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Abstract—ISPs face difficulties in optimizing interdomain
routing due to the single path routing constraint of BGP. A
single best path makes it difficult to optimize routing and
is unable to satisfy various application requirements of
customers. In this paper, we present a new routing archi-
tecture for ISP edge network which breaks this constraint
and allows the operator to flexibly assign interdomain
paths to customers and to use these paths for forwarding.
We leverage Software Defined Networking (SDN) to imple-
ment this new design while also maintaining compatibility
with existing networks. Our preliminary results show that
the system is capable of flexible routing and can be
integrated to existing infrastructure.

1. Introduction

The Internet is composed of a large number of
networks called Autonomous Systems (ASes), each of
which is owned and operated independently by different
organizations. Internet Service Providers (ISPs) operate
transit ASes to provide Internet transit service to their
customers. Transit ASes relay traffic from source to
destination, and so play a crucial role in maintaining
the connectivity and performance of the Internet.

Border Gateway Protocol (BGP) is a de facto proto-
col for routing between ASes [1]. However, BGP was
designed to select and distribute a single “best path”
for each destination prefix [2]. This unipath approach
fails to exploit the path diversity exhibited in the In-
ternet for improving end-to-end routing performance
[3]. Furthermore, BGP paths are often suboptimal in
terms of round-trip time, loss rate and bandwidth and
there usually exists an alternative path with better per-
formance [4]. In BGP routing, transit providers can
autonomously select best routes according to its local
policy so that some routing requirements, for instance
traffic engineering (TE) goals are fulfilled.

From a customer’s perspective, the provider’s notion
of “best route” does not hold in all circumstances. It
is common that stub ASes select best routes based
on performance metrics such as delay or packet loss
rate [5], [6]. Requirements for best routes also vary be-

tween customers and applications. For example, remote
surgery requires a highly reliable route and on-demand
video needs a high bandwidth one. Thus, one customer
may have different route requirements from others. It is
apparent that best routes selected by the provider cannot
fully satisfy diverse routing requirements.

The current routing architecture makes it difficult
for ISPs to satisfy the diverse requirements of their
customers because of the network’s inability to use mul-
tiple paths simultaneously. Moreover, the one-route-fit-
all restriction does not provide the transit providers with
enough flexibility to achieve multiple policy objectives
and to optimize routing [7]. As illustrated in Figure
1, the transit AS1 learns four paths to the destination
prefix 1.0.0.0/24. However, standard BGP limits the two
border routers R3 and R4 to the selection of a single
best path, e.g. via P1 and P2. Similarly, two routers R1
and R2 can only choose between a path selected by R3
or R4 for forwarding. Customer C1 and C2 are forced
to use the same path for their traffic to the destination
prefix.
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Figure 1: Routing in ISP networks

Several studies have investigated multipath routing
for interdomain routing to allow flexibility and better
performance [8], [9]. However, the deployment of mul-
tipath routing across the Internet is challenging due to
its scale and the lack of incentives. Instead of looking
at an Internet-wide solution, this paper focuses on a
deployable design for enabling routing flexibility only
between transit ASes and their customers. As an ISP
and its customers already have business contract, the
provider has an incentive to deploy such a solution that
benefits itself and the customers. Given a critical role



of transit ASes, a non-disruptive solution is necessary
for successful deployment.

In this paper, we present a routing architecture for
ISPs which utilizes SDN principles and capabilities for
routing flexibility, compatibility and deployability. SDN
is a emerging networking paradigm where the control
plane and data plane are decoupled. The control plane
decides how traffic is routed and data plane performs
the actual forwarding. [10], [11]. This decoupling en-
ables innovation and simplifies network management.
In SDN, network devices are simple packet forwarders
as their intelligence is now logically centralized in
software-based controllers. Network programmability is
enabled through APIs provided by the controller.

The new routing framework removes the constraint
of BGP which limits a border router from having single
route per prefix and enables finer-grained flows. This
allows the assignment of traffic from different neigh-
bors entering the same ingress router to different edge
links of the same egress router. SDN is utilized for
designing a compatible and incrementally deployable
routing architecture which provides greater flexibility
in interdomain routing. Our evaluation shows that the
system can be easily integrated into existing networks.
The system can be configured using policies expressed
using the Routing Policy Specification1 (RPSL). With
the capability to flexibly assign and switch any learned
path between neighboring AS, the operator may now ex-
press policies that satisfy various routing requirements.

2. Flexible routing architecture

Our main goal is to design a scalable, flexible and
incrementally deployable multipath interdomain routing
system. The system must be compatible with the current
interdomain routing protocol and services. Thus, we
leverage existing technologies and commercially avail-
able hardware. We also aim at a simple and familiar
interface between the operator and the system, which
preserves the wealth of operational knowledge and ex-
pertise embedded in BGP. It must support incremental
deployment so that a transit AS can adopt the solution
without cooperating with and relying on others.

Our design follows the edge-core separation concept
in which the core network is in charge of intrado-
main routing while the edge network is completely
responsible for the interdomain task. This focus on the
edge only will make the deployment easier and less
disruptive. In addition, this design allows the core and
edge network to evolve independently. For example, the
core forwarding problem can be addressed using novel
techniques such as in [12]. Interaction between the edge
and core is purely made in data plane thus improving
overall performance and scalability.

The high level architecture is illustrated in Fig. 2.
The system is composed of a centralized route con-

1. https://tools.ietf.org/html/rfc2622

troller (RC) and multiple provider edge (PE) routers of
which each is controlled by a local controller (called
Forward Controller or FC). The RC is responsible for
processing BGP updates and computing routes. It learns
external routes from neighbors via eBGP. The operator
configure the RC with routing policies specified in
RPSL. A PE can be composed of multiple OpenFlow
switches. FCs are responsible for establishing forward-
ing paths and mapping traffic to paths. This hierarchical
architecture enables the data plane to scale without
modifications to the routing control. For example, a
PE can be upgraded to support more customers and
to accommodate the growth of traffic as well as the
forwarding table. This design also allows techniques
for scalability such as FIB compression [13], [14] to
be implemented without affecting the rest of the system
design.

We believe the key to enabling routing flexibility
is that the system should be able to compute routes
to a destination prefix differently for each neighbor,
regardless of their attachment point. As example in Fig.
1, the operator should be able to assign C1 and C2
routes via two providers P1 and P2 respectively. This
ability requires the system to compute and maintain
multiple paths per destination prefix. The following
sections describe how this can be achieved by exploiting
the SDN architectural separation between control and
data plane.
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Figure 2: System architecture

2.1. Control Plane

The RC controller’s main functions are to process
routing updates and compute routes. To achieve rout-
ing flexibility, we introduce two mechanisms: multiple
routing tables and a preference system for route compu-
tation. The controller maintains a separate routing table
for each neighbor and is configured by a routing policy
specified in RPSL. Two RPSL commands, import and
export, dictate whether a route can be used for forward-
ing and whether it can be exported to a neighboring AS.
RC maintains a route ranking for each neighbor and
the best ranked one will be selected. By using RPSL,
the operator can rank routes based on various attributes
allowing the selection of routes to the same destination
prefix with different properties.



TABLE 1: Example of routing table

Neighbor Destination prefix Path
C1 1.0.0.0/24 P1
C1 2.0.0.0/24 P2
C1 3.0.0.0/24 P3
C2 1.0.0.0/24 P2
C2 2.0.0.0/24 P3
C2 3.0.0.0/24 P3

We utilize RPSL as the interface between the oper-
ator and the controller. In RPSL the policy is evaluated
in the decreasing order from left to right. We utilize
this for the expression of routing preference for each
BGP peering session. For example, two policies below
express AS2 preference for route to prefix 1.0.0.0/24
via AS4 to AS5 if available, otherwise default routing
is used. Meanwhile AS3 prefers routes which avoid
AS5 for the same prefix. Using RPSL provides oper-
ators with simple and flexible interface for optimizing
routing. Coarse- and fine-grained policy e.g. per router,
AS or group of ASes, can also be developed via RPSL.
The ISP can assign a particular route to a prefix or a
range of prefixes to a specific router or a neighbor.

export: to AS2 announce (1.0.0.0/24 AND AS4)
OR (1.0.0.0/24 AND AS5) OR ANY
export: to AS3 announce (1.0.0.0/24 AND ˆAS5)
OR ANY

We implement the selection algorithm as follows to
select routes based on the configuration policy. First,
a routing update from a peer is filtered by the import
policy and imported to the local routing table. Then,
for each prefix carried in the update, every peer will
filter and rank the route according to its export policy.
The standard BGP selection algorithm is applied to tie-
breaking when two routes have the same rank. The
selected best path is then advertised to the peer and
installed to PEs. The output of this process is multiple
route tables, each for a peer, as illustrated in Table 1.

The control plane relies on a centralized architec-
ture in order to enable the controller to have complete
visibility of externally learned routes to enable flexible
routing policies. The route controller establishes BGP
session to routers in neighboring ASes.

2.2. Data Plane

The main functions of the data plane are to establish
forwarding entries across PEs and to perform actual
packet delivery. Two operations are required in the data
plane: classification and mapping. The classification
operation classifies incoming packets to determine the
assigned forwarding path, while the mapping operation
places these packets onto path for actual delivery.

An end-to-end forwarding path can be located lo-
cally in an ingress PE while some others have two

ends located in an ingress and egress PE. Thus, tun-
nels between pairs of PEs across the core network are
required. For example, if C1 is assigned a path P1 for a
destination prefix p then the ingress PE R1 must direct
traffic from C1 to p to the egress PE R2 which in
turn forwards the traffic out via P1. We assume these
tunnels already exist and the tunnel management is
accomplished by the core network with the involvement
of the route controller. The design is independent from
the tunnelling technique. Thus, techniques such as GRE
or MPLS can be used.

Each PE is composed of multiple physical switches
and a local controller. FC exposes APIs to the Route
Controller for modifications of multipath forwarding.
FC controller handles network events happening within
the PE such as next-hop resolution.

Maintenance of multiple paths per prefix signifi-
cantly increases overheads in both control and data
plane. However, the data plane is concerned the most
due to limited resources compared with the control
plane which runs on cheap commodity hardware. The
traditional mechanisms such as Equal Cost Multipath
(ECMP) do not support the design requirement, as their
static hashing for path selection do not support mapping
of incoming traffic to arbitrary paths.

One approach to implement the forwarding plane is
to use Access Control Lists (ACL). An ACL entry can
be defined to match a particular type of traffic and a
destination prefix to determine the path for the traffic.
The entry’s actions insert the pathID into packet header
and forward packets to the next hop. This approach
results in a very large forwarding table, thus it is not
scalable. Specifically, we will need C ∗ P forwarding
entries, where C is the number of neighbors, P is the
destination prefixes. A typical large ISP has thousands
of neighbors and the current number of prefixes in the
Internet is about 600K (and is increasing) making this
approach less scalable.

We can implement this by assuming that the oper-
ator may only need to customize routing to hundreds
of popular prefixes in order to improve routing perfor-
mance. In reality, a small number of prefixes account for
the majority of interdomain traffic in the Internet. Thus,
many prefixes will share the same forwarding path.

We leverage this observation and the multi-table
capability of SDN to reduce the memory footprint
in the data plane. We describe the implementation as
follows. First, the classification uses destination MAC
address to distinguish traffic and is performed on a
separate forwarding table for classification. Traffic from
different neighbors which traverses the same path will
use the same MAC address. This reduces the number
of classification rules to N which is the total number
of paths. Second, we leverage the metadata capability
in OpenFlow switch for path identification. A unique
metadata ID is inserted to classified packets. Packets
are then matched against the metadata and destination
address in a subsequent table. We denote Q as the



number of prefixes which the operator need routing
flexibility. Then upper bound number of forwarding
entries in this table will be Q∗N+P . The total number
of entries will be N+Q∗N+P . We assume that limiting
Q to a thousand of prefixes and N to less than 100
would be enough. This approach significantly reduces
the table sizes and the complexity is independent of the
number of customers, making it scalable.

The forwarding table is constructed using multi-
table capability supported by various SDN hardware
switches. Incoming packets are classified by the classi-
fication table which determines which forwarding path
the packets will take. A metadata representing the path
is added to the packet. In the multipath table, the
nexthop will be determined by matching against the
PID and destination address. The actual forwarding
operation which modifies packet TTL, changes source
and destination MAC addresses, and send packets out of
a port, will be conducted in the forwarder table. Using
multiple table reduces the number of forwarding entries
and enhances the management.

3. Related Work

Feamster et al. introduce a concept of a routing
control platform (RCP) in which a logical centralized
controller computes interdomain routes on behalf of all
routers within an AS [15]. RCP obtains BGP routes
via iBGP connections with internal routers and IGP
topology via an intradomain protocol. A design and
implementation of a prototype is presented [16]. Al-
though RCP demonstrates the feasibility of the concept,
it does not provide operators with the flexibility such
as supporting multipath routing. Work in [17] extends
the RCP concept with a design of Intelligent Service
Control Point (IRSCP). IRSCP allows operator to ex-
plicitly select egress router for a destination prefix by
removing IGP factor from selection process. However,
in IRSCP ingress routers can use only a single path
to a destination prefix. RCP implementation on SDN-
enabled networks has been proposed [18], [19]. In [18]
a framework that integrates existing routing protocols
such as BGP, OSPF with OpenFlow data plane called
RouteFlow is presented. RouteFlow demonstrates the
feasibility and compatibility of using SDN switches, but
no functionality is realized. A similar work, SDN-IP
[19] integrates BGP with OF networks.

Chiu et al. [20] present a new edge router ar-
chitecture following SDN and NFV principles called
EdgePlex. A PE in EdgePlex is composed of servers
and switches. The servers host virtual machines (VM),
each of which represents a single customer endpoint.
The switches connect the servers and the customers’
network. EdgePlex gives operators great flexibility so
customers’ routing and forwarding can be controlled
independently. This design differs from ours in the sense
that it considers architecture of edge router individually.
Moreover, our design forwarding is done in hardware,

thus physical line rate can be achievable and we realize
a multipath routing architecture.

Wang et al. discuss the possibility and benefits of
having different paths for different neighbor ASes, such
as solving policy conflict or route oscillation in [21] and
present a new RCP architecture which allows multiple
path computation and incorporates external measure-
ments into the routing decision called Morpheus [7]. In
Morpheus, routing updates are tagged by multiple clas-
sifiers before going through mapping functions which
translate the tags into numerical values. Sum score of
each path is computed and path with the best score
is chosen. Multiple decision processes can be used to
realize multipath routing. Each classifier is associated
with a path characteristic such as latency, security, or
business relationship and a weight representing prefer-
ence of a classifier over another. This allows operators
to trade-off path requirements. Morpheus does not pro-
pose design of multipath forwarding in the data plane.
Their route selection approach can be well-integrated to
our design.

4. Implementation and Evaluation

We describe in this section the implementation of
the RC controller and the PE datapath. We also present
the results of a preliminary evaluation of our prototype.

4.1. Implementation
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Figure 3: Route Controller implementation.

The RC controller implementation is based on Ex-
aBGP which is a BGP server written in Python. The
processing pipeline of the RC is shown in Fig. 3. RC
receives BGP advertisements from neighbor. It then
constructs a path for each destination prefix carried
in the update. These paths are verified by the import
policy configured for the neighbor which either filters
or accepts them and applies modifications to the path
attributes as specified. An accepted path will be passed
to other neighbors’ export policy which determines if
the path can be used for that neighbor and ranks them.
The best path selector will select the best ranking path
for each neighbor. The resulting multiple best paths are



then advertised to affected neighbors and sent to the
ingress and egress PE where they are transformed into
OpenFlow rules and installed into the datapath.

PE’s datapath and FC controllers are implemented
based on Faucet 2 (V1.2), an open-source controller
for L2/L3 switching and routing. We implement the
forwarding logic by extending Faucet routing function-
ality. Faucet’s forwarding pipeline is constructed using
multiple tables as shown in Fig. 4. IP forwarding entries
are stored in two FIB tables: IPV4 FIB and IPV6 FIB
table for IPv4 and IPv6 prefixes, respectively. In order
to support multiple forwarding entries per prefix, we
extend the FIBs tables to match on metadata and the
destination IP address. Traffic classifier is implemented
by adding rules that match MAC addresses associated
with the virtual IP addresses in the ETH SRC table.
The ETH SRC table keeps track of learned hosts and
determines whether traffic will be handled by L2 or L3
routing. For tunnelling traffic between PEs, a tunnel
table is added. In the new pipeline, the FIB tables
determine whether packets will be forwarded straight
to output port or are handled by the tunnel table. The
tunnel table encapsulates packets in MPLS headers
which carry path identifier and tunnelling information
used by the core network to forward the packets to the
correct egress PE.
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Figure 4: Forwarding pipeline of original Faucet and
multipath routing-enabled Faucet

4.2. Evaluation

We built a simple ISP topology as shown in Fig. 5 in
order to verify the operation of the system. The testbed
is setup using GNS3 3 - a network emulation tool and
Docker containers. Neighbor ASes are represented by
Docker containers running Quagga, naming R1 to R7.
Two containers used as PE routers are connected via
a Cisco router acting as the core network. The Cisco
router is configured to tunnel MPLS traffic between
the two PEs. The PE containers run Openvswitch as
datapath and Faucet as the Forward Controller. The

2. https://faucetsdn.github.io/
3. http://www.gns3.com
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Figure 5: Experimental topology

experiments were run on a single laptop with the con-
figuration of 1.6Ghz Intel Core i5-4200U CPU and 8GB
RAM. The RC learns three paths via R4 (local path),
R5, and R6 (remote paths) toward prefix 12.0.0.0/24
attached to R7. The Route Controller is configured so
that R1, R2 and R3 prefer path via R5, R6 and R4,
respectively. We use ping and tcpdump to verify if
traffic takes the proposed path. In another experiment,
we verify the ability of the system to switch between
paths. We run script which send commands directly to
PE Faucet-1 causing it to switch R1’s traffic between
R5 and R4 path back and forth, while R1 and R3
are sending UDP traffic. Fig. 6 shows the bandwidth
utilization captured on links R4-R7 and R5-R7.

Figure 6: Traffic patterns on link R4-R7 (top) and
R5-R7 (bottom). The experiment switches R1’s path
between R4 and R5 10 times causing traffic to shift
between two links.

Figure 7: Traffic patterns on link R4-R7 (top) and
R5-R7 (bottom). The experiment switches R1’s path
between R4 and R5 10 times causing traffic to shift
between two links.



In another experiment, we investigate the processing
performance of the Route Controller. We use a BGP
update generator to generate announcements at the rate
of 1000 updates/second. Each update carries 5 prefixes
from a random neighbor AS. As shown in Fig. 7,
the system takes an average of 76ms to compute the
best path for the configuration of 5 neighbors and 5
prefixes per update. This figure increases to 200ms
and 300ms when doubling and tripling the number of
prefixes respectively. This requires a significant amount
of time to handle routing updates. We are investigating
the factors leading to this issue. Probably this is due to
a lack of multi-threading in the implementation as we
observed that the CPU utilization was at low level.

5. Conclusion

In this work, we leverage SDN to design and im-
plement a routing architecture for ISP networks which
offer much higher routing flexibility than the current
system. The system can be deployed using commer-
cially available hardware and is compatible to existing
networks. Our evaluation shows the possibility to inte-
grate the system into the ISP network and demonstrates
its capability for flexible routing.

In future work we will investigate thoroughly the
performance issue of the Route Controller. We also
aim to design an extensive experiment to study other
performance aspects such as impact on traffic in terms
of delay, jitter and packet loss. In addition, we will also
look forward to investigate the efficacy of the system
through applications such as traffic engineering and
customizable routing.
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