation_angle = -pi/2; 
    end; 
else 
    separation_angle = atan2(y_diff,x_diff); 
end; 
 
% Difference seperation angle and real heading (sign indicates 
% left or right turn to correct). 
sep_ang_error = adjust_angle(separation_angle-heading); 
 
% Difference between actual and target position. 
if sep_ang_error >= 0 
    position_error = sqrt( x_diff^2 + y_diff^2 ); 
else 
    position_error = -sqrt( x_diff^2 + y_diff^2 ); 
end; 
 
% Derive weighting from position error. 
if abs(position_error) >= POS_ERROR_LIMIT 
    weight = 1; 
else 
    weight = abs(position_error) / POS_ERROR_LIMIT; 
end; 
 
% Weighted average of separation angle and target heading. 
avg_angle = average_angle(separation_angle,tgt_heading,weight); 
 
% Heading error is the difference between average angle and 
% real heading. 
head_error(3) = head_error(2); 
head_error(2) = head_error(1); 
head_error(1) = real(adjust_angle(avg_angle-heading)); 
 
% Get proportion of trajectory that MARVIN has covered so far. 
if min([tgt_trj_index(1),tgt_trj_index(2)]) == tgt_trj_index(1) 
    proportion = (tgt_trj_index(1) + p_ratio - 1) / N; 
else 
    proportion = (tgt_trj_index(2) - p_ratio) / N; 
end; 
 
% If MARVIN is too far from target position or heading, or if 
% object is blocking intended trajectory, slow wheels to a halt 



Source Code  153 
 

   

% (as opposed to brake or rapid stop seen in stop_wheels function). 
ex_distance = (1-proportion) * target_distance; 
if position_error > 0.75 | abs(adjust_angle(tgt_heading-heading)) > 0.5*pi ... 
        | (ir_obj_distance(3) <= SLOW_STOP_DIST & ex_distance > 0 ... 
        & ir_obj_distance(3) <= ex_distance + SAFE_MARG_DIST) ... 
        | (ir_obj_distance(6) <= SLOW_STOP_DIST & ex_distance < 0 ... 
        & ir_obj_distance(6) <= -ex_distance + SAFE_MARG_DIST) 
    proportion = 1; 
end; 

 

 

B.18 heading_control.m 
 
function [w_vel_error,w_vel_error_filt] = heading_control(new_instruction, ... 
    period,w_tgt_vel,w_velocity,w_vel_filt,head_error,time_diff) 
 
% Chris Lee-Johnson 
% 
% Function to derive PID control errors from wheel velocities 
% and heading error. 
% 
% w_vel_error:      PID velocity errors (m/s) 
%                   (2x3 array) 
% w_vel_error_filt: Filtered PID velocity errors (m/s) 
%                   (3x2 array) 
% new_instruction:  New instruction flag 
% period:           Control cycle period (s) 
% w_tgt_vel:        Target wheel velocities (m/s) 
% w_velocity:       Actual wheel velocities (m/s) 
% w_vel_filt:       Filtered wheel velocities (m/s) 
% head_error:       Array of heading errors (rad) 
 
% Persistent variables 
persistent w_last_vel; 
persistent w_vel_e; 
persistent w_vel_e_f; 
persistent modifier; 
 
% Acceleration limits. 
TGT_ACCEL_LIMIT = 0.3; 
TGT_DECEL_LIMIT = -0.3; 
RE_ACCEL_LIMIT = 0.5; 
RE_DECEL_LIMIT = -0.5; 
 
% Integral time. 
HEAD_TI = 10; 
 
% Derivative time. 
HEAD_TD = 0.05; 
 
% Proportional gain. 
MIN_AVG_TGT_VEL = 0.4; 
MAX_AVG_TGT_VEL = 2.0; 
MIN_HEAD_K = 1.0/pi; 
MAX_HEAD_K = 5.0/pi; 
avg_tgt_vel = mean(w_tgt_vel); 
if avg_tgt_vel <= MIN_AVG_TGT_VEL 
    head_k = MAX_HEAD_K; 
elseif avg_tgt_vel >= MAX_AVG_TGT_VEL 
    head_k = MIN_HEAD_K; 
else 
    head_k = MIN_HEAD_K + ((MAX_HEAD_K-MIN_HEAD_K) / (MAX_AVG_TGT_VEL-MIN_AVG_TGT_VEL)) ... 
        * (MAX_AVG_TGT_VEL-avg_tgt_vel); 
end; 
 
% If first instruction, initialise variables. 
if new_instruction == 2 
    w_last_vel = w_tgt_vel; 
    modifier = 0; 
    w_vel_e(1:2,1:3) = 0; 
    w_vel_e_f(1:2,1:3) = 0; 
end; 
 
% PID control to derive modifier due to heading error. 
if period > 0 
    modifier = modifier + head_k * ( (1+period/HEAD_TI+HEAD_TD/period) * head_error(1) ... 
        - (1+2*HEAD_TD/period) * head_error(2) + HEAD_TD/period * head_error(3) ); 
else 
    modifier = 0; 
end; 
 
% Impose limits on modifier. 
if modifier > 1 
    modifier = 1; 
elseif modifier < -1 
    modifier = -1; 
end; 
 
% Limit maximum wheel velocity based on modifier value. 
dyn_vel_lim = 2-1.8*abs(modifier); 
for i = 1:2 
    if w_tgt_vel(i) > dyn_vel_lim 
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        w_tgt_vel(i) = dyn_vel_lim; 
    elseif w_tgt_vel(i) < -dyn_vel_lim 
        w_tgt_vel(i) = -dyn_vel_lim; 
    end; 
end; 
 
% Apply modifier to target velocity. 
if (w_tgt_vel(1) > 0 & w_tgt_vel(2) > 0) ... 
        | (w_tgt_vel(1) < 0 & w_tgt_vel(2) < 0) 
    if modifier >= 0 
        w_tgt_vel = [w_tgt_vel(1)*(1+0*modifier),w_tgt_vel(2)*(1-modifier)]; 
    else 
        w_tgt_vel = [w_tgt_vel(1)*(1+modifier),w_tgt_vel(2)*(1-0*modifier)]; 
    end; 
end; 
 
% Limit wheel acceleration/deceleration. 
for i = 1:2 
    if w_tgt_vel(i) > w_last_vel(i) + TGT_ACCEL_LIMIT * period 
        w_tgt_vel(i) = w_last_vel(i) + TGT_ACCEL_LIMIT * period; 
    elseif w_tgt_vel(i) < w_last_vel(i) + TGT_DECEL_LIMIT * period 
        w_tgt_vel(i) = w_last_vel(i) + TGT_DECEL_LIMIT * period; 
    end; 
    if w_tgt_vel(i) > w_velocity(i) + RE_ACCEL_LIMIT * period 
        w_tgt_vel(i) = w_velocity(i) + RE_ACCEL_LIMIT * period; 
    elseif w_tgt_vel(i) < w_velocity(i) + RE_DECEL_LIMIT * period 
        w_tgt_vel(i) = w_velocity(i) + RE_DECEL_LIMIT * period; 
    end; 
end; 
 
% Calculate wheel velocity errors 
w_vel_e(:,3) = w_vel_e(:,2); 
w_vel_e(:,2) = w_vel_e(:,1); 
w_vel_e(:,1) = w_tgt_vel' - w_velocity'; 
w_vel_e_f(:,3) = w_vel_e_f(:,2); 
w_vel_e_f(:,2) = w_vel_e_f(:,1); 
w_vel_e_f(:,1) = w_tgt_vel' - w_vel_filt'; 
w_vel_error = w_vel_e; 
w_vel_error_filt = w_vel_e_f; 
 
% Update last target velocity. 
w_last_vel = w_tgt_vel; 

 

 

B.19 average_angle.m 
 
function [angle] = average_angle(a1,a2,weight) 
 
% Chris Lee-Johnson 
% 
% Function to calculate the weighted average of two angles 
% within the range (-pi:pi]. 
% 
% angle:    Weighted average angle 
% a1:       First angle 
% a2:       Second angle 
% weight:   Weighting for 1st angle 
%           (2nd angle wighting = 1-weight) 
 
if (a1-a2) > pi 
    angle = adjust_angle(weight*a1+(1-weight)*(a2+2*pi)); 
elseif (a1-a2) < -pi 
    angle = adjust_angle(weight*a1+(1-weight)*(a2-2*pi)); 
else 
    angle = adjust_angle(weight*a1+(1-weight)*a2); 
end; 
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B.20 velocity_control.m 
 
function [w_tgt_vel] = velocity_control(new_instruction,w_tgt_vel,w_vel_error, ... 
    w_vel_error_filt,w_velocity,w_dir,period,velocity_limit) 
 
% Chris Lee-Johnson 
% 
% Function to apply PID control to the target wheel velocity. 
% 
% w_tgt_vel:        Target wheel velocities (m/s) 
% new_instruction:  New instruction flag 
% w_vel_error:      PID velocity errors (m/s) 
%                   (3x2 array) 
% w_vel_error_filt: Filtered PID velocity errors (m/s) 
%                   (3x2 array) 
% w_velocity:       Actual wheel velocities (m/s) 
% w_dir:            Wheel direction flags (0:reverse, 1:foward) 
% period:           Control cycle period (s) 
 
persistent w_last_vel; 
 
% Real acceleration limits. 
VEL_DIFF_LIMIT = 0.4; 
 
% Control constants. 
W_VEL_K = [1.0,1.0];    % Proportional gain 
W_VEL_TI = [0.2,0.2];   % Integral time 
W_VEL_TD = [0.01,0.01]; % Derivative time 
 
% If first instruction, initialise variables. 
if new_instruction == 2 
    w_last_vel = w_tgt_vel; 
end; 
 
% PID control. 
if period > 0 
    prop = w_vel_error(:,1)' - w_vel_error(:,2)'; 
    integ = (period ./ W_VEL_TI) .* w_vel_error(:,1)'; 
    deriv = (W_VEL_TD/period) .* w_vel_error_filt(:,1)' - (2*W_VEL_TD/period) .* w_vel_error_filt(:,2)' ... 
        + W_VEL_TD/period .* w_vel_error_filt(:,3)'; 
    w_new_tgt_vel = w_last_vel + W_VEL_K .* (prop + integ + deriv); 
else 
    w_new_tgt_vel = w_velocity; 
end; 
 
for i = 1:2 
     
    % Do not reverse direction while wheel is moving. 
    if (w_tgt_vel(i) >= 0 & w_new_tgt_vel(i) < 0) | (w_tgt_vel(i) <= 0 & w_new_tgt_vel(i) > 0) ... 
            | (w_velocity(i) > 0 & w_new_tgt_vel(i) < 0) | (w_velocity(i) < 0 & w_new_tgt_vel(i) > 0) ... 
            | (w_dir(i) == 1 & w_new_tgt_vel(i) < 0) | (w_dir(i) == 0 & w_new_tgt_vel(i) > 0) 
        w_new_tgt_vel(i) = 0; 
    end; 
     
    % Do not exceed maximum safe velocity. 
    if w_new_tgt_vel(i) > velocity_limit+0.2 
        w_new_tgt_vel(i) = velocity_limit+0.2; 
    elseif w_new_tgt_vel(i) < -velocity_limit-0.2 
        w_new_tgt_vel(i) = -velocity_limit-0.2; 
    end; 
     
    % Limit wheel acceleration/deceleration. 
    if w_new_tgt_vel(i) > w_velocity(i) + VEL_DIFF_LIMIT 
        w_new_tgt_vel(i) = w_velocity(i) + VEL_DIFF_LIMIT; 
    elseif w_new_tgt_vel(i) < w_velocity(i) - VEL_DIFF_LIMIT 
        w_new_tgt_vel(i) = w_velocity(i) - VEL_DIFF_LIMIT; 
    end; 
     
end; 
 
% Update target velocities. 
w_tgt_vel = w_new_tgt_vel; 
w_last_vel = w_tgt_vel; 
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B.21 stop_wheels.m 
 
function [brake,w_tgt_vel,w_section] = stop_wheel(brake,w_tgt_vel,w_section,contact_switch, ... 
    ir_obj_distance,target_distance,target_angle) 
 
% Chris Lee-Johnson 
% 
% Function to stop wheels immediately in the event of an impending 
% collision or a stop instruction. 
% 
% brake:            Brake flag 
% w_tgt_vel:        Target wheel velocities (m/s) 
% w_section:        Velocity profile sections 
% contact_switch:   Array of switch inputs 
% ir_obj_distance:  Array of distances measured by rangefinders (m) 
% target_distance:  Distance between origin & destination (m) 
% target_angle:     Target angle to turn through (-pi:pi rad) 
 
% Fast stopping distance. 
FAST_STOP_DIST = 0.4; 
 
% Brake wheels. 
if contact_switch(1) ~= 0 | contact_switch(2) ~= 0 | contact_switch(3) ~= 0 | contact_switch(4) ~= 0 
    w_tgt_vel = [0,0]; 
    w_section = [-1,-1]; 
    brake = 1; 
% Stop wheels. 
elseif (target_distance == 0 & target_angle == 0) | w_section(1) == -1 | w_section(2) == -1 ... 
        | (ir_obj_distance(3) <= FAST_STOP_DIST & target_distance > 0) ... 
        | (ir_obj_distance(6) <= FAST_STOP_DIST & target_distance < 0) 
    w_tgt_vel = [0,0]; 
    w_section = [-1,-1]; 
end; 

 

 

B.22 get_motor_power.m 
 
function [w_pwm] = get_motor_power(w_tgt_vel) 
 
% Chris Lee-Johnson 
% 
% Function to convert target velocities into PWM values to send 
% to the micro in order to drive the motors. 
% 
% w_pwm:        PWM setting for wheels 
% w_tgt_vel:    Target wheel velocities (m/s) 
 
% PWM - velocity relationship slopes and intercepts. 
W_PWM_OVER_V_POS = [159.6455,150.9647]; 
W_PWM_OVER_V_NEG = [159.6455,150.9647]; 
W_MIN_PWM_POS = [25.1706,24.0155]; 
W_MIN_PWM_NEG = [-25.1706,24.0155]; 
 
% Minimum wheel velocity (m/s). 
MIN_VELOCITY = 0.01; 
 
% Convert to PWM value. 
for i = 1:2 
    if w_tgt_vel(i) < MIN_VELOCITY & w_tgt_vel(i) > -MIN_VELOCITY 
        w_pwm(i) = 0; 
    elseif w_tgt_vel(i) < 0 
        w_pwm(i) = W_PWM_OVER_V_NEG(i) * w_tgt_vel(i) + W_MIN_PWM_NEG(i); 
    else 
        w_pwm(i) = W_PWM_OVER_V_POS(i) * w_tgt_vel(i) + W_MIN_PWM_POS(i); 
    end; 
    if w_pwm(i) > 255 
        w_pwm(i) = 255; 
    elseif w_pwm(i) < -255 
        w_pwm(i) = -255; 
    end; 
end; 
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B.23 set_motor_power.m 
 
function [error] = set_motor_power(new_instruction,brake,w_pwm,w_dir,lvserv) 
 
% Chris Lee-Johnson 
% 
% Function to send pwm values etc to the microcontroller in order 
% to drive the motors. 
% 
% error:                Array of error counts returned 
% new_instruction:      New instruction flag (see marvin_control) 
% brake:                Brake flag 
% w_pwm:                PWM setting for wheels 
% lvserv:               LabVIEW ActiveX server object 
 
% Persistent variables. 
persistent set_motor_power_vi; 
 
% If first instruction, initialise variables and set up LABVIEW 
% interface. 
if new_instruction >= 2 
     
    % Set up Wheel Controller VI. 
    set_motor_power_vi = invoke(lvserv,'GetViReference','c:\Project\Code\LabVIEW\Set Motor Power.vi');  
         
end; 
 
% Get header bytes and PWM bytes from pwm values. 
for i = 1:2 
    if brake == 1 
        header(i) = 0; 
        pwm(i) = 0; 
    elseif w_dir(i) == 1 
        header(i) = 3 + 2*(i-1); 
        pwm(i) = round((w_pwm(i)/2) + 128); 
    else 
        header(i) = 2 + 2*(i-1); 
        pwm(i) = -round((w_pwm(i)/2) - 128); 
    end; 
end; 
 
% Set LabVIEW control values. 
invoke(set_motor_power_vi,'SetControlValue','patterns to write',num2str(header(1))); 
invoke(set_motor_power_vi,'SetControlValue','patterns to write 2',num2str(pwm(1))); 
invoke(set_motor_power_vi,'SetControlValue','patterns to write 3',num2str(header(2))); 
invoke(set_motor_power_vi,'SetControlValue','patterns to write 4',num2str(pwm(2))); 
 
% Run VI. 
set_motor_power_vi.Run; 
 
% Read error counts. 
error(1) = double(invoke(set_motor_power_vi,'GetControlValue','error')); 
error(2) = double(invoke(set_motor_power_vi,'GetControlValue','error 2')); 
error(3) = double(invoke(set_motor_power_vi,'GetControlValue','error 3')); 
error(4) = double(invoke(set_motor_power_vi,'GetControlValue','error 4')); 

 

 

B.24 sim_en_count.m 
 
function [w_count_diff,time_diff,time] = sim_en_count(new_instruction,w_sim_vel,COUNTS_PER_M) 
 
% Chris Lee-Johnson 
% 
% Simulation function to obtain encoder counts. 
% 
% w_count_diff:     Wheel displacements (encoder counts) 
% time_diff:        Time since last cycle (s) 
% time:             Total time elapsed (s) 
% new_instruction:  New instruction flag 
% w_sim_vel:        Simulated wheel velocities (m/s) 
% COUNTS_PER_M:     Number of encoder counts in 1m 
 
% Persistent variables 
persistent old_time; 
persistent first_time; 
 
% If first instruction, initialise variables. 
if new_instruction == 2 
     
    % Initialise variables. 
    first_time = cputime; 
    old_time = 0; 
     
end; 
 
% Get elapsed time between cycles. 
time = cputime-first_time; 
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time_diff = time-old_time; 
while time_diff < 0.08 
    time = cputime-first_time; 
    time_diff = time-old_time; 
end; 
old_time = time; 
 
% Get simulated wheel counts 
ERROR = [1,1]; 
w_count_diff = ERROR .* w_sim_vel * time_diff .* COUNTS_PER_M; 

 

 

B.25 sim_ir_voltage.m 
 
function [ir_voltage] = sim_ir_voltage(new_instruction,x,y,heading,wall_y,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE) 
 
% Chris Lee-Johnson 
% 
% Simulation function to obtain rangefinder voltages. 
% 
% ir_voltage:       Array of voltages output from rangefinders (V) 
%                   [left back, left front, front, 
%                   right front, right back, back] 
% new_instruction:  New instruction flag (see marvin_control) 
% x:                Distance (m) 
% y:                Offset (m) 
% heading:          Heading (rad) 
% wall_y:           Left and right wall offsets (m) 
 
% Persistent variables 
persistent ir_inst_voltage; 
 
% Look-up table parameters for IR voltage-distance relationships. 
ir_dist_curve = [0.15:0.05:1.5]; 
ir_volt_curve = [2.790,2.560,2.300,1.950,1.700,1.500,1.350,1.210,1.100, ... 
                 1.010,0.935,0.865,0.805,0.750,0.700,0.665,0.625,0.595, ... 
                 0.565,0.540,0.515,0.495,0.480,0.460,0.445,0.430,0.420,0.410; 
                 2.750,2.500,2.235,1.900,1.650,1.460,1.305,1.175,1.070, ... 
                 0.990,0.910,0.850,0.790,0.730,0.690,0.650,0.610,0.585, ... 
                 0.555,0.530,0.505,0.485,0.465,0.445,0.430,0.415,0.400,0.390; 
                 2.950,2.665,2.300,1.930,1.720,1.520,1.350,1.225,1.120, ... 
                 1.040,0.955,0.900,0.830,0.775,0.725,0.685,0.640,0.600, ... 
                 0.565,0.545,0.510,0.495,0.475,0.455,0.445,0.430,0.415,0.410; 
                 2.800,2.575,2.305,1.990,1.725,1.510,1.370,1.230,1.125, ... 
                 1.030,0.950,0.885,0.840,0.790,0.745,0.700,0.665,0.630, ... 
                 0.600,0.575,0.550,0.530,0.510,0.495,0.480,0.465,0.455,0.450; 
                 2.680,2.460,2.225,1.905,1.650,1.470,1.320,1.180,1.080, ... 
                 1.000,0.925,0.860,0.810,0.760,0.715,0.670,0.630,0.595, ... 
                 0.565,0.540,0.515,0.495,0.480,0.465,0.450,0.440,0.430,0.425; 
                 2.760,2.500,2.240,1.900,1.655,1.475,1.325,1.200,1.085, ... 
                 0.995,0.920,0.855,0.800,0.750,0.710,0.675,0.645,0.605, ... 
                 0.580,0.550,0.525,0.500,0.475,0.450,0.430,0.415,0.400,0.390]; 
 
M = length(ir_dist_curve); 
N = 10; 
 
% If first instruction, initialise all voltages to first voltage. 
if new_instruction == 2 
    ir_inst_voltage(1:N,:) = 0.1; 
end; 
 
for i = N-1:-1:1 
    ir_inst_voltage(i+1,:) = ir_inst_voltage(i,:); 
end; 
 
% Cartesian coordinates of each IR (adjusted for MARVIN's overall 
% position and orientation). 
[ir_adj_x,ir_adj_y,ir_adj_angle] = coord_trans(x,y,heading,IR_OGN_X,IR_OGN_Y,IR_OGN_ANGLE); 
 
% Distance (in m) from wall. 
for i = 1:6 
    if sin(ir_adj_angle(i)) == 0 
        d(i) = Inf; 
    elseif ir_adj_angle(i) < 0 
        d(i) = abs( (wall_y(1)-ir_adj_y(i)) / sin(ir_adj_angle(i)) ); 
    else 
        d(i) = abs( (wall_y(2)-ir_adj_y(i)) / sin(ir_adj_angle(i)) ); 
    end; 
end; 
 
for i = 1:6 
     
    % Record the section that contains the current distance value. 
    ir_section(i) = 0; 
    for j = [1:M-1] 
        if (d(i) <= ir_dist_curve(j+1) & d(i) >= ir_dist_curve(j)) ... 
                | (d(i) >= ir_dist_curve(j+1) & d(i) <= ir_dist_curve(j)) 
            % Record current section. 
            ir_section(i) = j; 
        end; 
    end; 
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    % If current position value is outside curve boundaries. 
    if ir_section(i) == 0 
         
        if (d(i) < ir_dist_curve(M)) 
            ir_inst_voltage(1,i) = ir_volt_curve(i,M); 
        else 
            ir_inst_voltage(1,i) = 0.1; 
        end; 
         
    else 
         
        % Calculate distance for current section. 
        if ir_dist_curve(ir_section(i)+1) ... 
                == ir_dist_curve(ir_section(i)) 
            ir_inst_voltage(1,i) = ir_volt_curve(i,ir_section(i)); 
        else 
            ir_inst_voltage(1,i) = (d(i) - ir_dist_curve(ir_section(i))) ... 
                * (ir_volt_curve(i,ir_section(i)+1) - ir_volt_curve(i,ir_section(i))) ... 
                / (ir_dist_curve(ir_section(i)+1) - ir_dist_curve(ir_section(i))) ... 
                + ir_volt_curve(i,ir_section(i)); 
        end; 
         
    end; 
     
end; 
 
% If first instruction, initialise all voltages to first voltage. 
if new_instruction == 2 
    ir_inst_voltage(2:N,1) = ir_inst_voltage(1,1); 
    ir_inst_voltage(2:N,2) = ir_inst_voltage(1,2); 
    ir_inst_voltage(2:N,3) = ir_inst_voltage(1,3); 
    ir_inst_voltage(2:N,4) = ir_inst_voltage(1,4); 
    ir_inst_voltage(2:N,5) = ir_inst_voltage(1,5); 
    ir_inst_voltage(2:N,6) = ir_inst_voltage(1,6); 
end; 
 
% Software filter to reduce noise. 
weight = 0.5; 
ir_voltage(1:6) = 0; 
for i = 1:N 
    ir_voltage = ir_voltage + weight * ir_inst_voltage(i,:); 
    if i < N-1 
        weight = 0.5*weight; 
    end; 
end; 

 

 

B.26 sim_motor_power.m 
 
function [w_sim_vel] = sim_motor_power(new_instruction,w_tgt_vel) 
 
% Chris Lee-Johnson 
% 
% Simulation function to apply power to motors. 
% 
% w_sim_vel:        Simulated wheel velocities (m/s) 
% w_tgt_vel:        Target wheel velocities (m/s) 
% new_instruction:  New instruction flag 
 
% Minimum wheel velocity (m/s) 
MIN_VELOCITY = [0.01,0.01]; 
 
% If target speed is too low to overcome friction, 
% wheel will not move. 
for i = 1:2 
    if abs(w_tgt_vel(i)) < MIN_VELOCITY(i) | w_tgt_vel(i) == NaN 
        w_sim_vel(i) = 0; 
    else 
        w_sim_vel(i) = w_tgt_vel(i); 
    end; 
end; 
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Appendix C: CD Contents 
 

The attached CD contains the following: 

 

 This document 

• Microsoft Word format 

• PDF format 

 

 Test results 

• Captured data 

• MATLAB figures 

• Video samples 

 

 Source code 

• MATLAB functions 

• LabVIEW VIs 

• Microcontroller C code 

 

 Datasheets 

• 6025E data acquisition card 

• HEDS-5500 optical encoder 

• GP2Y0A02YK infrared rangefinder 

• P89C51RC2HBP microcontroller 
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