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Abstract

DNS amplification attacks have become a prevalent means of taking down
websites or servers on the internet. Although there are many possible solutions
to mitigate the attacks the solutions are not widely implemented and few solu-
tions have the capability of operating on internet-exchange (100GBps+) levels of
traffic. This report presents a new approach to mitigating the attacks that aims to
succesfully operate on high-traffic networks and effectively reduce the number
of attacks without the need for widespread adoption.
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Chapter 1

Introduction

The internet, a tool originally created to make it easier for researchers to collaborate on
their work, has become a prevalent part of society that has extended far beyond its original
intentions. E-commerce, social networking, gaming, blogging, and telecommunications are
a small number of common uses of the internet today. The original designers of the internet
made the assumption that everyone connected to the internet could be trusted, however
that is no longer the case. Attackers are taking advantage of this poor assumption to cause
chaos for innocent (and other malicious) participants of the internet.

An especially common goal of internet attackers is to force websites offline for political
or financial reasons. Attackers use Distributed Denial of Service (DDoS) attacks to achieve
their goals. A DDoS attack can force a website offline by consuming all of the resources of the
computers that host the website. While a victim web server is trying to process and respond
to the bulk requests of the attacker it cannot do the same for the requests of legitimate users.
Figure 1.1 shows how DDoS attacks are widespread, varying largely in origin, destination,
bandwidth, and attack type.

1.1 Problem statement

DDoS attacks are largely possible due to poor router hygiene and server misconfiguration.
Many routers do not check the source addresses of the packets they forward, allowing at-
tackers to fake the origin of malicious content they send. Responses to these spoofed requests
are then delivered to an unsuspecting recipient. Servers are misconfigured to respond to
requests from anyone on the internet when it is likely that they were intended to be used by
a smaller number of users. It is suggested that administrators of these servers are unaware
of the risks of configuring their servers to allow open access, or they do not know how to
lock down the configuration on their servers. Another potential problem is with servers that
run out-of-date versions of software: vulnerabilities in the servers are actively exploited by
attackers and this can lead to more potential unwilling participants of DDoS attacks.

A solution is required that will dampen the effect of DDoS attacks while requiring min-
imal change to existing internet infrastructure. It is to be assumed that server administra-
tors will not fix their misconfigured servers or routers, or keep server software up-to-date.
Therefore, the solution should be placed under the control of proactive administrators in
key locations across the internet. These key locations will have large amounts of regular
traffic flowing through them and the volume is likely to increase as additional uses for the
internet become available, so the solution should be highly scalable.
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Figure 1.1: Visual representation of DDoS attacks recorded by Arbor Networks on February
10 2014 [19]

1.2 Objective

The objective of this project to provide a viable mechanism to mitigate DDoS attacks.

• The solution should be capable of handling an internet exchange-level volume of traf-
fic.

• The solution should run on a variety of hardware or software.

• The solution should be extensible in case other attacks need detecting.

• The solution should be able to mitigate attacks with minimal impact to legitimate traf-
fic.

• The solution should be effective without requiring modifications to every router on
the internet.

1.3 Contributions

The project provides contributions in the following areas:

• An analysis of possible solutions that could support a large volume of regular traffic
and attack traffic.
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• The design and implementation of a mechanism for detecting amplification attacks.

• The design and implementation of a mechanism for mitigating amplification attacks.

• The development of a mechanism to test the effectiveness of an amplification attack
detection and mitigation system.

1.4 Note

There was a risk that the original industry-based project (titled Bringing the world’s first SDN
controlled Internet Exchange into production) would not be completed in time due to legal and
organisational issues. To mitigate the risk a plan was established for an alternative project
that would continue to use SDN but to solve a different problem. The risk occurred and
what follows in this report is the outcome of the alternative project.

1.5 Organisation of the report

The rest of the report is organised as follows:

Chapter 2 describes in detail the components of a DNS amplification attack, potential ap-
proaches to mitigating DNS amplification attacks, and introduces Software-Defined
Networking (SDN). Then it explores real-world examples of amplification attacks.

Chapter 3 compares potential approaches to solving the problem and describes in depth
the approach that is taken to solve the problem in this project.

Chapter 4 describes how the solution has been implemented.

Chapter 5 evaluates the effectiveness of a solution in terms of the project’s requirements.

Chapter 6 concludes the project and discusses future work that could be performed on the
project.

3



4



Chapter 2

Background and literature review

This chapter seeks to dissect and explain the components of a DNS amplification attack and
investigate methods from industry and academia to detect and mitigate these attacks. Also
included in this chapter are case studies of DNS amplification attacks occurring in the real
world.

2.1 Components of a DNS amplification attack

An attack is usually constructed of multiple fundamental components that exploit weak-
nesses in a system. This section will describe the components that form a DNS amplification
attack.

2.1.1 Distributed denial of service attack

A Distributed Denial of Service (DDoS) attack can be broken into two parts: distributed and
denial of service. Fundamentally, a denial of service attack is where legitimate users’ access
to a service is impeded by the attempts of an attacker [22]. If the attacker is successful then
no legitimate access to the service is possible. A common method used by attackers to deny
service to legitimate users is to consume the resources of the service so that the resources
cannot be used to serve legitimate users.

The attacker can consume a greater amount of the service’s resources by attacking with
more resources — thus denying the service to more users. Increasing the resources in an
attack is achieved by having several computers distributed across the internet [35]. A non-
distributed attack can generally be mitigated by blocking the IP address of the attacker.
However, this becomes difficult with a DDoS attack because there is an overwhelming
number of attack sources — blocking individual IP addresses of attackers becomes time-
consuming, new attack sources may appear, and it may be difficult to distinguish between
attackers and legitimate users. A common technique to overcome DDoS attacks is to black-
hole the IP address(es) being targeted. Blackholing will be discussed further in section 2.3.1.

An attacker distributes a DoS attack by taking control of unsuspecting users’ computers
and turning them into zombies that can be controlled remotely [35]. A network of remote-
controlled zombie computers is known as a botnet (robot network) [15]. Each computer in
a botnet is usually infected with some sort of malware and is then known as a zombie. A
zombie can be instructed to perform a number of tasks including but not limited to sending
spam, clicking advertising, and contributing to DDoS attacks.
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2.1.2 Reflection attack

A reflection attack is a sub-component of an amplification attack (see section 2.1.3). Suppose
an identification protocol uses a challenge-response system where one principal sends a
challenge and the other principal proves their identity by sending the correct response. Now
suppose that an attacker wants to break the protocol by posing as a legitimate principal.
When the challenging principal sends a challenge to the attacker (equation 2.1) the attacker
reflects the challenge back at the challenging principal (equation 2.2). Assuming the protocol
is symmetrical and the challenging principal is instructed to respond to any challenges it
receives then it will reply to the reflected challenge with a valid response (equation 2.3). The
attacker then reflects back to the challenging principal (equation 2.4) and the challenging
principal treats the attacker’s identity as a valid principal. This is known as a reflection attack
[1].

A → B : N (2.1)

B → A : N (2.2)

A → B : {N}K (2.3)

B → A : {N}K (2.4)

The weakness in the aforementioned protocol is the symmetric behaviour of the chal-
lenges and responses. A simple way to mitigate this attack is to make the protocol asym-
metric: for example, varying the challenges and/or responses with each run of the protocol.
Furthermore, each response could include the identity of the principal sending the message
(equation 2.6) [37]. Therefore, a reflection attack can be detected if a principal receives a
challenge that appears to come from itself.

A → B : N (2.5)

B → A : {B, N}K (2.6)

2.1.3 Amplification attack

The aforementioned reflection attack pertains mostly to authentication systems, however
the same concepts can be applied to form the basis of an amplification attack. The goal of an
amplification attack is to attack the target with more resources than are directly available to
the attacker. The goal relates to a reflection attack because an attacker can exploit a protocol
that does not verify the identity of a request before sending a response. Both ICMP and UDP
are stateless by design and therefore these protocols can be used to reflect a response to a
destination host that is not the same as the request packet’s origin host. This can be useful for
an attacker to protect their identity when performing an attack, however the attack becomes
more valuable to the attacker when the reflected response is larger than the request made
by the attacker. For example, the Smurf attack in section 2.1.3 responds with more packets
that were originally sent and the attacks in section 2.1.3 response packets that are larger than
their request packet counterparts.

Smurf attack

The first known instance of an amplification attack is called a Smurf attack. smurf.c was
created in 1997 by a user with the handle Tfreak [28]. The attack works by sending an ICMP
request packet to the broadcast address of an unsuspecting network that has a gateway
router that is configured to relay ICMP requests to devices sitting behind the router [31].
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Figure 2.1: Example of a Smurf attack [31]

The source address of the ICMP request packets is spoofed to match the IP address of the
target host. When the unsuspecting hosts send their ICMP replies they are directed at the
target host. The amplification factor of a Smurf attack depends on the number of hosts that
receive the ICMP request sent to the broadcast address. For example, in figure 2.1 there
are five hosts behind the poorly-configured router which means the amplification factor is 5
times.

Smurf attacks are easily mitigated by configuring routers not to forward ICMP requests
to the broadcast address of a network [31]. Alternatively, individual hosts could be config-
ured to ignore ICMP requests but this may prevent purposeful network diagnostics.

UDP-based amplification attacks

Tfreak is also known to have created the first UDP-based amplification attack, called Frag-
gle after its file name fraggle.c [28]. Like ICMP, UDP has no handshaking mechanism and
no other way to verify the source IP address of a packet. Therefore, weaknesses in publicly-
accessible servers that use the UDP protocol can be used to launch amplification attacks [24].
Instead of relying on the number of response packets to generate an amplification factor, an
attacker can send a small UDP request packet that generates a much larger UDP response
packet. Figure 2.1 shows several common services that operate over UDP and their associ-
ated Bandwidth Amplification Factor (BAF). BAF, as shown in equation 2.7, measures the
size of the response payload compared to the request payload. Figure 2.1 lists CharGEN
as the protocol with the highest bandwidth amplification factor. CharGEN is a mostly un-
used [2] protocol that generates a stream of assorted characters over a network socket. Over
UDP the response payload size can be up to 512 bytes depending on the size specified in the
request.

B.A.F. =
payload size(response)

payload size(request)
(2.7)

2.2 DNS amplification attack

DNS amplification attacks are a prime attack vector for attackers: they support queries over
UDP - allowing the source address to be spoofed - and they have a high bandwidth ampli-

7



Protocol Bandwidth amplification factor

DNS 28 to 54

NTP 556.9

SNMPv2 6.3

NetBIOS 3.8

SSDP 30.8

CharGEN 358.8

QOTD 140.3

BitTorrent 3.8

Kad 16.3

Quake Network Protocol 63.9

Steam Protocol 5.5

Table 2.1: Bandwidth amplification factor (BAF) of common UDP-based services [24]

Figure 2.2: Anatomy of a DNS amplification attack [5]

fication factor (see figure 2.1) [31].

The attack takes advantage of DNS resolvers that accept and respond to queries from
anyone on the internet. These resolvers are known as open resolvers. The open resolvers re-
spond to the spoofed queries with responses that are significantly larger than the attacker’s
spoofed requests (see figure 2.2). Each open resolver typically has a large available band-
width which allows the attacker to continue to use the resolver without the resolver denying
itself service. The combined available bandwidth of the open resolvers is much larger than
the attacker could provide with just their own internet connection. Section 2.4 will discuss
real-world examples of massive-scale DNS amplification attacks and the impact of each at-
tack on victim networks.

Matteo Cantoni presents the results of his DNS honeypot on his website [4], which show
statistics about target IPs, target countries, and the Fully Qualified Domain Names (FQDNs)
used in the attacks. FQDNs listed on Cantoni’s website have response payloads ranging
from 35 bytes to 37776 bytes. Assuming each query has a size of 64 bytes, the amplification
factor ranges from 0.5 to 590. An example of a large DNS response is shown in appendix A.
The Linux utility dig is used to request doc.gov, which returns an 8230 byte response.
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2.3 Mitigating DNS amplification attacks

There have been various attempts to mitigate DNS amplification attacks - some attempts are
temporary measures to withstand specific attacks, while other attempts try to permanently
mitigate attacks. This section will cover some of the common techniques for mitigating these
attacks.

2.3.1 Blackholing

The act of blackholing is to instruct a router to drop incoming traffic before it reaches the
destination network [18] [34]. This approach allows temporary relief from an incoming
DDoS attack by preventing attack traffic from reaching critical components on a network. A
more specific definition of a blackhole is a configuration where incoming IP packets destined
for a specific host or network are forwarded to a null queue (thus dropping the packets). The
disadvantage of this technique is that all incoming traffic is dropped, including traffic from
legitimate users. If the attacker’s target has multiple redundant networks then the target
could null route (blackhole) incoming attack traffic on one network and direct legitimate
traffic to a different site or network.

2.3.2 Source Address Verification

Since all amplification attacks (and many DDoS attacks in general) depend on the ability to
spoof the source IP address of a packet, there have been attempts to prevent attackers from
using this ability such as BCP 38 [9]. BCP 38 filters incoming packets by verifying that it
is possible to reach the network of the packet’s source IP address through the interface on
which the packet was received [23]. For example, a router on the edge of an ISP’s network
checks the source IP address of any incoming packets. If the source IP address of the packet
matches a network prefix that is known and known to originate from that interface then the
packets are allowed to enter the ISP’s network. Figure 2.3 demonstrates the actions of BCP
38 during a DDoS attack: forged packets from the attacker’s network are dropped while
packets legitimate packets from the attacker’s network are allowed into the ISP’s network.

A criticism of Source Address Validation (SAV) is that network operators must all imple-
ment SAV for the technique to be effective [43]. Enabling SAV on all networks would be an
expensive exercise and given the number of network operators and devices connected to the
internet it would be difficult to ensure every device supports and enables SAV. Mandating
SAV would be difficult, if not impossible, because there is no way to determine from the
outside whether SAV is active and there is no business case for a network operator to have
an audit performed internally.

Furthermore, Vixie writes that SAV would not directly solve the problem that causes
DDoS attacks. The SAV technique assumes that forged packets have a source IP address
that is invalid in context (for example, a RFC 1918 address) or the router receiving the packet
would normally use a different interface to sent packets to that source IP address. However,
the target IP address of a DDoS attack might appear to be valid if the unsuspecting router
uses that same interface or routing path to send packets to the target IP address. For ex-
ample, an attack being bounced through New Zealand to and from other countries may be
undetected by SAV due to the limited number of paths a packet can take to enter or leave
New Zealand.
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Figure 2.3: Simple workflow of BCP 38 during a DDoS attack [30]

Ingress filtering has been suggested by authors of many academic papers [6] [13] and
has become a best current practice (BCP 38 [9]) for the internet community. As mentioned
in section 2.3.2, routers compare the source addresses of incoming packets against their for-
warding tables to ensure the packets come from known prefixes and are allowed to be re-
ceived on that interface. For example, a router may be configured to only allow packets from
x.x.y.y/zz on its ingress link. The router would check the source address of incoming pack-
ets and if the source address does not match the prefix x.x.y.y/zz then the source address is
deemed invalid and the packet is dropped. Kong et al. [13] argue that a router must know
which prefixes are allowed to send traffic to the router’s incoming interface. This may be
the case when the router is used to peer with another network, thus access to the network
is provided to a limited number of hosts, but if the router is used for upstream transit then
incoming packets could effectively come from any other host on the internet. Therefore, this
technique is more effective if all routers on the internet implement ingress filtering since the
filtering is performing at the source — before the potentially spoofed packets reach the rest
of the internet.

2.3.3 Disabling recursion on authoritative name servers

Most authoritative name servers are intentionally made internet-accessible so that the do-
main names for which these name server have authority can be queried by public internet
users. Since most DNS server applications can perform both authoritative functions and
recursive functions it is possible that an authoritative name server unintentionally provides
recursive functionality to anyone who queries the DNS server, including public internet
users. This kind of DNS server is called an open resolver and is described in more depth in
section 2.2.
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The recommended action to prevent an authoritative name server from being used as
an open resolver is to disable the recursive functionality on the name server [23] [41]. The
most common use of an authoritative name server is in a public internet environment where
there is no need for recursion to be enabled. On the other hand, authoritative name servers
in a private network environment may need to use both functions at once. For example,
in a Split DNS configuration [7] the internal name server might be configured to resolve
domain names to RFC 1918 [36] addresses and provide recursive functionality to hosts in
the network, while the external name server might be configured to resolve domain names
to public IP addresses. In this example it would be acceptable to allow recursion on the
internal authoritative name server but the external authoritative name server should have
recursion disabled to prevent the name server from being used in a DDoS attack.

2.3.4 Limiting recursion to authorised clients

Instead of completely disabling recursion (as in section 2.3.3), DNS servers can be configured
to allow queries from certain blocks of IP addresses [23] [5]. For example, an ISP may wish to
only recursively resolve queries from their own customers. However, even a DNS resolver
that is limited customers can be susceptible to DDoS attacks as explained in section 2.4.3.

2.3.5 Response Rate Limiting

A relatively new approach to mitigating DDoS attacks is a methodology called DNS Re-
sponse Rate Limiting (DNS RRL) [42]. The methodology is based on the idea that a caching
resolver should not need to request a resource record (RR) more often than the time-to-
live (TTL) of the RR. In other words, the resolver counts number of times queries are re-
ceived from a given source address for a specific RR within a given time frame. If a counter
reaches a certain threshold within the specified time frame then subsequent requests from
that source address for that RR are not replied to. Spoofed packets will all have the same
source address and will most likely be requesting the same RR too. Replies to these requests
will quickly become limited. It is highly unlikely that a legitimate user would request the
same RR within the given time frame, due to caching, and therefore it is unlikely that a le-
gitimate user would be affected by the rate limiting. However, if a legitimate user’s queries
are dropped due to rate limiting then the user can try again over TCP, since TCP requests
are harder to spoof, or send their request to a different resolver.

Figure 2.4 shows the incoming and outgoing traffic to a DNS root zone server before and
after DNS RRL was implemented on the server. Prior to the implementation of DNS RRL the
amplification effect is clearly demonstrated. After the attacker gives up, it becomes clear that
the attacker’s traffic composed most of the input traffic to the server but did not compose a
large portion of the output traffic. This suggests the attack became highly ineffective after
DNS RRL was implemented.

Vixie provides an economic viewpoint in [43] when he describes a DDoS attack: an at-
tacker seeks to minimise their cost while maximising their utility. This means that an at-
tacker will try to reduce the amount of traffic they need to send themselves to cause the
greatest impact to their target. By design, DNS RRL limits the number of responses it sends
in a given time frame. This means that an attacker that is reflecting traffic through a server
that has implemented DNS RRL will send less traffic at the target than the attacker would
by directly sending traffic at the target. This attenuating effect in theory should discourse
the attacker from using the hardened resolver in their attack. If enough resolvers implement
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Figure 2.4: Graph displaying traffic before and after deploying DNS RRL to a root DNS
server [44]

DNS RRL then the attacker’s efforts are completely thwarted leaving the attacker to locate
weaker resolvers, to try a different kind of attack, or to give up.

DNS RRL is intended to be implemented in DNS server software or in an intrusion de-
tection system which can be released as a simple software update. However, DNS RRL will
be most effective if all DNS server deployments implement and enable DNS RRL. The net-
work operators that unknowingly run open resolvers on their networks are also unlikely
to know about the DNS server software updates, how to configure DNS RRL, or why it is
important. Therefore, while the diligent network operators will be less susceptible to being
part of DDoS attacks, the incompetent or ignorant network operators will continue to allow
DDoS attacks to flow through their networks.

2.3.6 Reactive DDoS defence

Kong et al. [13] propose adding tags to IP packets involved in DDoS attacks so that the
packets can be traced back to their origins. Each router adds a tag to each packets as a
part of the regular forwarding process. Once a packet reaches its destination the exact path
taken by the packet can be traced back to the packet’s first hop. Packet marking defeats
UDP and ICMP packet source address spoofing because marks are added to the packets
after they have left the origin. On the other hand, this technique assumes that routers can
be trusted to append the correct tag and that routers have implemented the packet-marking
code. An attacker could spoof the packet markings which would increase the complexity of
a traceback. Furthermore, the authors’ suggestion that spoofed packets be allowed to con-
sume router resources prior to reactive control could effectively deny service to legitimate
traffic passing through the router when there is a large volume of spoofed packets passing
through the router. Source trackback would be most effective if all internet routers imple-
mented packet marking, however this would be economically and technically infeasible in
achieve. Regardless, if routers close to the origin implemented the protocol — or routers
transferring the request packet of an amplification attack — then that would be enough to
estimate the origin of the attack. Appending a mark to a packet would extra computations
in a router, which would slow the packet processing rate of the router. Also, the more hops
a marked packet passes through the longer the packet size which would increase the trans-
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mission delay between hops and require packet segmentation if the mark field dynamically
expanded.

Attack traffic could be throttled instead of filtered, according to Mahajan et al. [14].
When a router detects a spike in traffic it can ask its upstream router to throttle the traffic
being sent to it. The spike in traffic is detected by measuring the loss rate of a link and
when a significant loss is sustained for a certain length of time then a spike in traffic is said
to have occurred. Mahajan et al. suggest historical loss rate values as a baseline to distin-
guish between regular and irregular amounts of congestion. Kong et al. [13] criticise this
approach, suggesting that this mechanism may be ineffective against an aggressive attack
with multiple attack flows. This would make the mechanism ineffective to operate on a
router that is situated near to the target of a distributed attack. The pushback mechanism
is described to ask upstream neighbours that are sending presumed attack traffic to throttle
the amount of traffic being sent to this router. This approach would be effective assuming
acknowledgements do not get lost on the congested link and the upstream router also sup-
ports the pushback protocol. Mahajan et al. describe the pushback mechanism as optional,
however pushback would be extremely useful for routers near an attack target. There is also
a traffic throttling element for the router under attack. This element functions very similarly
to common Quality of Service (QoS) implementations but with a dynamic approach: attack
traffic traffic is directed onto a virtual queue that, like a normal queue, drops packets when
the queue is full. The advantage of this approach is that the virtual queue fills before the
normal queues and therefore only attack traffic is dropped, however the implementation of
the virtual queue will require extra memory and more computations along the forwarding
path.

Sun et al. [39] focus on an efficient method to distinguish between and filter legitimate
DNS traffic and attack DNS traffic. Their detection scheme focuses on the traffic ingress
and egress to an ISP: any incoming or outgoing DNS request should have a corresponding
response in the other direction. If there is a significant imbalance of incoming and outgoing
DNS packets then an attack is most likely occurring. To distinguish between DNS requests
and responses Sun et al. focus on UDP traffic with either a source or destination port of
53. A request packet will have a destination port of 53 and a response packet will have a
source port of 53. The DNS response flag is also set to 1 for a response packet. The number
of requests and responses passing through the router is compared and the value is passed
through a low-pass filter for smoothing. If the output of the filter is greater than zero then
an attack is present. Once the presence of a DNS amplification attack has been detected Sun
et al. pass DNS response traffic through their two-bloom filter. The filter scheme works
by storing a 4-tuple (source IP, destination IP, source port, DNS transaction ID) in one of
the two bloom filters. All DNS requests collected in the first time interval are stored in the
first bloom filter and all DNS requests collected in the second time interval are stored in
the second bloom filter. The bloom filters are flushed in an alternating pattern at the end
of a time interval so that DNS requests for at least the last time interval and at most the
last two time intervals are stored. When an incoming DNS response is received its 4-tuple is
looked up in both of the bloom filters. If a matching 4-tuple was found in a bloom filter then
there is a high probability that the response is legitimate. Bloom filters have the possibility
of returning false positives and therefore there is a small chance that attack traffic will be
treated as legitimate traffic, however a majority of the attack traffic will be filtered. Sun
et al. demonstrate the effectiveness of their solution on a link with a rate of 39.8 GBps,
which would allow the solution to implemented by medium-sized transit providers with
little demand for memory and little CPU overhead. This solution is DNS specific making it
difficult to expand to other UDP-based attacks, however it could be a highly preventative
mechanism without needing every router on the internet to implement the solution.
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2.4 Case studies

This section describes examples of real-world attacks with large attack vectors or with large
implications.

2.4.1 DNS amplification attack on Spamhaus

In the first quarter of 2013 not-for-profit anti-spam organisation Spamhaus was knocked of-
fline by a DNS amplification attack that peaked at over 100 GBps of amplification traffic.
Mimososo writes in Threatpost [16] that users of the Dutch webhost Cyberbunker were un-
happy to be flagged as spam and they retaliated with this attack, which brought down the
Spamhaus website. This attack matches all the common characteristics of a DNS amplifica-
tion attack: many open resolvers (over 30,000 resolvers recorded during the attack), spoofed
DNS query packets (36 bytes in length), and massively amplified DNS response packets
(3,008 bytes in length; 100x amplification factor) [33].

2.4.2 400 GBps NTP amplification attack on CloudFlare

CloudFlare was also subject to an attack of similar volume in February, however this at-
tack reached nearly 400 GBps of attack traffic. This attack exploited a misconfiguration in
NTP servers, however NTP amplification attacks operate in basically the same way as any
other UDP-based amplification attack: source address is spoofed and response packet is
larger than the request packet. Prince notes in his blog post [32] that open NTP servers are
less common than open DNS resolvers, however NTP servers tend to be more powerful
machines with higher available bandwidths, and NTP responses can be much larger than
DNS responses which increases the amplification factor per response. Therefore, fewer NTP
servers are needed to cause the equivalent amount of damage as a DNS amplification at-
tack. The advantage for an attacker to require fewer servers to perform the attack is fewer
machines are needed to send the spoofed requests. Prince suggests the attacker could have
used a single server to send spoofed requests to the 4,529 NTP servers involved in the 400
GBps attack.

NTP amplification attacks are possible due to a specific command that can be issued
against an NTP server called MON GETLIST [20] [10]. The command is used to get a list of
machines that have interacted with the NTP server. The maximum list size is 600 entries,
which is transmitted as a 48 kB response. This equates to an amplification factor of 206 times.
Server administrators can prevent their NTP servers from participating in NTP amplification
attacks by disabling the MON GETLIST command on their NTP servers or by limiting the IP
addresses that may execute the command. Prince argues that the command serves little
purpose and therefore there is no need for the command to be enable at all [32].

2.4.3 DNS amplification attack on Spark New Zealand

Internet service provider Spark experienced an outage to their DNS infrastructure in Septem-
ber 2014 when the infrastructure came under attack by their customers’ devices. Spark
claimed [12] the attack was targeted at servers in Europe, however the attack overwhelmed
Spark’s DNS servers instead. While Spark did not appear to be certain of what caused the
attack their infrastructure the two most likely hypotheses were that their customers were
affected by malware — based on the presence and behaviour of malware in other parts of
the world at that time — and open DNS resolvers on some of their customer’s modems.

Although Spark do not describe the exact cause of the attack (see appendix F), it is rea-
sonable to assume that a significant amount of DNS traffic reached Spark’s DNS servers and
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overwhelmed the servers. It is possible that malware infected customers’ devices and the
malware either intentionally used Spark’s DNS servers to amplify the attack or the malware
creator forgot to specify the open resolvers to use and the devices infected with the malware
sent the DNS queries to Spark’s DNS servers by default. If customer modems were config-
ured as open DNS resolvers then both scenarios are applicable to the modems too. Another
possibility is that the modems were configured as DNS relays rather than recursive resolvers
and therefore DNS queries received by the modems were automatically relayed to Spark’s
DNS servers.

2.5 What is software defined networking

The definition of software defined networking (SDN) is a widely explored area with many
different answers. The two most common definitions of SDN are: the separation of the
data plane from the control plane, and the centralisation of control [25]. Control of an SDN
usually is usually programmatic; rather than having network functions defined in vendor-
controlled firmware the control is written in software and can be updated more or less on-
the-fly and deployed to multiple network devices at once. The separation allows multiple
network devices to be controlled from the same controller which makes administration eas-
ier and reduces the demand for complex network devices. Since the controller is written
entirely in software it can operate in a physical or virtualised environment as necessary.
Since the network devices become commoditised: hardware becomes interchangeable and
the network functions can even run on commodity virtualisation hardware just as the con-
troller functions can.

SDN allows a switch, or any other network function, to be customised beyond the customisation-
level provided by a typical network device vendor. Economies of scale makes it costly for
a vendor to produce small numbers of highly-customised products and therefore product
customisation is generally limited. The ability to customise a switch is especially important
to this project because the ability to add additional logic to a switch with minimal impact
to performance makes it more difficult for security features such as DDoS prevention to be
circumvented and allows the additional logic to run in high traffic volume environments
where a classic firewall would not be feasible.

2.6 Summary

There are several examples of approaches from industry and academia to solve the problem
of DNS amplification attacks, however the attacks are still prevalent as demonstrated with
the case studies. The ideal solution is to educate system administrators on how to correctly
configure a DNS server so that it cannot be used as an open DNS resolver, and then to fix the
configuration of all the open DNS resolvers on the internet. However, this is a unrealistic
solution due to the large number of server administrators that needed educating and the
large number of open DNS resolvers that need locking-down. Although the approaches
to solving this problem in other ways are numerous, none of them seem to have made a
significant impact on reducing the number of DNS amplification attacks. Many of these
solutions are only applicable to small networks or require installation on a large number of
devices across the internet. A new solution is needed that can operate on a small number of
devices in large networks and have a large effect.
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Chapter 3

Design

This chapter evaluates potential approaches to solving the problem and then describes the
selected outcome as a high-level overview.

3.1 Possible approaches

This section describes a selection of approaches that could be used to detect and mitigate
DNS amplification attacks. Parts of the approaches are discussed in more depth in sec-
tion 2.3.

3.1.1 DNS Response Rate Limiting

A system that implements DNS Response Rate Rimiting (DNS RRL) keeps a record of the
number of time times a given source address requests a certain resource record (RR) [42].
If the source address requests the RR too many times within a specified amount of time
then the system stop responding to request from that address for that particular record. If
a legitimate request for the record becomes limited then the requester can switch to using
TCP instead of UDP, which is not prone to source address spoofing, or request the record
from another name server. DNS RRL is discussed in more depth in section 2.3.5.

In a DNS server

DNS RRL has already been implemented in the DNS server program BIND and there is ev-
idence that this technique is effective at mitigating DNS amplification attacks [44], so there
is little possibility for additional contribution in this manner. However, this solution does
not address all of the requirements of the project. For example, DNS RRL is not directly
extendible to other kinds of DDoS attacks. Each other attack type, for example NTP amplifi-
cation attacks, would require a separate design and implementation. Although it is possible,
it is unlikely that any hardware-based DNS server implementations would get patched for
DNS RRL due to number of different models and the time-consuming firmware updates
that would need to take place.

With SDN

Instead of implementing DNS RRL directly on DNS servers it could be implemented in
switches at key internet locations using SDN — operating in almost exactly the same way.
The benefit is that more traffic passes through the switch and therefore there is more op-
portunity to detect attacks. Also, it is harder for an attacker to circumvent the mechanism
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because the attacker most likely cannot affect the actions of a layer two device. On the other
hand, the switch cannot inspect the contents of a DNS packet and therefore every DNS
packet would need to be sent to the controller. The controller would have to inspect the
packet and send legitimate packets back to the control plane. The link between the switch
and the controller may not be able to handle the load of the DNS traffic and it could add
unnecessary load the CPU of the controller. If the controller overloaded then it may not be
able to respond to messages from switches, which would cause further disruption to legiti-
mate traffic. The process of sending DNS packets to and from the controller would add extra
latency to the delivery of DNS packets which would not meet the requirement of the project
that the detection and mitigation mechanism must mitigate attacks with minimal impact to
legitimate traffic. Similarly when applied to a DNS server, the DNS RRL implementation
using SDN would scale well to other kinds of similar attacks. Although SDN would be it
easier to extend the mechanism to other attack types the extension itself would add more
load to the system.

3.1.2 Detect attacks using an intrusion detection system

Network Intrusion Detection Systems (NIDS) by definition are designed to detect attacks on
a network. Traffic on the edge of a network could be passed through an NIDS to detect the
attack and then a firewall or Intrusion Prevention System (IPS) could be used to mitigate
the attack. Kambourakis et al. suggest a similar approach in their paper [11]. IDSs tend
to have large extendible rule sets that can detect a large number of attacks. An IDS would
struggle to perform when all traffic on a large network is passed through it. The CPU would
be heavily consumed and there may not be enough available bandwidth to pass all traffic
through the IDS.

3.1.3 Conclusion

DNS RRL does not seem like a worthwhile approach. There is already an adequate contribu-
tion to implementing DNS RRL on DNS servers and an implementation of DNS RRL using
SDN does not seem feasible. However, the use of SDN would accommodate a level of flexi-
bility around flow control that the other solutions do not offer. An IDS would be a suitable
solution in a small network but would struggle to handle the load of a large network.

3.2 Selected approach

The best parts of the possible approaches could be combined to create a solution that is
extensible, can handle a large amount of traffic, and is effective at detecting and mitigating
attacks. Specifically, the SDN functionality would allow for large amounts of traffic to be
handled and the IDS would provide an effective detection system. An SDN switch could be
used to mirror some of the traffic to the IDS at a time and the IDS could determine whether
an attack is present in the mirrored traffic. If so, the switch could drop the attack traffic and
let the remaining traffic pass. Otherwise, the switch could mirror a different selection of
traffic to the IDS and repeat the process.

For the purposes of this project it should be assumed that the combined throughput of
the data plane ports is greater than the combined throughput of the ports used for mirroring.
Therefore, the solution must selectively mirror traffic to the IDS, rather than mirroring all
traffic. The simplest selection is to mirror traffic on a per-port basis. However, if multiple
ports need to be mirrored then this may still exceed the link capacity of the mirror port.
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A potentially effective solution would be to mirror traffic on a particular port when traffic
appears to originate from specific UDP ports.

3.2.1 Detection

Each port on the switch will have a dummy OpenFlow rule: each rule will match traffic
entering the switch on an ingress port and then take the normal action for each packet. A
typical action for a packet in a switch is the perform layer 2 forwarding. The purpose of
these dummy OpenFlow rules is to provide per-port traffic statistics since each OpenFlow
rule automatically collects traffic statistics.

DNS amplification attacks will be detected as an increase in traffic to a port. This will be
measured in two ways: first by measuring the number of packets per second on a port. Once
this rate reaches a certain threshold of slightly higher than typical peak load this OpenFlow
rule or tripwire will be said to have tripped. This method will be effective at detecting the
possibly of attacks during peak load

For the purposes of this project the IDS will be considered a black box. The input is a sub-
set of the traffic traversing the switch and the expected output is indication of whether the
input traffic contains packets that constitute an attack; how the IDS determines the presence
of attack traffic is not relevant to the course. Furthermore, the absence of specific require-
ments for the IDS allows a greater choice of specific IDS product. Different administrators
of exchanges may have different preferences of IDS.

3.2.2 Mitigation

When the IDS indicates that attack traffic is present, the OpenFlow controller will insert an
OpenFlow rule to drop subsequent traffic. The rule should be specific enough to prevent
unnecessary disruption to legitimate traffic but general enough to catch any variations in
the attack traffic. On the other hand the IDS should detect any variations in the attack traffic
and the OpenFlow controller can create separate rules for the variations or group the rules
as necessary.

The counters associated with this new OpenFlow rule should be monitored by the con-
troller to determine whether the attack traffic ceases. When the attack traffic ceases the
OpenFlow rule should be removed to prevent disruption to legitimate users.
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Chapter 4

Implementation

The primary contribution in this project is the implementation of a potential solution to de-
tect and mitigate DNS amplification attacks. This chapter will describe the implementation
in depth.

4.1 Ryu

Ryu is an OpenFlow controller that was selected to be used in the project implementation.
It is a well-tested controller written in Python that is easy to build OpenFlow applications
on top of [38].

4.2 Morepork

Morepork is the name given to the application that operates on top of Ryu. The primary
contribution of this project is implemented as this application. The application extends upon
simple switch 13.py, which is an example Ryu application that provides layer-two switch
functionality and operates using the OpenFlow version 1.3 protocol.

There are four distinct components within the OpenFlow application: layer-two switch,
tripwire, port mirroring, and the firewall. Each of these components operate relatively in-
dependently and have been implemented as a set of layers (shown in figure 4.1). Each layer
is a Python class that extends the layer below. The layer-two switch functionality is the bot-
tom layer and forms the base of the application. The application can operate using only
this layer an would simply provide the core functions of a typical layer-two switch. On
top of the layer-two switch layer is the tripwire layer. This is implemented by two classes:
SimpleMonitor, another example script provided by Ryu, and TripwireLayer, which inter-
prets the port and flow statistics that are received over a data path. The interpreted data is
then consumed by MirrorLayer, the class in the next layer up, which builds a list of ports
that need to mirror incoming traffic to the IDS. This layer also sends the instructions to the
switch that enable and disable the port mirroring. The next layer up is provided by the
FirewallLayer class. This layer has the most independence from the other layers because its
only data input is a feed of alerts from the IDS. Each time it receives an alert from the IDS
it builds an instruction to drop matching traffic and sends that instruction to the datapath.
The following sections describe the layers of the application in more depth.
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Figure 4.1: Layers of implementation and data flow to other components

4.2.1 Layer-two switch layer

The layer-two switch functionality is provided entirely by simple switch 13.py and is not
considered a contribution to the project.

When a packet is received at the switch the switch will look for an entry in the flow table
that matches the destination Ethernet address of the packet. If a matching flow is not found
then the default action is taken (defined in OpenFlow as the table-miss flow entry [29]). The
default action defined by the SimpleSwitch class is to forward the packet to the controller
using the OpenFlow Packet-In message. The controller application has a Python Dictionary

object that stores destination Ethernet addresses as keys and switch port numbers as val-
ues. Each data path has a separate Dictionary object. If the destination Ethernet address
of the packet in the Packet-In message is not found in the Dictionary object then the con-
troller generates a Packet-Out message with the packet and the destination port field is set
to OFPP FLOOD which will cause the switch to forward the packet out all ports except the
port that the packet came in on and any ports that are disabled [29]. The source Ethernet
address of the packet is added to the Dictionary, with the port number it was received
on, if it is not already there. When a host replies to the packet that was flooded the reply
packet will be sent to the switch, which will record the source Ethernet address and source
port, and then it will instruct the switch to forward the reply to the destination following
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the aforementioned rules. If the destination Ethernet address is found in the Dictionary

then the controller will generate a Packet-Out message instructing the switch to forward
the packet on the port specified in the value of the key-value pair in the Dictionary. In
this instance the controller will also send a Flow-Mod message to the switch instructing the
switch to add a flow entry that matches any subsequent packets with that corresponding
destination Ethernet address and to forward it to that corresponding port. Any subsequent
packets destined for that Ethernet address will match the flow entry and will be forwarded
on the appropriate port without flooding or sending a Packet-In message to the controller.

Common (non-OpenFlow) switches are know to perform more functions than those de-
scribed above. Although it is not relevant to this project that additional features be provided,
it is possible to extend the core switch features available with the project’s implementation
by replacing simple switch 13.py with another, more advanced script. The Ethernet ad-
dress flow entries are inserted into the flow table with an ID of 2. OpenFlow specifies that
packets be processed in order 0, 1, ..., n. The layers of the implementation that are above
this layer utilised tables with IDs 0 and 1, which means that the flow entries inserted by
the highest layer will be processed first and the layer-two switch layer flow entries will be
processed last.

4.2.2 Tripwire layer

This is the component of Morepork that detects anomalous spikes in traffic. As described
above, this layer is implemented as two classes: the SimpleMonitor class and the TripwireLayer.
The former class is a modified example script that was provided by Ryu; the class provides
helper methods to request and receive per-port and per-flow statistics. Statistics are re-
quested using a separate thread that executes an infinite loop. The loop sends ofp flow stats request

and ofp port stats requestmessages along each datapath and then sleeps for ten seconds.
The sleep time was selected for performance reasons that are discussed further in section 5.3
of the evaluation.

When a ofp port stats reply is received the data is dumped into a class called PortStatsCollector.
The class simply stores the data in a multi-dimensional list and provides methods for re-
trieving the data later. Options for data retrieval include returning the last value for a given
metric name for a port on a datapath, and first and second-order derivatives based on the
last two values for a given metric name for a port on a datapath. The derivative methods
are used to provide rate and acceleration values, if necessary, for the threshold calculation
system.

The threshold calculation system is called Tripwire and is located in the Tripwire class.
This class reads a list of threshold values from a configuration file and compares them to
data from an instance of the PortStatsCollector class. The configuration file stores data
in the YAML format [8], as shown below. At the top level of the configuration the keyword
port indicates the configuration is for port-based thresholds. This design decision was to
allow for flow-based thresholds in the future. The next level down is the datapath ID — this
is shown as the decimal value 153 or hex value 0xFF and was arbitrarily selected. Nested
further down is the switch port number. Next is the metric name, which can be the name
of any metric that is returned by the ofp port stats reply message. Within each metric is
the threshold value, which is compared against the current value, and optionally there is a
derivative attribute that is used to define the desired order of derivative — or set to 0 to use
the raw value.

port :
1 5 3 :

2 :
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r x b y t e s :
threshold : 600000000
d e r i v a t i v e : 1

When new port statistics are received, processing of the thresholds is triggered. Each of
the thresholds defined in the configuration file is compared to its associated current value. If
the current value is greater than the threshold value then it is stored in a multi-dimensional
list with the boolean value True. Otherwise, it is stored with the boolean value False. The
list is then made available to the above Mirror layer. A potential improvement would be
to read the thresholds from the configuration file at regular intervals rather than only when
the application starts. This would allow adjustments to the thresholds without restarting
the OpenFlow application.

4.2.3 Mirror layer

The mirror layer is responsible for maintaining a list of ports that need to be mirrored and
a list of ports that are currently being mirrored. The first list is based on the data from the
Tripwire layer. If any of the metrics for a port have their boolean value set to True then a
threshold has been tripped on that port and therefore traffic ingress to that port must be
mirrored. The Mirror layer sends a Flow-Mod message that instructs the switch to add a
flow entry to the table with an ID of 1. The entry matches any traffic ingress to the port
with the tripped threshold and the actions are to forward the packet on the port connected
to the IDS and to Goto-Table 2. The purpose of the first action is to allow the IDS to inspect
the traffic from the threshold-tripping port in greater depth. The second action allows the
switch to perform regular packet forwarding functions for traffic entering that port. One of
the goals of the project is to mitigate attacks with minimal disruption to legitimate traffic:
until the IDS flags traffic as attack traffic the switch must assume that the traffic is legitimate
and allow it to be processed in a regular manner.

Port mirroring for a port is disabled for a port when all values for that port fall below
their associated thresholds. If there is a single attack flow amongst the traffic on the mirrored
port then the IDS will generate an alert for that flow and the Firewall layer will instruct the
switch to drop the attack flow traffic. Maintaining the assumption that there is only one
attack flow, the process of dropping all traffic in that flow will most likely cause the metric
values to fall back below their associated thresholds triggering the port mirroring to stop for
that port. This is an ideal situation because the attack is mitigated and the IDS is not being
made to filter through legitimate traffic. The other scenario is when there are multiple attack
flows ingress to a port: if the IDS alerts on one of the flows and subsequent traffic for that
flow is dropped then it is likely that the combined effort of all the attack flows will keep the
current metric values above the threshold value. This will have the effect of continuing to
port mirror traffic to the IDS which will alert on the remaining flows until enough flows are
blocked to drive the metric values back below the thresholds.

4.2.4 Firewall layer

This is the component of Morepork that is made aware of attacks that have been confirmed
to be present in all of the traffic that is passing through the switch. As mentioned earlier in
this chapter, this layer is largely independent of all of the other layers. The only input of this
layer is the stream of alerts from the IDS. The only output of this layer is a set of Flow-Mod
messages sent to the switch. Alerts from the IDS are received by this layer through a UDP
socket listening on port 514. The alerts take the form of syslog events. A regular expression
is used to extract the source and destination IP addresses, the IP protocol (TCP or UDP), and
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the source and destination port numbers. These fields are used to construct an OFP MATCH,
which is sent in a Flow-Mod command to the relevant switch. The flow entry is stored in
table ID 0 and therefore packets are matched by the switch against this table before any
other table. If an attack flow is matched in the table then action taken for packets in that
flow is to drop them. The act in OpenFlow of dropping packets is achieved by sending the
OFPIT APPLY ACTIONS instruction with an empty set for the action list [29]. On the other
hand, the default action for packets that do not match a flow defined in table 0 is to attempt
to match packets against table 1.

4.2.5 Main layer

Although this layer is described as the main layer it does not provide any of the core func-
tionality of the application. Its primary purpose is to wrap all of the functionality from the
other layers into an easy to use entry point that can be used to start the application. This
layer also receives flow statistics and saves them to a Comma-Separated Value (CSV) file for
additional performance analysis later.

4.3 Intrusion Detection System

Due to time constraints on the project it was desirable to find a zero-cost IDS solution that
could be quickly integrated with the core project implementation.

4.3.1 Security Onion

At first, the virtual appliance Security Onion [3] was selected as the IDS of choice for this
project because it is distributed as a live DVD ISO image that can be started by mount-
ing the image in a virtual or physical machine and restarting the machine. It contains a
collection of integrated intrusion detection tools including Snort for rule-based Network In-
trusion Detection System (NIDS), Bro for analysis-based NIDS, and OSSEC for host-based
intrusion detection. Analysis tools are also provided in the appliance including Sguil for
drilling down, or pivoting, on the alerts from the IDSs, Squert as web-based interface for
Sguil, Snorby for specifically analysing Snort alerts, and ELSA for log storage and search-
ing. The appliance is based on Ubuntu Linux 12.04 thus providing a familiar environment
for experienced Ubuntu Linux users. Upon starting the appliance the user can run the setup
wizard which is located on the desktop once it has loaded. The setup wizard starts by ask-
ing the user to specify and configure the monitoring interface and the management interface.
Then the user is offered the choice the simple approach, which is mostly unattended, or the
advanced approach where the user can configure more specific details of each program in
the appliance.

The Snort IDS provides a local.rules file that can be populated with custom rules. This
a desirable feature for testing the alert system of Snort and to test the project implementation
itself. The following snippet is a custom rule that was used to test the project implementa-
tion. The rule states that an alert should be generated when traffic is received from anywhere
on any port and destined for anywhere on port 53. This means that any DNS traffic present
on the mirror port with cause Snort to generate an alert. After adding the custom rule to
/etc/nsm/rules/local.rules the rule is loaded into Snort by typing sudo rule-update in
a terminal of the appliance.

a l e r t udp any any −> any 53 (msg : ”DNS a m p l i f i c a t i o n
a t t a c k ” ; s id : 9 0 0 0 7 0 0 ; rev : 1 )
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Snort alerts are collected by Sguil along with alerts from the other IDSs present on the
appliance. Sguil then records each alert in its log file /var/log/nsm/securityonion/sguild.log.
In order to send the alerts from the Security Onion appliance to the Morepork application,
syslog is configured in the Security Onion appliance to scan the aforementioned log file for
events starting with the phrase sguil alert and forward the events to what it thinks is a syslog
server on the machine running Morepork. The syslog configuration is defined in /etc/syslog-
ng/syslog-ng.conf and is initially activated by executing sudo service syslog-ng restart.
The syslog events are sent in plain text to port 514 of the host running Morepork. An exam-
ple of a raw syslog event is shown below with line breaks artificially added.

<13>Oct 26 0 8 : 3 2 : 4 4 489− secur i tyonion s g u i l a l e r t :
0 8 : 3 2 : 4 3 pid ( 3 0 2 2 ) Aler t Received : 0 3 misc−a c t i v i t y
489− secur i tyonion−eth0 {2014−10−26 0 8 : 3 2 : 4 3} 6 38 {URL
c l i e n t s 1 . google . com} 1 9 2 . 1 6 8 . 1 0 . 1 2 8 7 4 . 1 2 5 . 1 9 . 1 1 3
6 1299 80 10001 420042 1 38 38

The SecurityOnion class in the Morepork application acts as a syslog server and listens
for syslog event messages. The event message is then parsed using a compiled regular
expression and outputted as a Dictionary of fields relating to the alert. The Dictionary

object is then passed to the FirewallLayer class with the aid of the zope.event package,
which provides an observer pattern.

4.3.2 IDS Python script

Unfortunately, when the implementation was tested the Snort IDS did not always alert when
attack packets were present in the mirrored traffic. Reasons for Snort failing are discussed
in more depth in section 5.3. One of the goals of the project is for the IDS to be indepen-
dent of the implementation and therefore the function of the IDS is beyond the scope of the
project: the function only needs to receive mirrored traffic as an input and produce alerts
when attack traffic is present as an output. Therefore a secondary IDS was created from
scratch in a Python file. called ids.py (see appendix D.2). The Python script starts tcpdump as
a subprocess and pipes the standard output of tcpdump to a buffer within the Python script.
Whenever a packet is received on the monitoring interface of the IDS machine tcpdump out-
puts information about the packet to the standard output, including source and destination
addresses. The Python script uses a compiled regular expression to extract the addresses
and information about the packet. The information is reformatted to look like a Sguil alert
and appended to /var/log/nsm/securityonion/sguild.log. Since the output of the Python script
intentionally looks the same as the output of Snort and Sguil, the syslog configuration re-
mains the same.

4.4 Flow tables

Each switch that supports OpenFlow has a set of flow tables that are used to control flows
of traffic through the switch [29]. Each entry in a flow table has a set of matches and a
set of actions. The matches refer to specific attributes in the headers of a packet, although
not all of the possible match fields need to be specified. Three common actions for a flow
entry are forwarding the packet on one or more ports, sending the packet to the controller,
or dropping the packet. Another possible action is Goto-Table, which sends the packet to
the specified table for additional processing. The first flow table to process a packet has a
table ID of 0. If a Goto-Table command is issued then the packet must be sent to table with a
higher ID number than the ID number of the current table. A default entry for a table, which
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is known as the Table-Miss entry, is defined with an empty match set and an action that is
usually either to goto another table or send the packet to the controller.

Figure 4.1 shows an example of the flow table entries that are created in the implementa-
tion. An incoming packet is first sent to table 0, which contains flow entries with no actions.
This has the effect of dropping the packet if the packet matches that particular flow entry.
The Table-Miss entry sends the packet to table 1 for processing. Table 1 contains instructions
to forward packets on the port that has been designated for port mirroring. In the imple-
mentation port 3 was chosen because ports 1 and 2 were used for the Mininet hosts that
send and receive the attack traffic. In addition to forwarding the packet to the mirror port,
a matching packet is also sent to table 2 for processing. The extra action has the effect of
allowing the packet to be delivered to its intended destination, thus minimising disruption
to legitimate traffic. If the packet does not match a flow entry in table 1 then the default ac-
tion is to send the packet to table 2. Table 2 matches on destination Ethernet addresses and
forwards packets to the correct port — this is the standard function of a layer-two switch.
See appendix C for a dump of the flow table from the Open vSwitch instance during one of
the implementation tests.

table id in port eth dst ip src ip dst udp sport udp dport Instructions

0 1 aa:bb:cc:dd:ee:ff 1.2.3.4 5.6.7.8 12345 53 Apply-Actions {}
0 * * * * * * Goto-Table 1

1 1 * * * * *
Apply-Actions {Output: mirr
Goto-Table 2

1 * * * * * * Goto-Table 2
2 1 aa:bb:cc:dd:ee:ff * * * * Apply-Actions {Output: destination
2 * * * * * * Packet-In

Table 4.1: Example flow table entries
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Chapter 5

Evaluation

This chapter describes the environment used the test the implementation, the testing pro-
cess, and the scenarios that were simulated during the tests. Finally, this chapters discusses
the limitations of the test environment, and summarises the results of each test scenario.

5.1 Introduction

The test environment for this project consisted of two virtual appliances running on Virtual-
Box [27] virtual machines. The first appliance was a Mininet [17] appliance, which contains
Mininet, Open vSwitch [26], and Ryu [38]. The second appliance was a Security Onion ap-
pliance, which contains a collection of tools including and augmenting intrusion detection
systems (IDS). The tools are discussed in more depth in section 4.3.1. As discussed in sec-
tion 4.3.1 the first version of the test environment utilised Snort IDS and Sguil to generate
alerts in the presence of attack traffic. However, due to limitations that will be discussed
later in section 5.3, Snort and Sguil were replaced with a Python script that generates alerts
when any packets are received and logs the alerts to the same file that Sguil logs alerts to.

To test the implementation a network was needed that contained two standard hosts, a
switch that supports OpenFlow, a host to run the OpenFlow controller, and a host to run
the IDS. Mininet is a program that can simulate all of the aforementioned components ex-
cept for the IDS, including the network in between [17]. A virtual network can be quickly
created either through the Mininet command-line interface (CLI) or though Python scripts
using the API. Initially the project relied on a Python script to define a simple network topol-
ogy for Mininet but was later extended to provide complete test automation including the
simulation of attack traffic. The final automation script is shown in appendix E.1. Mininet
virtualises the switch component of the network using Open vSwitch [26], a virtual switch
implementation that supports OpenFlow. This makes Mininet and Open vSwitch an ideal
combination for testing a project that involves software-defined networking.

The Mininet topology definition is relatively straight forward and has been adopted from
the Vandervecken implementation by Ewen McNeill. The Vandervecken topology consists
of two hosts connected together with a single switch. This was adapted to include a bridge
from the switch to two physical interfaces: the first bridge is used to send traffic to the IDS
which runs on another virtual machine (VM), and the second bridge is used to send at-
tack traffic from an another virtual machine if necessary. The connections between the VMs
are provided by separate VirtualBox Internal Adapters, which means that traffic does pass
through the networking stack of the host machine, and theoretically improves the perfor-
mance of the connections. The later versions of the topology definition script also include
commands to run the attack traffic simulations. Mininet provides a fully-scriptable interface
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to the internals of Mininet and also allows some Linux commands to be executed on the vir-
tual hosts that it creates. The virtual host receiving the attack traffic runs an iperf server
that listens on UDP port 53. Iperf is a common bandwidth testing tool [21]. The virtual host
sending the attack traffic runs the iperf client and sends a stream of packets to the server
as fast as it can. UDP port 53 was selected to simulate DNS traffic. Before and after the
attack traffic is send across the virtual network there are 30 second delays where the net-
work is running but there is no network activity. This allows the tripwire layer to calibrate
and creates a more distinguishable pattern when presenting the test results. In addition to
running the test itself, the topology script starts another thread that dumps per-port statistics
once every second. The data is exported to a CSV file for later analysis. Although the same
statistics are used by the tripwire mechanism, the tripwire mechanism only requests statis-
tics every 10 seconds which would reduce the sampling rate. Furthermore, the sampling
rate of a second for the data export function was set to one second because any faster would
potentially cause performance issues for the host machine running the tests and any slower
would reduce the accuracy of the results.

5.2 Test scenarios

Each of the following test scenarios was executed using the automated test script described
in the previous section. To automatically run and re-run the tests a wrapper script was
created called mn-run.sh (shown in appendix E.2). The wrapper script calls mn -c which
cleans up the Mininet environment and removes all of the virtual network interfaces that
Mininet creates. Then Mininet is executed with the automation script as a parameter, which
runs the full test. The wrapper script performs these two tasks in a loop, 50 times, to pro-
duce statistically integral results. Since the test environment is mostly automated, all of the
test parameters remain exactly the same — except for the parameters that are being tested.
Therefore, most of the test results follow a similar pattern.

As shown in appendix E.1 the Comma-Separated Value (CSV) file containing port statis-
tics that is created with each test execution has a UNIX time stamp in the file name to avoid
file name collision with different runs of the test. Each line of each CSV file originally in-
cluded a UNIX time stamp value for unique, incrementing x-axis values however, aggregat-
ing the statistics from each run of a test scenario became too difficult and the time stamp
value was replaced with a duration value, in seconds, that is calculated relative to the start
time of the test run.

Tableau Desktop (TD) [40] was used to aggregate the data from each test run and to
create a visualisation. The CSV files have separated values for the number of transmitted
and received bytes on each port. TD does not allow multiple measures to be presented on
the same graph; instead drawing them on separate graphs one below another. This was a
problem because the visualisation needed to compare the number of received bytes on the
ingress port against the number of bytes transmitted on the egress port. Since the environ-
ment was completely simulated it was assumed that there would be no traffic flowing in
the opposite direction. Therefore, a Calculated Measure was created in TD to combine the
number of received and transmitted bytes on each port. It was also not necessary to present
the measures for all four ports in each test scenario so filtering was applied in TD to display
only the relevant ports for each test scenario. The measures of transmitted and received
bytes provided by Open vSwitch instances are cumulative, so the data was transformed in
TD to present the difference in cumulation (also known as rate or bytes per second).
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5.2.1 High bandwidth flow with attack traffic

The first test scenario tests the base case for this project: attack traffic is sent through a switch
running the implementation and the attack traffic is detected and mitigated. Although this
behaviour does not reflect a real-world a network environment, it was desirable to build the
test environment where only a single flow of traffic was for the simulation. Such an environ-
ment increases the likelihood that clear-set results demonstrating whether the implementa-
tions works or does not work will be available. Subsequent test scenarios are provided to
simulate other flows of traffic in a controlled manner.

Figure 5.1 shows the attack traffic is starting to enter the switch at 30 seconds into the
test and immediately exit the switch. Then, 10 seconds later when the port statistics become
available to the tripwire system the threshold is flagged as having been reached and the traf-
fic is mirrored to the mirror port which feeds into the IDS. Within one the IDS generates an
alert for the attack traffic and notifies the firewall layer of the implementation. The firewall
layer inserts flow entry to drop the attack traffic and one second later the attack traffic is
dropped rather than exiting the switch. The attack traffic continues to be sent to the switch
until 150 seconds into the test where it stops and within fours seconds there is no longer any
traffic flowing though the virtual network at all.

Figure 5.1: Results of simulating high-bandwidth attack flow across the implementation

5.2.2 High bandwidth flow with legitimate traffic

To test that legitimate traffic is unaffected by the implementation a scenario has been created
where a single flow of legitimate passes through the switch with the implementation run-
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ning. The legitimate traffic is a high-bandwidth flow and therefore will exceed the threshold
defined in the tripwire system. An example of a real-life scenario where this test would be
applicable would be a switch on the edge of a relatively small network: the network would
have a relatively low threshold and therefore a file transfer, for example, would consume a
large amount of the available bandwidth but can be considered legitimate traffic.

The legitimate traffic, as shown in figure 5.2 begins to enter the switch at 30 seconds
into the test and immediately exits the switch. 10 seconds later, when the port statistics are
collected by the tripwire system, the flow is treated as suspicious and the ingress port traffic
is mirrored to the IDS (shown in figure 5.3). Since the IDS does not detected any attack
traffic it does not generate an alert. Therefore, the legitimate traffic continues to exit the
switch until iperf stops sending traffic at 150 seconds into the test.

Figure 5.2: Results of simulating a legitimate high-bandwidth flow across the implementa-
tion

An improved version of this scenario would include a flow of legitimate traffic and a
flow of attack traffic entering a switch on the same port. The combination of the two flows
would exceed the threshold defined in the tripwire system and both flows would be mir-
rored to the IDS. The intended outcome would be an alert from the IDS matching the flow
of the attack traffic which would result in a flow entry to drops packets from the attack flow
— the legitimate traffic flow would not match this flow entry and would continue to be for-
warded by the switch as per normal. Due to the limitation in ids.py that all traffic received
on the mirror port is flagged as attack traffic it was not possible to build this enhanced sce-
nario within the time constraints.
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Figure 5.3: Results demonstrating the port traffic being mirrored to the IDS

5.2.3 Low bandwidth request traffic with high bandwidth response traffic

While the scenario in section 5.2.1 tests for any kind of high-bandwidth attack, it does not
necessarily test the specific vectors of a DNS amplification attack. Like other amplifica-
tion attacks, a DNS amplification attack sends a small request packet with a forged source
address and the unsuspecting server replies with a large response that goes to the forged
address rather than to the attacker. Figure 5.4 shows an example of a network topology
where the attack sends spoofed traffic from its own network to a network with an open
DNS resolver and the replies are sent to a victim host in a third network. The edge routers
between these networks are connected via switches (for example, in an internet exchange)
and both the switches in this scenario are running the implementation. The hypothesis of
this scenario is that the switch between the attacker’s network and the network with the
open DNS resolver will not detect the attack because the request traffic will not consume
enough bandwidth to reach the tripwire threshold. However, the response traffic will be
large enough to reach the threshold and therefore the switch between the network with the
open DNS resolver and the victim network will detect and mitigate the attack.

The attack starts at 30 seconds into each test run with the request traffic entering and
exiting the first switch without triggering the port mirroring (see figure 5.5). At the same
time the response traffic begins entering the second switch and exiting towards the victim
network. Another 10 seconds pass and the controller application receives port statistics from
both switches. Since the traffic passing through the first switch does not reach the threshold
value port mirroring is not enabled for the ingress port of the first switch. Therefore, the
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Figure 5.4: Network topology diagram with two switches

request traffic in the attack is treated as legitimate traffic and the traffic flow follows the
pattern for a general flow of legitimate traffic as demonstrated in section 5.2.2. On the other
hand, the traffic flowing through the second switch consumes enough bandwidth to trigger
port mirroring. Therefore, the response traffic in the attack is treated as legitimate traffic
and the traffic flow follows the pattern for a general flow of attack traffic as demonstrated
in section 5.2.1.

Figure 5.5: Results of simulating a DNS amplification attack with two switches
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5.3 Limitations of the test environment

A major limitation of the test environment is the CPU of the virtual machine host. The host
CPU is an Intel Core i5-750 running at 2.66GHz and has four cores that can execute four
threads in total at once. Both the Mininet virtual machine (VM) and Security Onion VM
were allocated a single core and four gigabytes of RAM each. When a test run was being
executed a ELSA was consuming 100% of the CPU allocated to the Security Onion VM.
Despite Snort being disabled when ids.py was used, another tool on the Security Onion
VM was collecting full packet captures and storing them on disk. ELSA attempted to index
these full packet captures and hence consumed all of the CPU available to that VM. On the
Mininet VM, Iperf consumed a lot of CPU cycles in order to generate the large stream of
packets. Open vSwitch also consumed a lot of CPU cycles in order to process and forward
the packets. The contention for the CPU on the Mininet VM seemed to directly impact the
throughput during the attack tests. Due to this limitation it was not possible to test the
goal of running the implementation with an amount of traffic that would commonly pass
through an internet exchange. This also affected the rate at which requests for port statistics
were responded to and received by the implementation. Requests for ports statistics are
send by the implementation every 10 seconds. Reducing this interval caused replies to be
received at inconsistent intervals — multiple replies were often received at once. Increasing
the interval reduced the accuracy of the implementation. It is possible that increasing the
number of cores available to the Mininet VM would have improved the performance of
the test environment. Alternatively, the Iperf server and client could have been executed
on separate VMs, reducing contention for the CPU within the Mininet VM, but could have
increased contention for the CPU on the virtual machine host.

Another major limitation of the test environment was the unreliability of the IDS: occa-
sionally it would not generate alerts when attack traffic was mirrored to the Security Onion
VM. As mentioned earlier, a tool on the Security Onion VM stores every packet that is re-
ceived on disk for future forensic analysis. With the large number of test iterations and the
small disk attached to the VM, the disk eventually ran out of disk space and the operating
system did not provide any indication that there was no remaining disk space. Sguil nor-
mally logs alerts to a file on disk, but when the disk ran out of space this was no longer
possible. Since the log was not being updated syslog had no data to send back to the im-
plementation. The web interfaces for the tools provided by Security Onion rely on free disk
space to store temporary files when the applications are responding to web requests. Since
there was no disk space the web interfaces failed to load — making it more difficult to deter-
mine the cause of the incident. Once identified, the solution was to create a new VM running
Security Onion with a much larger disk.

Since it was not immediately apparent why the IDS was not alerting a simple Python
script was created to simulate the combined function of the Snort IDS and Sguil. The script
is called ids.py and is discussed in more detail in section 4.3.2. The script was executed from
within the Security Onion VM (with Snort and Sguil stopped) and it seemed to work when
the test environment was operated manually. However, when the automation script was
used ids.py also did not seem to work. The problem with Snort was assumed to be a prob-
lem with the attack traffic not being matched by the attack definition, however ids.py was
designed to generate alerts for all traffic received on the monitoring interface to avoid this is-
sue. It became apparent that ids.py, or tcpdump when executed directly, were not receiving
traffic from the monitoring interface at all — although in some situations traffic would come
through. VirtualBox [27], the virtualisation tool used on the host machine, has an option
to disable or enable promiscuous mode for the host network interface or for VM network
interfaces. However, the option was set to enable promiscuous mode in all circumstances.
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Assuming this was the problem the Security Onion VM would not have been allowed to
enable promiscuous mode which would have prevented all of the packet capturing tools
from capturing packets. However, this did not seem to be the problem either because the
network activity indicator for the Security Onion VM showed that the traffic was not being
received by the VM at all, however the traffic was being transmitted by the Mininet VM. An-
other symptom of the issue as experienced by ids.py and tcpdump occurred whenever the
automated test script was executed: the packet capture would stop prematurely. The most
significant difference between the automated execution of a test and the manual execution
of a test was the order in which components were started: in the automated test ids.py
was started first and the automated script was started second. In a manual test Mininet
was started first, then ids.py, and finally iperf for the attack simulation. When Mininet
is started it instructions Open vSwitch to create virtual network interfaces and attach itself
to the VM’s physical network interfaces (in the case of this project’s network topology def-
inition). Although not confirmed, it is suspected that Open vSwitch disables the network
interface momentarily in order to attach itself to the interface. When the interface is disabled
it may disrupt the interface in the Security Onion VM since the interfaces of the two VMs
are connected together with VirtualBox internal network adapters. This issue was unresolv-
able, and the workaround during the tests was to manually start and stop ids.py during
the warm-up and cool-down phases of each test run.

5.4 Summary

To evaluate the implementation three test scenarios were constructed and executed in an
controlled environment using Mininet. The first test scenario sent a single flow of attack traf-
fic through a switch running the implementation with the expectation that the flow would
be stopped. This was to test the implementation against the objective, which is to detect and
to mitigate DNS amplification attacks. Since the parameters of the test scenario are quite
vague, the scenario also tests the goal of being extensible so that other attack types can be
detected and mitigated. The results suggest that after a small window where the attack suc-
cessfully passes through the switch the attack flow is dropped. The second test scenario
sent a single flow of legitimate traffic through a switch running the implementation with
the expectation that the flow would not be stopped. This was to test the requirement that
the implementation has little impact on legitimate traffic. The results suggest that the legit-
imate traffic is completely unaffected by the implementation despite the traffic exceeding
the threshold and being deemed as suspicious. The third test scenario sent a small amount
of attack through one switch and a large amount of attack traffic through another switch
to simulate an amplification attack where requests are small and responses are large. The
purpose of this test was to test the objective specifically, rather than in the broad sense. The
results suggest that a DNS amplification attack can be mitigated when the DNS responses
pass through a switch running the implementation, but it is possible that the DNS requests
will not detected or mitigated by the implementation. The results also suggest that the
implementation would be more effective with more locations on the internet running the
implementation, however the solution is still likely to detect and mitigate attacks with a
small number of instances of the implementation running.
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Chapter 6

Conclusion and future work

DNS amplification attacks are currently a common technique used by attackers to deny
service to legitimate users. This has become a problem because attackers able to construct
these attacks with large amplification factors that cause majors amounts of congestion and
previously suggested techniques to mitigate these attacks have been unsuccessful. While
the project implementation is successful in terms of the objective, there are some weaknesses
to implementation too. This chapter seeks to discuss the strengths and weaknesses of the
project, and to suggest future work that could improve this project.

6.1 Strengths of the implementation

Section 5.4 made the suggestion that the implementation has met the objective of the course.
This section will discuss some of the specific project requirements that have also been achieved.

The implementation is supposed to run on a variety of hardware or software. Due to
time constraints the implementation was not tested on hardware. However, the implemen-
tation supports any device that supports OpenFlow version 1.3 and therefore the onus is
on switch vendors to provide hardware or software switches. The core implementation is a
software application that runs on top of Ryu — a software-based OpenFlow controller. As
demonstrated with the test environment, Morepork and Ryu can run in a virtual machine if
necessary, but in theory could run on a physical machine too. The IDS has been treated as
a black box that accepts a specific input and produces a specific output. There is no expec-
tation as to how the Intrusion Detection System (IDS) is implemented which means it could
also run in hardware or software.

The black box approach of the IDS also addresses the extensibility of the project. The
attacks that can be detected by the implementation depends directly on the configuration
and implementation of the IDS. There are large rule sets available for Snort that could be
used with the project. Additionally, Snort allows for custom rules to be defined — which
was the preferred method for evaluating this project.

The implementation reduces the impact of the detection and mitigation mechanism on
legitimate traffic by offloading the responsibility of detecting attacks to another machine (the
IDS). If the IDS fails for some reason or the link between the switch and the IDS becomes
congested or otherwise unavailable then the switch will stop mitigating attacks but will
continue to function as a normal switch.

The implementation is designed to run on a switch, not a router, and therefore addresses
this requirement slightly differently. The third test scenario (see section 5.2.3) demonstrates
that although it is not necessary to run the implementation on all switches it would definitely
improve the effectiveness of the implementation. A more important factor is the run the
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implementation on switches that handle large amounts of internet traffic and are potentially
subject to the presence of more attack traffic. To address this factor the goal of running
the implementation in an internet exchange environment (or with an equivalent amount of
traffic) was introduced to the project.

6.2 Weaknesses of the implementation

Testing with the amount of traffic commonly seen in an internet exchange (IX) was not pos-
sible due to the limitations of the test environment. Therefore, there is no evidence that the
implementation could operate in an IX. On the other hand, future work could be done to
improve the test environment and this may be enough to demonstrate the implementation
working with an exchange-level amount of traffic.

Since the objective of the project is targeted at DNS amplification attacks and more gen-
erally distributed denial of service attacks (DDoS) there is an assumption that the attacks
being mitigated will have large flows of attack traffic. For small-scale DDoS attacks or for
attacks that rely on vectors that do not include sending large amounts of network traffic,
this implementation is suggested to be ineffective. Furthermore, the implementation as-
sumes the switch is trying to protect its own amount of available bandwidth rather than
stopping the attack itself. If the threshold on a port is set to a value that is slightly higher
than the daily peak load value for that port and the attacker decides to execute their attack
during an off-peak time then the implementation will not detect or mitigate the attack. On
the other hand, an attack during the off-peak time of both the switch and the victim of the
attacker is less likely to cause denial of service and by definitely of peak is going to impact
fewer legitimate users.

6.3 Future work

This section discusses potential changes and improvements to the project for the future.
For reasons discussed in section 3.1.2 it is desirable to reduce the amount of traffic that

is mirrored to the IDS. The current project design reduces the traffic by deciding on a per-
switch port basis whether the traffic needs to be mirrored or not. It is unlikely that all
of the traffic entering a port will be attack traffic and therefore the solution could be im-
proved by mirroring traffic on a per-flow basis. The port-based mirroring would provide
a coarse-gained filter in attempt to find an attack flow and once a port has been flagged as
suspicious then the mirroring process could be applied per-flow for that specific port. Traf-
fic would only be mirrored once one or more traffic flows have been flagged as especially
suspicious. On the other hand, thresholds would be unsuitable to whether a particular flow
is suspicious. It is unlikely that each flow has the same characteristics, which would re-
quire individual thresholds for individual flows and the thresholds would need to change.
If this process were to be applied then machine-learning would be required to improve the
accuracy of the detection process.

Once an attack has been detected by the IDS and the implementation has blocked the
attack flow, then assuming that no other attack traffic has been detected from the port being
mirrored then the port should stop being mirrored. This another attempt to reduce the
amount of traffic being sent to the IDS. Furthermore, it is possible that multiple ports trip
their thresholds at once and the implementation will mirror traffic from those ports to the
IDS. If the combined bandwidth of the ports being mirrored exceeds the capacity of the link
between the switch and the IDS then some of the mirrored traffic may be dropped. Although
this will not impact the forwarding of legitimate packets through the switch it will impact
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the ability for the IDS to detect attack traffic. If the IDS becomes overwhelmed with traffic
then it may not be able to alert the switch about specific attacks. On the other hand, if it does
manage to inform the switch about an attack then the switch can block the attack flow which
will stop that flow from being mirrored to the IDS. This behaviour is possible because the
flow table with the drop rules are evaluated before the mirror rules and forwarding rules
- this was an intentional part of the design. To ensure the IDS is never overwhelmed with
traffic the implementation could set a limit on the number of ports that can have traffic
mirrored to the IDS. Combining with the idea from above, when no attacks are detected by
the IDS in the mirrored traffic then those ports should stop being mirrored to the IDS and
the other ports can then be mirrored.

Due to time constraints the code to remove an attack flow entry from the flow table was
never implemented. Although this does not immediately cause any immediate issues for
any of the components it may cause issues for legitimate traffic in the future that coincidently
matches the attack flow vectors (specifically for DNS requests or responses). Also, some of
the configuration was hard-coded within the code of each layer of the implementation —
for example the port number that traffic is mirrored to. These configuration options should
be moved to an external configuration file and the code to read the configuration file should
be moved from the tripwire layer to a layer that allows all the other layers to access the
configuration.
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Appendix A

Example of a large DNS response

This is an example of a large DNS response that has been generated by the command-line
utility dig. The lines are truncated, however the message size is recoreded as 8320 bytes at
the bottom of the output — this demonstrates the full size of the response.

$ dig ANY doc . gov @x . x . y . y
; ; Truncated , r e t r y i n g in TCP mode .

; <<>> DiG 9.8.3 −P1 <<>> ANY doc . gov
; ; g loba l opt ions : +cmd
; ; Got answer :
; ; −>>HEADER<<− opcode : QUERY, s t a t u s : NOERROR, id : 60091
; ; f l a g s : qr rd ra ; QUERY: 1 , ANSWER: 44 , AUTHORITY: 6 , ADDITIONAL: 4

; ; QUESTION SECTION :
; doc . gov . IN ANY

; ; ANSWER SECTION :
doc . gov . 10798 IN RRSIG SOA 8 2 10800 20141119070630 20141020060630 1
doc . gov . 10798 IN RRSIG SOA 8 2 10800 20141119070630 20141020060630 5
doc . gov . 10798 IN SOA hchbens1 . doc . gov . dnsadmin . doc . gov . 2014072865 36
doc . gov . 10798 IN RRSIG TXT 8 2 10800 20141106123148 20141007123106 1
doc . gov . 10798 IN RRSIG TXT 8 2 10800 20141106123148 20141007123106 1
doc . gov . 10798 IN TXT ”MS=ms91611337”
doc . gov . 10798 IN TXT ”khbl4plXHgnKtHsVtFp6P2+2C/Tpn/Vl/4xMUy+3yN8KPPzD
doc . gov . 10798 IN RRSIG MX 8 2 10800 20141114023329 20141015020647 11
doc . gov . 10798 IN RRSIG MX 8 2 10800 20141114023329 20141015020647 14
doc . gov . 10798 IN MX 10 smtpedge1 . uspto . gov .
doc . gov . 10798 IN MX 10 smtpedge2 . uspto . gov .
doc . gov . 298 IN RRSIG AAAA 8 2 300 20141107173951 20141008164211 11766
doc . gov . 298 IN RRSIG AAAA 8 2 300 20141107173951 20141008164211 14811
doc . gov . 298 IN AAAA 2 6 1 0 : 2 0 : : 2 0 : 5 ec : d0c : d0c : d0c
doc . gov . 298 IN RRSIG A 8 2 300 20141113001227 20141013234923 11766 doc
doc . gov . 298 IN RRSIG A 8 2 300 20141113001227 20141013234923 14811 doc
doc . gov . 298 IN A 1 7 0 . 1 1 0 . 2 2 5 . 1 9 4
doc . gov . 3598 IN RRSIG NSEC 8 2 3600 20141108231129 20141009230013 1
doc . gov . 3598 IN RRSIG NSEC 8 2 3600 20141108231129 20141009230013 1
doc . gov . 3598 IN NSEC a s s o c i a t e . doc . gov . A NS SOA MX TXT AAAA RRSIG
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doc . gov . 298 IN RRSIG DNSKEY 8 2 300 20141116000000 20141016230000 11209
doc . gov . 298 IN RRSIG DNSKEY 8 2 300 20141116000000 20141016230000 11766
doc . gov . 298 IN RRSIG DNSKEY 8 2 300 20141116000000 20141016230000 42040
doc . gov . 298 IN RRSIG DNSKEY 8 2 300 20141116000000 20141016230000 51528
doc . gov . 298 IN DNSKEY 256 3 8 AwEAAdoSoUIQleHGNf1pPVyUv3fegOEqKQDur1dquT
doc . gov . 298 IN DNSKEY 256 3 8 AwEAAdtKPEiB4OqKghepiGwUBqkdbRYk8sg8UBEXp
doc . gov . 298 IN DNSKEY 256 3 8 AwEAAeJRixTIyyo0QVfhsDtHNneV1rOmrCkHOwi90h
doc . gov . 298 IN DNSKEY 256 3 8 AwEAAfctEhSjYDJW3Tq6cQv8z3uC+N+Q8pA9ozC6se
doc . gov . 298 IN DNSKEY 257 3 8 AwEAAaMW+Kqwn3Zokh7OxWV6iQOI3HqWcaWnYYyLs+
doc . gov . 298 IN DNSKEY 257 3 8 AwEAAcCAMAdCOvmCdsMBh8+5EqP4c0jTO86Ht0/IW9
doc . gov . 298 IN DNSKEY 256 3 8 AwEAAbkCPpGWIZ0DYbxnYj06yHzrFzRnQH+RDhfHNk
doc . gov . 10798 IN RRSIG NS 8 2 10800 20141114022009 20141015013431 117
doc . gov . 10798 IN RRSIG NS 8 2 10800 20141114022009 20141015013431 148
doc . gov . 3598 IN RRSIG DS 8 2 3600 20141027161018 20141020161018 1321
doc . gov . 3598 IN DS 42040 8 1 4D8A621E8A7AC8AED30720D0C0F1B74CC250DF26
doc . gov . 3598 IN DS 42040 8 2 41BA3D5F5B7BB2F9C599F2D21E1A3CE24B37DABE
doc . gov . 3598 IN DS 11209 8 1 230E4D6480036A2432EA74AE0D3C5C3AE9341C29
doc . gov . 3598 IN DS 11209 8 2 00A2783429DF6A9533B998C92C322FF3A9169287
doc . gov . 10798 IN NS dnssec7 . datamtn . com .
doc . gov . 10798 IN NS dnssec10 . datamtn . com .
doc . gov . 10798 IN NS hchbens1 . doc . gov .
doc . gov . 10798 IN NS gpaens2 . doc . gov .
doc . gov . 10798 IN NS dnssec11 . datamtn . com .
doc . gov . 10798 IN NS dnssec9 . datamtn . com .

; ; AUTHORITY SECTION :
doc . gov . 10798 IN NS dnssec9 . datamtn . com .
doc . gov . 10798 IN NS dnssec10 . datamtn . com .
doc . gov . 10798 IN NS gpaens2 . doc . gov .
doc . gov . 10798 IN NS dnssec11 . datamtn . com .
doc . gov . 10798 IN NS dnssec7 . datamtn . com .
doc . gov . 10798 IN NS hchbens1 . doc . gov .

; ; ADDITIONAL SECTION :
gpaens2 . doc . gov . 86394 IN A 1 7 0 . 1 1 0 . 2 2 5 . 1 3
gpaens2 . doc . gov . 10793 IN AAAA 2 6 1 0 : 2 0 : : 2 0 : d0c : 9 0 c : 2 2 5 : 2 2 3
hchbens1 . doc . gov . 86394 IN A 1 7 0 . 1 1 0 . 2 2 5 . 1 1
hchbens1 . doc . gov . 10793 IN AAAA 2 6 1 0 : 2 0 : : 2 0 : d0c : 9 0 c : 2 2 5 : 2 2 5

; ; Query time : 797 msec
; ; SERVER : x . x . y . y #53( x . x . y . y )
; ; WHEN: Tue Oct 21 0 9 : 3 2 : 4 5 2014
; ; MSG SIZE rcvd : 8230
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Appendix B

Morepork source code

Morepork is the name given to the project implementation. This is the primary contribution
of the project. A description of the code is found in chapter 4. Note that the longer lines are
truncated.

B.1 simple monitor.py

from operator import a t t r g e t t e r

from ryu . app import s imple switch 13
from ryu . c o n t r o l l e r import ofp event
from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER, DEAD D
from ryu . c o n t r o l l e r . handler import s e t e v c l s
from ryu . ofproto import o fpro to v1 3
from ryu . l i b import hub

c l a s s SimpleMonitor ( s imple switch 13 . SimpleSwitch13 ) :

def i n i t ( s e l f , ∗args , ∗∗kwargs ) :
super ( SimpleMonitor , s e l f ) . i n i t (∗ args , ∗∗kwargs )
s e l f . datapaths = {}
s e l f . monitor thread = hub . spawn ( s e l f . monitor )

@ s e t e v c l s ( ofp event . EventOFPStateChange ,
[MAIN DISPATCHER, DEAD DISPATCHER ] )

def s t a t e c h a n g e h a n d l e r ( s e l f , ev ) :
’ ’ ’

Keep the l i s t of datapaths up−to−date .
’ ’ ’
datapath = ev . datapath
i f ev . s t a t e == MAIN DISPATCHER :

i f not datapath . id in s e l f . datapaths :
s e l f . logger . debug ( ’ r e g i s t e r datapath : %016x ’ , datapath . id )
s e l f . datapaths [ datapath . id ] = datapath

e l i f ev . s t a t e == DEAD DISPATCHER :
i f datapath . id in s e l f . datapaths :

s e l f . logger . debug ( ’ u n r e g i s t e r datapath : %016x ’ , datapath . id )
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del s e l f . datapaths [ datapath . id ]

def monitor ( s e l f ) :
’ ’ ’
P o l l each datapath f o r new s t a t s .
’ ’ ’
while True :

f o r dp in s e l f . datapaths . values ( ) :
s e l f . r e q u e s t s t a t s ( dp )

hub . s leep ( 1 0 )

def r e q u e s t s t a t s ( s e l f , datapath ) :
s e l f . logger . debug ( ’ send s t a t s request : %016x ’ , datapath . id )
ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r

req = parser . OFPFlowStatsRequest ( datapath )
datapath . send msg ( req )

req = parser . OFPPortStatsRequest ( datapath , 0 , ofproto . OFPP ANY)
datapath . send msg ( req )

@ s e t e v c l s ( ofp event . EventOFPPortStatsReply , MAIN DISPATCHER)
def p o r t s t a t s r e p l y h a n d l e r ( s e l f , ev ) :

body = ev . msg . body

s e l f . logger . i n f o ( ’ datapath port ’
’ rx−pkts rx−bytes rx−e r r o r ’
’ tx−pkts tx−bytes tx−error ’ )

s e l f . logger . i n f o(’−−−−−−−−−−−−−−−− −−−−−−−− ’
’−−−−−−−− −−−−−−−− −−−−−−−− ’
’−−−−−−−− −−−−−−−− −−−−−−−−’)

f o r s t a t in sor ted ( body , key= a t t r g e t t e r ( ’ port no ’ ) ) :
s e l f . logger . i n f o ( ’%016x %8x %8d %8d %8d %8d %8d %8d ’ ,

ev . msg . datapath . id , s t a t . port no ,
s t a t . rx packets , s t a t . rx bytes , s t a t . r x e r r o r s ,
s t a t . tx packets , s t a t . t x b y t e s , s t a t . t x e r r o r s )

B.2 layer tripwire.py

from ryu . c o n t r o l l e r import ofp event
from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER, DEAD DIS
from ryu . c o n t r o l l e r . handler import s e t e v c l s
from ryu . l i b import hub

from morepork . app import simple monitor
from morepork . t r i p w i r e import c o l l e c t o r
from morepork . t r i p w i r e import t r i p w i r e
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c l a s s TripwireLayer ( simple monitor . SimpleMonitor ) :

t r i p w i r e t a b l e i d = 2
p o l l t i m e = 10

def i n i t ( s e l f , ∗args , ∗∗kwargs ) :
super ( TripwireLayer , s e l f ) . i n i t (∗ args , ∗∗kwargs )
s e l f . c o l l e c t o r = c o l l e c t o r . P o r t S t a t s C o l l e c t o r ( )
s e l f . t r i p w i r e = t r i p w i r e . Tripwire ( s e l f . logger , s e l f . c o l l e c t o r )

def add flow ( s e l f , datapath , p r i o r i t y , match , a c t i o n s ) :
’ ’ ’
Override method in s imple switch 13 so we can place
switch flows in the t a b l e number of our choosing .
’ ’ ’
o fproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r

i n s t = [ parser . OFPInstruct ionAct ions ( ofproto . OFPIT APPLY ACTIONS ,
a c t i o n s ) ]

mod = parser . OFPFlowMod( datapath=datapath , p r i o r i t y = p r i o r i t y ,
match=match , i n s t r u c t i o n s = i n s t , t a b l e i d = s e l f

datapath . send msg (mod)

def add defaul t f low ( s e l f , datapath , t a b l e i d , g o t o t a b l e i d =None ) :
’ ’ ’

Adds a d e f a u l t flow f o r a t a b l e . Defaul t a c t i o n i s
to goto the next t a b l e ( s p e c i f i e d by g o t o t a b l e i d ) .
’ ’ ’
i f not g o t o t a b l e i d : re turn

ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r
match = parser . OFPMatch ( )

i n s t = [ parser . OFPInstructionGotoTable ( g o t o t a b l e i d ) ]
mod = parser . OFPFlowMod( datapath=datapath , p r i o r i t y =0 ,

match=match , i n s t r u c t i o n s = i n s t , t a b l e i d = t a b l e i d )

datapath . send msg (mod)

def p r i n t t r i p w i r e s ( s e l f ) :
wires = s e l f . t r i p w i r e . p r o c e s s p o r t s t a t s ( )
s e l f . logger . i n f o ( ’ datapath port ’

’ metr ic value ’
’ threshold tripped ’ )

s e l f . logger . i n f o(’−−−−−−−−−−−−−−−− −−−−−−−− ’
’−−−−−−−−−−−−−−−− −−−−−−−−−−−−− ’
’−−−−−−−−−−−−− −−−−−−−’)
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f o r item in wires :
s e l f . logger . i n f o ( ’%016x %8x %16s %13d %13d %7s ’ ,

item . dpid , item . port no , item . metric , item . value ,
item . threshold , item . tr ipped )

f o r item in wires :
i f item . tr ipped :

s e l f . logger . warning ( ’ Tripped : datapath=%x port=%x metr ic=%s %d
item . dpid , item . port no , item . metric , item . value ,

item . threshold )

def monitor ( s e l f ) :
’ ’ ’
Override method in simple monitor so we can change
how of ten we request s t a t s .
’ ’ ’
while True :

f o r dp in s e l f . datapaths . values ( ) :
s e l f . r e q u e s t s t a t s ( dp )

hub . s leep ( s e l f . p o l l t i m e )

@ s e t e v c l s ( ofp event . EventOFPPortStatsReply , MAIN DISPATCHER)
def p o r t s t a t s r e p l y h a n d l e r ( s e l f , ev ) :

super ( TripwireLayer , s e l f ) . p o r t s t a t s r e p l y h a n d l e r ( ev )
dpid = ev . msg . datapath . id
body = ev . msg . body

s e l f . c o l l e c t o r . push ( dpid , body )
s e l f . p r i n t t r i p w i r e s ( )

B.3 layer mirror.py

from ryu . c o n t r o l l e r import ofp event
from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER, DEAD DIS
from ryu . c o n t r o l l e r . handler import s e t e v c l s
from ryu . l i b import hub

from morepork . app import l a y e r t r i p w i r e

c l a s s MirrorLayer ( l a y e r t r i p w i r e . TripwireLayer ) :

m i r r o r t a b l e i d = 1
mirror por t = 3 # TODO make t h i s c o n f i g u r a b l e
mirror map = {}

def i n i t ( s e l f , ∗args , ∗∗kwargs ) :
super ( MirrorLayer , s e l f ) . i n i t (∗ args , ∗∗kwargs )

def g e t m i r r o r p o r t s ( s e l f ) :
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re turn s e l f . m i r r o r i n p o r t s

def add mirror port ( s e l f , dpid , i n p o r t ) :
’ ’ ’

Add a c t i o n to mirror t r a f f i c to the mirror port ,
then go to the switch t a b l e to forward the t r a f f i c
normally .
’ ’ ’
datapath = s e l f . datapaths [ dpid ]
ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r
match = parser . OFPMatch ( i n p o r t = i n p o r t )

a c t i o n s = [ parser . OFPActionOutput ( s e l f . mir ror por t ) ]
i n s t = [ parser . OFPInstruct ionAct ions ( ofproto . OFPIT APPLY ACTIONS ,

a c t i o n s ) , parser . OFPInstructionGotoTable ( s e l f . t r i p w i r e t a b l e i d ) ]
mod = parser . OFPFlowMod( datapath=datapath , p r i o r i t y =1 ,

match=match , i n s t r u c t i o n s = i n s t , t a b l e i d = s e l f . m i r r o r t a b l e i d )
datapath . send msg (mod)

s e l f . logger . warning ( ’ Added port mirror %d −−> %d on datapath %x ’ ,
in por t , s e l f . mirror port , dpid )

def remove mirror port ( s e l f , dpid , i n p o r t ) :
datapath = s e l f . datapaths [ dpid ]
ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r
match = parser . OFPMatch ( i n p o r t = i n p o r t )

mod = parser . OFPFlowMod( datapath=datapath , match=match ,
command=ofproto . OFPFC DELETE , t a b l e i d = s e l f . m i r r o r t a b l e i d ,
out por t=ofproto . OFPP ANY, out group=ofproto .OFPG ANY)

datapath . send msg (mod)

s e l f . logger . warning ( ’ Removed port mirror %d −−> %d on datapath %x ’ ,
in por t , s e l f . mirror port , dpid )

def update mirror ports ( s e l f , wires ) :
new map = {}
f o r wire in wires :

i f wire . dpid not in new map :
new map [ wire . dpid ] = {}

i f wire . port no not in new map [ wire . dpid ] :
new map [ wire . dpid ] [ wire . port no ] = wire . t r ipped

i f ( not new map [ wire . dpid ] [ wire . port no ] and
wire . t r ipped ) :
new[ wire . dpid ] [ wire . port no ] = True
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old map = s e l f . mirror map
f o r dpid , por ts in new map . i t e r i t e m s ( ) :

f o r port no , tr ipped in ports . i t e r i t e m s ( ) :
i f dpid not in old map :

old map [ dpid ] = {}

i f port no not in old map [ dpid ] :
old map [ dpid ] [ port no ] = F a l s e

i f t r ipped and not old map [ dpid ] [ port no ] :
s e l f . add mirror port ( dpid , port no )

e l i f not tr ipped and old map [ dpid ] [ port no ] :
s e l f . remove mirror port ( dpid , port no )

# e l s e i f new=true and old=true
# => already port mirroring
# e l s e i f new= f a l s e and old= f a l s e
# => never tr ipped

s e l f . mirror map = new map

@ s e t e v c l s ( ofp event . EventOFPSwitchFeatures , CONFIG DISPATCHER)
def s w i t c h f e a t u r e s h a n d l e r ( s e l f , ev ) :

super ( MirrorLayer , s e l f ) . s w i t c h f e a t u r e s h a n d l e r ( ev )

datapath = ev . msg . datapath
s e l f . add defaul t f low ( datapath , s e l f . m i r r o r t a b l e i d , s e l f . t r i p w i r e t a

@ s e t e v c l s ( ofp event . EventOFPPortStatsReply , MAIN DISPATCHER)
def p o r t s t a t s r e p l y h a n d l e r ( s e l f , ev ) :

super ( MirrorLayer , s e l f ) . p o r t s t a t s r e p l y h a n d l e r ( ev )

wires = s e l f . t r i p w i r e . p r o c e s s p o r t s t a t s ( )
s e l f . update mirror ports ( wires )

B.4 layer firewall.py

from ryu . c o n t r o l l e r import ofp event
from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER, DEAD DIS
from ryu . c o n t r o l l e r . handler import s e t e v c l s
from ryu . l i b import hub
from ryu . ofproto import e ther
from ryu . ofproto import i n e t

from morepork . app import l a y e r m i r r o r
from morepork . ids import secur i tyonion

c l a s s Firewal lLayer ( l a y e r m i r r o r . MirrorLayer ) :

f i r e w a l l t a b l e i d = 0
f i r e w a l l d r o p s = {}
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i d s l i s t e n a d d r e s s = ’ 0 . 0 . 0 . 0 ’
i d s l i s t e n p o r t = 514

def i n i t ( s e l f , ∗args , ∗∗kwargs ) :
super ( Firewal lLayer , s e l f ) . i n i t (∗ args , ∗∗kwargs )
s e l f . ids = secur i tyonion . SecurityOnion ( s e l f . logger )
s e l f . ids . i d s a l e r t s u b s c r i b e ( s e l f . i d s a l e r t h a n d l e r )
s e l f . ids . l i s t e n ( s e l f . i d s l i s t e n a d d r e s s , s e l f . i d s l i s t e n p o r t )

def g e t f i r e w a l l d r o p s ( s e l f ) :
re turn s e l f . f i r e w a l l d r o p s

def add f i rewal l drop ( s e l f , dpid , ev ) :
’ ’ ’
I f t r a f f i c flow should be dropped then add flow r u l e
to match t h a t flow and apply no a c t i o n s . There i s no
goto t a b l e i n s t r u c t i o n to prevent the normal switch
f u n c t i o n s and thus dropping the packet .
’ ’ ’
datapath = s e l f . datapaths [ dpid ]
ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r

s r c p o r t = i n t ( ev . s r c p o r t )
d s t p o r t = i n t ( ev . d s t p o r t )
i f ev . proto == ’ 6 ’ : # TCP

match = parser . OFPMatch ( i p v 4 s r c =ev . s r c i p , ipv4 ds t=ev . ds t ip ,
t c p s r c = s r c p o r t , t c p d s t =dst por t , e th type=ether . ETH TYPE
i p p r o t o= i n e t . IPPROTO TCP )

proto = ’TCP’
e l i f ev . proto == ’ 1 7 ’ : # UDP

match = parser . OFPMatch ( i p v 4 s r c =ev . s r c i p , ipv4 ds t=ev . ds t ip ,
udp src= s r c p o r t , udp dst=dst por t , e th type=ether . ETH TYPE
i p p r o t o= i n e t . IPPROTO UDP)

proto = ’UDP’
e l s e :

re turn

a c t i o n s = [ ]
i n s t = [ parser . OFPInstruct ionAct ions ( ofproto . OFPIT APPLY ACTIONS ,

a c t i o n s ) ]
mod = parser . OFPFlowMod( datapath=datapath , p r i o r i t y =1 ,

match=match , i n s t r u c t i o n s = i n s t , t a b l e i d = s e l f . f i r e w a l l t a b l e i d )
datapath . send msg (mod)

s e l f . logger . warning ( ’ Adding entry to drop t r a f f i c flow %s %s :%s −−> %
proto , ev . s r c i p , ev . s r c p o r t , ev . ds t ip , ev . ds t por t , dpid )

def remove f irewal l drop ( s e l f , dpid , match ) :
datapath = s e l f . datapaths [ dpid ]
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ofproto = datapath . ofproto
parser = datapath . o f p r o t o p a r s e r

mod = parser . OFPFlowMod( datapath=datapath , match=match ,
command=ofproto . OFPFC DELETE , t a b l e i d = s e l f . f i r e w a l l t a b l e i d ,
out por t=ofproto . OFPP ANY, out group=ofproto .OFPG ANY)

datapath . send msg (mod)

s e l f . logger . warning ( ’ Removed flow to drop t r a f f i c ’ )

@ s e t e v c l s ( ofp event . EventOFPSwitchFeatures , CONFIG DISPATCHER)
def s w i t c h f e a t u r e s h a n d l e r ( s e l f , ev ) :

super ( Firewal lLayer , s e l f ) . s w i t c h f e a t u r e s h a n d l e r ( ev )

datapath = ev . msg . datapath
s e l f . add defaul t f low ( datapath , s e l f . f i r e w a l l t a b l e i d , s e l f . m i r r o r t a

@ s e t e v c l s ( ofp event . EventOFPFlowStatsReply , MAIN DISPATCHER)
def f l o w s t a t s r e p l y h a n d l e r ( s e l f , ev ) :

super ( Firewal lLayer , s e l f ) . f l o w s t a t s r e p l y h a n d l e r ( ev )

# Check flow s t a t threshold f o r drop flows
# I f s t a t < threshold
# remove f irewal l drop ( . . . )

def i d s a l e r t h a n d l e r ( s e l f , ev ) :
# Stop the a t t a c k on a l l datapaths
f o r dpid in s e l f . datapaths :

s e l f . add f i rewal l drop ( dpid , ev )

B.5 main.py

import datetime
import os . path

from ryu . c o n t r o l l e r import ofp event
from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER, DEAD DIS
from ryu . c o n t r o l l e r . handler import s e t e v c l s
from ryu . l i b import hub

from morepork . app import l a y e r f i r e w a l l

c l a s s MoreporkApp ( l a y e r f i r e w a l l . F i rewal lLayer ) :

f l o w s t a t s f i l e = ’ flow−s t a t s−%s . csv ’

def i n i t ( s e l f , ∗args , ∗∗kwargs ) :
super ( MoreporkApp , s e l f ) . i n i t (∗ args , ∗∗kwargs )

t = datetime . datetime . today ( )
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s e l f . f l o w s t a t s f i l e = s e l f . f l o w s t a t s f i l e % t . s t r f t i m e ( ’% s ’ )

# TODO i n i t conf ig here and r e p l a c e TRIPWIRE CONF

@ s e t e v c l s ( ofp event . EventOFPFlowStatsReply , MAIN DISPATCHER)
def f l o w s t a t s r e p l y h a n d l e r ( s e l f , ev ) :

body = ev . msg . body

i f not os . path . i s f i l e ( s e l f . f l o w s t a t s f i l e ) :
with open ( s e l f . f l o w s t a t s f i l e , ’w’ ) as myfi le :

myfi le . wri te (” dpid , in por t , out port , ipv4 src , ipv4 dst , t c p s r c

with open ( s e l f . f l o w s t a t s f i l e , ’ a ’ ) as myfi le :
dpid = ev . msg . datapath . id
f o r s t a t in body :

i f ’ in por t ’ in s t a t . match :
i n p o r t = s t a t . match [ ’ in por t ’ ]

e l s e :
i n p o r t = ’ ’

t r y :
out por t = s t a t . i n s t r u c t i o n s [ 0 ] . a c t i o n s [ 0 ] . port

except :
out por t = ’ ’

i f ’ ipv4 src ’ in s t a t . match :
i p v 4 s r c = s t a t . match [ ’ ipv4 src ’ ]

e l s e :
i p v 4 s r c = ’ ’

i f ’ ipv4 dst ’ in s t a t . match :
ipv4 ds t = s t a t . match [ ’ ipv4 dst ’ ]

e l s e :
ipv4 ds t = ’ ’

i f ’ t c p s r c ’ in s t a t . match :
t c p s r c = s t a t . match [ ’ t c p s r c ’ ]

e l s e :
t c p s r c = ’ ’

i f ’ t cp ds t ’ in s t a t . match :
t c p d s t = s t a t . match [ ’ t cp ds t ’ ]

e l s e :
t c p d s t = ’ ’

i f ’ udp src ’ in s t a t . match :
udp src = s t a t . match [ ’ udp src ’ ]

e l s e :
udp src = ’ ’
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i f ’ udp dst ’ in s t a t . match :
udp dst = s t a t . match [ ’ udp dst ’ ]

e l s e :
udp dst = ’ ’

packet count = s t a t . packet count
byte count = s t a t . byte count
d u r a t i o n s e c = s t a t . d u r a t i o n s e c
myfi le . wri te (”%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,% s\n” % ( dpid , i

s e l f . logger . i n f o ( ’ Wrote flow s t a t s to %s ’ , s e l f . f l o w s t a t s f i l e )

B.6 configloader.py

import c o l l e c t i o n s
import yaml

c l a s s ConfigLoader ( o b j e c t ) :

@staticmethod
def load ( f i lename ) :

stream = f i l e ( f i lename , ’ r ’ )
dump = yaml . load ( stream )
Config = c o l l e c t i o n s . namedtuple ( ’ Config ’ , dump. keys ( ) )
re turn Config (∗∗dump)

B.7 idsbase.py

import zope . event

c l a s s IdsBase ( o b j e c t ) :
’ ’ ’
I n t e r a c t i o n s with s p e c i f i c IDS s o l u t i o n s should
be implemented in t h e i r own c l a s s e s t h a t
i n h e r i t t h i s c l a s s .
’ ’ ’

def i d s a l e r t s u b s c r i b e ( s e l f , func ) :
’ ’ ’
Functions t h a t want to r e c e i v e a l e r t s from the IDS
should use t h i s method to subscr ibe .
’ ’ ’
zope . event . s u b s c r i b e r s . append ( func )

def i d s a l e r t f i r e ( s e l f , ev ) :
’ ’ ’
C lasses t h a t i n h e r i t t h i s c l a s s should use t h i s
method to n o t i f y s u b s c r i b e r s t h a t an a l e r t has
occurred .

ev should be a Dic t ionary of f i e l d s t h a t conta in
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usefu l information about the a l e r t such as the
source and d e s t i n a t i o n addresses .
’ ’ ’
zope . event . n o t i f y ( ev )

B.8 securityonion.py

import c o l l e c t i o n s
import re
import socket
from ryu . l i b import hub

from morepork . ids import idsbase

c l a s s SecurityOnion ( idsbase . IdsBase ) :

def i n i t ( s e l f , logger ) :
super ( SecurityOnion , s e l f ) . i n i t ( )
s e l f . logger = logger
s e l f . a l e r t r e g e x = re . compile ( ’ˆ <\d{2}>\w{3}\ s+\d{1 ,2}\ s\d\d : \d\d : \d
s e l f . a l e r t c l a s s = c o l l e c t i o n s . namedtuple ( ’ IdsAler t ’ ,

[ ’ category ’ , ’ s r c p o r t ’ , ’ s ignature ’ , ’ pid ’ , ’ server ’ ,
’ s r c i p ’ , ’ ds t por t ’ , ’ sid ’ , ’ date ’ , ’ ds t ip ’ ,
’ sensor ’ , ’ proto ’ ] )

def l i s t e n ( s e l f , address , port ) :
s e l f . sock = socket . socket ( socket . AF INET , socket .SOCK DGRAM)
s e l f . sock . se tsockopt ( socket . SOL SOCKET , socket . SO REUSEADDR, 1)
s e l f . sock . bind ( ( address , port ) )
s e l f . i d s t h r e a d = hub . spawn ( s e l f . s e r v e r l o o p )

def parse event ( s e l f , data ) :
s e l f . logger . i n f o ( ’ IDS Aler t : ’+ data )

m = s e l f . a l e r t r e g e x . search ( data )
i f not m: re turn None
a l e r t = s e l f . a l e r t c l a s s (∗∗m. groupdict ( ) )
re turn a l e r t

def s e r v e r l o o p ( s e l f ) :
s e l f . logger . i n f o ( ’ L i s t e n i n g f o r a l e r t s from IDS ’ )
while True :

data , address = s e l f . sock . recvfrom ( 4 0 9 6 )
i f not data : continue
a l e r t = s e l f . parse event ( data )
i f not a l e r t : continue
s e l f . i d s a l e r t f i r e ( a l e r t )

B.9 collector.py

c l a s s P o r t S t a t s C o l l e c t o r ( o b j e c t ) :
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s t o r e = {}

def has dpid ( s e l f , dpid ) :
’ ’ ’
Check i f s t a t s f o r datapath ID e x i s t
’ ’ ’
re turn dpid in s e l f . s t o r e

def has port no ( s e l f , dpid , port no ) :
’ ’ ’
Check i f s t a t s f o r port e x i s t f o r a given datapath
’ ’ ’
i f not s e l f . has dpid ( dpid ) :

re turn F a l s e

re turn port no in s e l f . s t o r e [ dpid ] . keys ( )

def has metr ic ( s e l f , dpid , port no , metr ic ) :
’ ’ ’
Check i f s t a t s f o r metr ic e x i s t f o r given port and datapath
’ ’ ’
i f not s e l f . has port no ( dpid , port no ) :

re turn F a l s e

i f len ( s e l f . s t o r e [ dpid ] [ port no ] ) == 0 :
re turn F a l s e

re turn h a s a t t r ( s e l f . s t o r e [ dpid ] [ port no ] [ 0 ] , metr ic )

def por ts ( s e l f , dpid ) :
’ ’ ’
Gets a l i s t of por ts f o r a given datapath ID
’ ’ ’
i f not s e l f . has dpid ( dpid ) :

re turn None

return s e l f . s t o r e [ dpid ] . keys ( )

def push ( s e l f , dpid , s t a t s ) :
’ ’ ’
S t o r e s the r e s u l t s from a port s t a t s reply
’ ’ ’
i f dpid not in s e l f . s t o r e :

s e l f . s t o r e [ dpid ] = {}

f o r s e t in s t a t s :
port no = s e t . port no
i f port no not in s e l f . s t o r e [ dpid ] :

s e l f . s t o r e [ dpid ] [ port no ] = [ ]
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s e l f . s t o r e [ dpid ] [ port no ] . append ( s e t )

# Limit each l i s t s i z e to 2 items
i f len ( s e l f . s t o r e [ dpid ] [ port no ] ) > 2 :

del s e l f . s t o r e [ dpid ] [ port no ] [ 0 ]

def l a s t v a l u e ( s e l f , dpid , port no , metr ic ) :
’ ’ ’
Gets the l a s t value f o r a metr ic
’ ’ ’
i f not s e l f . has metr ic ( dpid , port no , metr ic ) :

s e l f . logger . warning ( ’ Metric not found : %s port no=%8x dpid=%016x
( metric , port no , dpid ) )

va l s = s e l f . g e t d a t a p o i n t s ( dpid , port no , metr ic )
i f va l s i s not None :

re turn va ls [ 1 ]

def order1 ( s e l f , dpid , port no , metr ic ) :
’ ’ ’
C a l c u l a t e s the 1 st−order d e r i v a t i v e of a metr ic
’ ’ ’
i f not s e l f . has metr ic ( dpid , port no , metr ic ) :

s e l f . logger . warning ( ’ Metric not found : %s port no=%8x dpid=%016x
( metric , port no , dpid ) )

va l s = s e l f . g e t d a t a p o i n t s ( dpid , port no , metr ic )
i f va l s i s not None :

re turn ( va l s [ 1 ] − va ls [ 0 ] ) / va l s [ 2 ]
e l s e :

re turn 0

def order2 ( s e l f , dpid , port no , metr ic ) :
’ ’ ’
C a l c u l a t e s the 2nd−order d e r i v a t i v e of a metr ic
’ ’ ’
i f not s e l f . has metr ic ( dpid , port no , metr ic ) :

s e l f . logger . warning ( ’ Metric not found : %s port no=%8x dpid=%016x
( metric , port no , dpid ) )

va l s = s e l f . g e t d a t a p o i n t s ( dpid , port no , metr ic )
i f va l s i s not None :

re turn ( ( va l s [ 1 ] − va ls [ 0 ] ) / va l s [ 2 ] ) / va l s [ 2 ]
e l s e :

re turn 0

def g e t d a t a p o i n t s ( s e l f , dpid , port no , metr ic ) :
’ ’ ’
Gets the l a s t two datapoints and time d e l t a
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’ ’ ’
i f ( dpid not in s e l f . s t o r e or

port no not in s e l f . s t o r e [ dpid ] . keys ( ) ) :
re turn None

d a t a s e t s = s e l f . s t o r e [ dpid ] [ port no ] [ −2 : ]
i f len ( d a t a s e t s ) < 2 :

re turn None

i f ( not h a s a t t r ( d a t a s e t s [ 0 ] , metr ic ) or
not h a s a t t r ( d a t a s e t s [ 1 ] , metr ic ) ) :
re turn None

a = g e t a t t r ( d a t a s e t s [ 0 ] , metr ic )
b = g e t a t t r ( d a t a s e t s [ 1 ] , metr ic )
dt = d a t a s e t s [ 1 ] . d u r a t i o n s e c − d a t a s e t s [ 0 ] . d u r a t i o n s e c
re turn [ a , b , dt ]

B.10 tripwire.py

import os

from c o l l e c t i o n s import namedtuple
from ryu . c o n t r o l l e r import event

from morepork . conf ig import c o n f i g l o a d e r

c l a s s Tripwire ( o b j e c t ) :

ENV TRIPWIRE CONF = ’TRIPWIRE CONF’

def i n i t ( s e l f , logger , c o l l e c t o r ) :
s e l f . logger = logger
s e l f . c o l l e c t o r = c o l l e c t o r

s e l f . load environment ( )
s e l f .CONF = c o n f i g l o a d e r . ConfigLoader . load ( s e l f . t r i p w i r e c o n f )

s e l f . wire = namedtuple ( ’ Wire ’ , ’ dpid , port no , metric , value , thresho

def load environment ( s e l f ) :
i f s e l f . ENV TRIPWIRE CONF in os . environ :

s e l f . t r i p w i r e c o n f = os . environ [ s e l f . ENV TRIPWIRE CONF]
e l s e :

s e l f . logger . e r r o r ( ’ Environment v a r i a b l e not found : %s ’ %
s e l f . ENV TRIPWIRE CONF)

s e l f . t r i p w i r e c o n f = None

def p r o c e s s f l o w s t a t s ( s e l f ) :
’ ’ ’
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Run threshold checks on flow s t a t s
’ ’ ’
re turn [ ] # TODO

def p r o c e s s p o r t s t a t s ( s e l f ) :
’ ’ ’

Run threshold checks on port s t a t s
’ ’ ’
conf = s e l f .CONF. port
c o l = s e l f . c o l l e c t o r

r e s u l t s = [ ]

f o r dpid , por ts in conf . i t e r i t e m s ( ) :
i f not c o l . has dpid ( dpid ) : continue

f o r port no , metr i cs in ports . i t e r i t e m s ( ) :
i f not c o l . has port no ( dpid , port no ) : continue

f o r metric , s e t t i n g s in metr ics . i t e r i t e m s ( ) :
i f not c o l . has metr ic ( dpid , port no , metr ic ) : continue

i f ’ threshold ’ not in s e t t i n g s :
s e l f . logger . warning ( ’ Threshold not defined f o r port−b

( metric , port no , dpid ) )
continue

i f ’ der iva t ive ’ in s e t t i n g s :
d e r i v a t i v e = s e t t i n g s [ ’ der iva t ive ’ ]

e l s e :
d e r i v a t i v e = 0

i f s e t t i n g s [ ’ der iva t ive ’ ] == 2 :
val = c o l . order2 ( dpid , port no , metr ic )

e l i f s e t t i n g s [ ’ der iva t ive ’ ] == 1 :
val = c o l . order1 ( dpid , port no , metr ic )

e l s e :
val = c o l . l a s t v a l u e ( dpid , port no , metr ic )

threshold = s e t t i n g s [ ’ threshold ’ ]
t r ipped = val >= threshold

r e s u l t s . append ( s e l f . wire ( dpid , port no , metric , val , thr

re turn r e s u l t s
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Appendix C

Example flow tables

This is an example of the flow tables ina switch when suspicious traffic is detected and port
mirroring flow entries have been added to the tables.

s t a t s r e p l y ( xid =0 x e 6 6 e f 4 f f ) : f l a g s =none type =1( flow )
cookie =0 , d u r a t i o n s e c =114s , durat ion nsec =772000000 s , t a b l e i d =0 , p r i o r i t y =0 , n
cookie =0 , d u r a t i o n s e c =84s , durat ion nsec =305000000 s , t a b l e i d =1 , p r i o r i t y =1 , n p
cookie =0 , d u r a t i o n s e c =114s , durat ion nsec =772000000 s , t a b l e i d =1 , p r i o r i t y =0 , n
cookie =0 , d u r a t i o n s e c =84s , durat ion nsec =721000000 s , t a b l e i d =2 , p r i o r i t y =1 , n p
cookie =0 , d u r a t i o n s e c =84s , durat ion nsec =720000000 s , t a b l e i d =2 , p r i o r i t y =1 , n p
cookie =0 , d u r a t i o n s e c =114s , durat ion nsec =773000000 s , t a b l e i d =2 , p r i o r i t y =0 , n
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Appendix D

IDS configuration and code

This is the configuration for syslog-ng — the program that reads the alert log from Sguil and
ids.py and forwards the alerts to Morepork. The code for ids.py follows the configuration.

D.1 syslog-ng.conf in Security Onion

# On your master server ( running sgui ld ) , conf igure / e t c /syslog−ng/syslog−ng
# with a new ” source ” to monitor /var/log/nsm/secur i tyonion/sgui ld . log f o r ”
# Received ” l i n e s and a new ” d e s t i n a t i o n ” to send to your e x t e r n a l system , an
# then r e s t a r t syslog−ng . To do t h i s modify / e t c /syslog−ng/syslog−ng . conf and
# the fol lowing l i n e s :

# This l i n e s p e c i f i e s where the sgui ld . log f i l e i s located , and informs syslo
# to t a i l the f i l e , the program override i n s e r t s the s t r i n g s g u i l a l e r t i n t o
# s t r i n g

source s s g u i l { f i l e (”/ var/log/nsm/secur i tyonion/sgui ld . log ” program overrid

# This l i n e f i l t e r s on the s t r i n g A l e r t R e c e i v e d

f i l t e r f s g u i l { match (” Aler t Received ” ) ; } ;

# This l i n e t e l l s syslog−ng to send the data read to the IP address of the M
# instance , via UDP to port 514

d e s t i n a t i o n d sguil udp { udp ( ” 1 9 2 . 1 6 8 . 0 . 1 5 0 ” port ( 5 1 4 ) ) ; } ;

# This log s e c t i o n t e l l s syslog−ng how to s t r u c t u r e the previous s o u r c e /
# d e s t i n a t i o n and i s what a c t u a l l y puts them i n t o play

log {
source ( s s g u i l ) ;
f i l t e r ( f s g u i l ) ;
d e s t i n a t i o n ( d sgui l udp ) ;

} ;
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D.2 ids.py

#!/ usr/bin/env python

from datetime import datetime
import subprocess as sub
import re
import sys

t r y :
f i l e = None
p = None
while True :

f i l e = open ( ’/ var/log/nsm/secur i tyonion/sgui ld . log ’ , ’ a ’ )
p = sub . Popen ( ( ’ sudo ’ , ’ tcpdump ’ , ’−nn ’ , ’− l ’ , ’− i e th0 ’ ) , s tdout=sub . P
f o r row in i t e r ( p . s tdout . readl ine , b ’ ’ ) :

m = re . search ( ’ ( ? P<s r c i p >\d{1 , 3}\ .\d{1 , 3}\ .\d{1 , 3}\ .\d { 1 , 3 } ) \ . ( ? P
s r c = m. group ( ’ s r c i p ’ )
dst = m. group ( ’ ds t ip ’ )
spor t = m. group ( ’ sport ’ )
dport = m. group ( ’ dport ’ )

t = datetime . today ( )
t1 = t . s t r f t i m e ( ’%b %d %H:%M:%S ’ )
t2 = t . s t r f t i m e ( ’%Y−%m−%d %H:%M:%S ’ )

out = ’<13>%s 489− secur i tyonion2 s g u i l a l e r t : %s pid ( 3 0 2 2 )
Aler t Received : 0 3 misc−a c t i v i t y 489− secur i tyonion2−eth0 {%s} 6 38 {} %s %s %s %s

t1 , t1 , t2 , src , dst , 17 , sport , dport )
p r i n t out
f i l e . wri te ( out )

except KeyboardInterrupt :
p r i n t ” Quit t ing . . . ”

f i n a l l y :
i f p :

p . terminate ( ) # zombie protec t ion , i f needed
i f f i l e :

f i l e . c l o s e ( )
sys . e x i t ( )
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Appendix E

Mininet automated test scripts

This appendix shows the Mininet topology file used during the tests. The iteration script
follows after the topology file with an example output of the iteration script during a test
run. Note that the longer lines are truncated.

E.1 mininet-topo.py

”””
Written by Ewen McNeill <ewen2naos . co . nz> , 2014−07−17

Adapted by Ben Vidulich <ben@vidulich . co . nz> , 2014−10−28
”””

import datetime
import os
import re
import sys
import subprocess
import time
import threading

from mininet . net import Mininet
from mininet . node import OVSSwitch , RemoteController
from mininet . topo import Topo
from mininet . l i n k import I n t f
from mininet . log import setLogLevel
from mininet . c l i import CLI
from mininet . u t i l import run

setLogLevel ( ’ info ’ )
# setLogLevel ( ’ debug ’ ) # For d i a g n o s t i c s

def c h e c k I n t f ( i n t f ) :
”Make sure i n t f e x i s t s and i s not configured . ”
i f ( ’ %s : ’ % i n t f ) not in quietRun ( ’ ip l i n k show ’ ) :

e r r o r ( ’ Error : ’ , i n t f , ’ does not e x i s t !\n ’ )
e x i t ( 1 )
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ips = re . f i n d a l l ( r ’\d+\ .\d+\ .\d+\ .\d+ ’ , quietRun ( ’ i f c o n f i g ’ + i n t f ) )
i f ips :

e r r o r ( ’ Error : ’ , i n t f , ’ has an IP address , ’
’ and i s probably in use !\n ’ )

e x i t ( 1 )

c l a s s MeasurementThread ( threading . Thread ) :

p o r t s t a t s f i l e = ’ port−s t a t s−%s . csv ’

def i n i t ( s e l f , switch ) :
super ( MeasurementThread , s e l f ) . i n i t ( )
s e l f . switch = switch
s e l f . s top = threading . Event ( )

i f ’TAG’ in os . environ :
s e l f . tag = os . environ [ ’TAG’ ]

e l s e :
s e l f . tag = ’ ’

s e l f . dump pattern = re . compile ( r ’ port \ s +(?P<port > .∗ ) : rx pkts =(?P<rx p

t = datetime . datetime . today ( )
s e l f . s t a r t t i m e = i n t ( t . s t r f t i m e ( ’% s ’ ) )
s e l f . p o r t s t a t s f i l e = s e l f . p o r t s t a t s f i l e % s e l f . s t a r t t i m e

i f not os . path . i s f i l e ( s e l f . p o r t s t a t s f i l e ) :
with open ( s e l f . p o r t s t a t s f i l e , ’w’ ) as myfi le :

myfi le . wri te (” durat ion sec , tag , port , rx bytes , rx pkts , t x b y t e s ,

def run ( s e l f ) :
while not s e l f . stopped ( ) :

time . s leep ( 1 )
t = datetime . datetime . today ( )
now = i n t ( t . s t r f t i m e ( ’% s ’ ) )
durat ion = now − s e l f . s t a r t t i m e
dump = s e l f . switch . dpct l ( ’dump−ports ’ )
matches = [m. groupdict ( ) f o r m in re . f i n d i t e r ( s e l f . dump pattern , d
with open ( s e l f . p o r t s t a t s f i l e , ’ a ’ ) as myfi le :

f o r m in matches :
myfi le . wri te (”%s ,%s ,%s ,%s ,%s ,%s ,% s\n” % ( duration , s e l f . ta

def stop ( s e l f ) :
s e l f . s top . s e t ( )

def stopped ( s e l f ) :
re turn s e l f . s top . i s S e t ( )

c l a s s MoreporkOneSwitch ( Topo ) :
”Morepork One Switch example topology ”
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def i n i t ( s e l f ) :
super ( MoreporkOneSwitch , s e l f ) . i n i t ( )

# Add hosts and switches
s e l f . srcHost = s e l f . addHost ( ’ h1 ’ , ip = ’ 1 0 . 0 . 0 . 1 ’ )
s e l f . dstHost = s e l f . addHost ( ’ h2 ’ , ip = ’ 1 0 . 0 . 0 . 2 ’ )
oneSwitch = s e l f . addSwitch ( ’ s1 ’ , dpid = ’0000000000000099 ’ ,

l i s t e n P o r t =6634 ,
p r o t o c o l s = ’OpenFlow13 ’ )

# Add l i n k s
s e l f . addLink ( s e l f . srcHost , oneSwitch )
s e l f . addLink ( oneSwitch , s e l f . dstHost )

# t r y to get hw i n t f from the command l i n e ; by defaul t , use eth0
intfName = sys . argv [ 1 ] i f len ( sys . argv ) > 1 e l s e ’ eth0 ’

sw = MoreporkOneSwitch ( )
ryu = RemoteController ( ’ ryu ’ , ip = ’ 1 2 7 . 0 . 0 . 1 ’ , port =6633 )
net = Mininet ( topo=sw , switch=OVSSwitch , bui ld=F a l s e )
net . addControl ler ( ryu )
net . bui ld ( )

# Add phys ica l i n t e r f a c e
switch = net . switches [ 0 ]

i n t f = I n t f ( ’ eth0 ’ , node=switch )
i n t f 2 = I n t f ( ’ eth2 ’ , node=switch )

net . s t a r t ( )
run (” ovs−v s c t l s e t bridge s1 p r o t o c o l s =OpenFlow10 , OpenFlow13 ”)

thread1 = MeasurementThread ( switch )
thread1 . daemon = True
thread1 . s t a r t ( )

p r i n t ’Warming up . . . ’
time . s leep ( 3 0 )
p r i n t ’ Beginning a t t a c k . . . ’
dstHost , srcHost = net . getNodeByName ( ’ h1 ’ , ’ h2 ’ )
dstHost . cmd( ’ i p e r f −s −p 53 −u & ’)
srcHost . cmd( ’ i p e r f −c ’ , dstHost . IP ( ) , ’ −p 53 −u −t 1 2 0 ’ ) # Run f o r 2 minut
p r i n t ’ Attack complete . . . ’
time . s leep ( 3 0 )
p r i n t ’ Cool−down complete . . . ’

thread1 . stop ( )
net . stop ( )
thread1 . j o i n ( 1 . 0 )
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E.2 mn-run.sh

#!/ bin/bash

export count=1
f o r run in { 1 . . 5 0 }
do

sudo mn −c > /dev/n u l l 2>&1
echo ”−−−−−===== BEGIN TEST $count =====−−−−−”
sudo TAG=$count python ˜/ engr489−p r o j e c t / t o o l s /mininet−topo . py
echo ”−−−−−===== END TEST $count =====−−−−−”
count=$ ( ( count + 1 ) )

done

E.3 Example output

$ ./mn−run . sh
−−−−−===== BEGIN TEST 1 =====−−−−−
∗∗∗ Creat ing network
∗∗∗ Adding hosts :
h1 h2
∗∗∗ Adding switches :
s1
∗∗∗ Adding l i n k s :
( h1 , s1 ) ( h2 , s1 )
∗∗∗ Configuring hosts
h1 h2
∗∗∗ S t a r t i n g c o n t r o l l e r
∗∗∗ S t a r t i n g 1 switches
s1
Warming up . . .
Beginning a t t a c k . . .
Attack complete . . .
Cool−down complete . . .
∗∗∗ Stopping 1 c o n t r o l l e r s
ryu
∗∗∗ Stopping 1 switches
s1 . .
∗∗∗ Stopping 2 l i n k s

∗∗∗ Stopping 2 hosts
h1 h2
∗∗∗ Done
−−−−−===== END TEST 1 =====−−−−−
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Appendix F

Spark’s comment on their September
2014 issues

The following statement was provided by Spark for this project on October 28, 2014 with
regards to their DNS issues from September 2014.

In our case New Zealand ISPs and customers were essentially used as pawns in an attack
between several overseas parties. We know that it caused major inconveniences for many
of our customers for a few days, and weve been up front and apologised for what occurred.
We also pointed out that the threat of cyber-criminal activity is very real. Its an industry
wide and global issue. Every year Spark New Zealand, like all other ISPs, and indeed any
organisation with a large computer network, must deal with many attacks, large and small.

In a typical year we deal with thousands of potential attacks the overwhelming majority
of these are intercepted before they can impact customers. In a globally connected world,
the risk of such attacks has increased, and they are becoming more and more sophisticated
and well-resourced. And the nature of the attacks continues to evolve dynamically. In this
particular case, the bad guys found a new way through.

Spark spends around $400 million every year keeping the networks going. We have a
state of the art network operating centre that we use to monitor for and control network
operations. This is where crises such as the DNS outage are managed from.

For obvious reasons we cant disclose the details of the security measures we took. How-
ever we are constantly reviewing and monitoring our systems and reviewing what is hap-
pening internationally to keep ahead. Today, there is over 10 billion connected devices
around the world, projected to be over 25 billion by the end of the decade, so the avenues of
attack for those who want use the internet maliciously are much wider and more pervasive.

That said, New Zealand is a relatively safe digital nation. By international standards we
have robust and reliable internet infrastructure and the incidence of cyber-attacks is lower
than in many other nations. While ISPs will always detect and repel the vast majority of at-
tacks, this attack is a useful reminder that good end-user security of devices and connections
is also an important way to combat these attacks.

We constantly remind people to keep their internet device security up to date, conduct
regular scans and regularly update the operating software and firmware on home networks.
And dont click on suspicious links or download files when you are not sure of the contents.
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F.1 The DNS Issue

F.1.1 What happened?

Cyber criminals based overseas appear to have been attacking web addresses in Eastern
Europe, and were bouncing the traffic off Spark customer connections, in what is known as
a distributed denial of service (DDoS) attack.

The DDoS attack was dynamic, predominantly taking the shape of an amplified DNS
attack which means an extremely high number of connection requests in the order of thou-
sands per second - were being sent to a number of overseas web addresses with the intention
of overwhelming and crashing them. Each of these requests, as it passes through our net-
work, queries our DNS server before it passes on so our servers were bearing the full brunt
of the attack.

While the Spark network never crashed, we did experience extremely high traffic loads
hitting our DNS servers which meant many customers had either slow or at times no con-
nectivity (as their requests were timing out).

There were multiple attacks, which were dynamic in nature. They began on Friday night,
subsided, and then began again early Saturday, continuing over the day. By early Sunday
morning traffic levels were back to normal. We saw the nature of the attack evolve over the
period, possibly due to the cyber criminals monitoring our response and modifying their
attack to circumvent our mitigation measures in a classic whack a mole scenario.

F.1.2 How did they get access through the Spark Network?

During the attack, we observed that a small number of customer connections were involved
in generating the vast majority of the traffic. This was consistent with customers having mal-
ware on their devices and the timing coincided with other DNS activity related to malware
in other parts of the world.

However, while we believe malware was as a potential factor, we also identified that
cyber criminals had been accessing vulnerable customer modems on our network. These
modems have been identified as having open DNS resolver functionality, which means they
can be used to carry out internet requests for anyone on the internet. This makes it easier
for cyber criminals to bounce an internet request off them (making it appear that the NZ
modem was making the request, whereas it actually originates from an overseas source).

Most of these modems were not supplied by Spark and tend to be older or lower-end
modems. What remains clear is that good end user security remains an important way to
combat these attacks. With the proliferation of devices in households, that means both the
security within your device and the security of your modem.

F.1.3 What did Spark do?

We disconnected those modems from our network and contacted all the affected customers.
We have also taken steps at a network level to mitigate this modem vulnerability. We also
scanned our entire broadband customer base to identify any other customers who may be
using modems with similar vulnerabilities and contacted those customers to advise them
on what they should do.

With respect to malware we continue to strongly encourage our customers to keep their
internet device security up to date, conduct regular scans and regularly update the operating
software and firmware on their home network. We also continue to advise customers not to
click on suspicious links or download files when they are not sure of the contents.
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We have also taken steps at the network level to make it more difficult for cyber criminals
to exploit the DNS open resolver modem vulnerability and were using the latest technology
to strengthen our network monitoring and management capabilities. For security reasons
we cant detail these steps, however this is an ongoing battle to stay one step ahead of cyber
criminals who are continually using more and more sophisticated tactics.

One of the mitigation options in response to the DDoS attacks involves blocking port
53, which effectively stops one of the means for some customer devices and modems to be
misused. Were aware other ISPs did the same thing to combat this latest development in
cyber-threats. However in certain cases blocking port 53 does have other impacts on con-
nectivity. So since the weekend weve been continuing to make enhancements and changes.

As part of these enhancements, we took some further steps to enable us to better look
under the hood across some parts of the network. While the initial measures taken had
largely mitigated the impact of the attacks, we didnt have total visibility of everything that
was going on, especially in terms of abnormal traffic patterns.

Within the first hour of taking these further steps we saw DNS traffic coming from just
three of our home broadband customers representing 4% of our total DNS traffic for that
period. One connection alone had 1.2 million DNS requests in an hour. As we have port 53
blocked, we believe that this may be due to malware previously installed on these customers
devices. We dont believe this is a new attack, its likely the malware was installed before the
attack.

During the weekend issues that among other things we saw incoming traffic being bounced
off a number of vulnerable customer modems (those with DNS open resolver functionality).
Further insights did not involve any significant level of incoming traffic, which tends to
point to device malware, rather than a specific modem issue. This demonstrates there were
a number of different vectors involved in the weekends DDoS attacks.

This is just one vivid illustration of the potential scale of cyber-threats and the impact
that can be generated from just a very small number of connections. Like all ISPs we see
evidence of literally thousands of attacks every year and the vast majority of these never
impact on the customer experience across our network because of proactive management.

F.1.4 Why only Spark?

We cant say what other networks experienced. However, cyber criminals often look for
clusters of IP addresses to use in any particular DDoS attack. That makes it more likely that
these IP addresses belong to the customers of a single ISP even more likely with a large ISP
like Spark.
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