
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600

Wellington

New Zealand

Tel: +64 4 463 5341

Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Traffic Classification in Enterprise Networks with the Era of IoT

Final Report

Matt Hayes

Supervisor(s): Prof Winston Seah and Dr Bryan Ng

Submitted in partial fulfilment of the requirements for COMP489

Abstract

The emergence of the Internet of Things (IoT) combined with disparate device

count and link capacity variation across the enterprise is driving the need for

improved traffic classification to address enterprise networking issues. Today, a

detailed understanding of network traffic is required to configure traffic

classification for uses such as Quality of Service (QoS) and security; however this

becomes impractical as IoT vastly increases the number of different device types

and flows on the network. A solution is required that allows simple definition of

classification policies with automated configuration deployment, so that

organisations can apply and update traffic classification efficiently and

effectively. This report analyses traffic classification options for enterprise

networks in the era of IoT, proposes an architecture that leverages the capabilities

of Software-Defined Networking (SDN) and presents results from a prototype

implementation.

i

Acknowledgements

Thank you to Professor Seah and Dr Ng for their patient and insightful assistance with this

project. Any mistakes or oversights are mine, not theirs.

This project is dedicated to the memory of my father, Gilbert Hayes (1946-2014). He inspired

me through my childhood with practical applications for mathematics and science, and taught

me to question all assumptions in life. He also bought me a personal computer
1
 in an age

when they were neither cheap nor common, fostering skills that have held me in good stead

throughout my life.

1
 A Spectravideo SV-318, see: http://en.wikipedia.org/wiki/SV-318

ii

iii

Contents

Introduction .. 1

1.1. Context... 1

1.2. Software-Defined Networking .. 3

1.3. Report Structure ... 4

2. Problem Description and Analysis ... 5

2.1. Problem Statement ... 5

2.2. Requirements for Traffic Classification in the Enterprise ... 5

2.3. Categorising Traffic Classification Methods ... 6

2.4. Analysis ... 6

2.5. Possible Solutions .. 7

Payload Inspection ... 7

Statistical Classification ... 7

Multiclassifier ... 8

Role of SDN in Solutions ... 8

2.6. Hypothesis ... 8

2.7. Chapter Summary .. 9

3. Design ... 11

3.1. Architecture ... 11

OpenFlow ... 11

3.2. Introduction to the Prototype System .. 12

3.3. Design Principles ... 13

3.4. Traffic Classification Modules .. 14

Traffic Classification Policy Module ... 14

Static Classification Module .. 14

Identity Classification Module ... 15

Payload Classification Module ... 15

Statistical Classification Module .. 15

3.5. Nmeta Supplementary Features ... 18

Configuration ... 18

Data Management .. 18

REST API ... 19

3.6. Non-Functional Considerations ... 19

iv

Performance Considerations .. 19

Security Considerations .. 19

Scalability Considerations .. 20

3.7. Chapter Summary .. 20

4. Evaluation ... 21

4.1. Evaluation Methods ... 21

4.2. Lab Environments.. 21

Virtual Lab Environment ... 21

Physical Lab Environment ... 23

Bandwidth Congestion ... 24

HTTP Response Time Measurements .. 24

4.3. Test Use Cases ... 24

4.4. Test Use Cases Static-1 and Static-2 ... 26

Goal .. 26

Method ... 26

Desired Outcome(s) .. 27

Configuration ... 27

Results .. 28

Repeatability Test and Results ... 30

Analysis .. 31

Summary of Static Traffic Classification Findings .. 32

4.5. Test Use Cases Identity-1 and Identity-2 .. 32

Goal .. 32

Method ... 33

Desired Outcome(s) .. 33

Configuration ... 33

Results .. 36

Analysis .. 37

Summary of Identity Traffic Classification Findings .. 37

4.6. Test Use Cases Payload-1 and Payload-2.. 37

Goal .. 37

Method ... 37

Desired Outcome(s) .. 38

Configuration ... 38

Results .. 39

Analysis .. 40

v

Summary of Payload Traffic Classification Findings .. 41

4.7. Test Use Cases Statistical-1 and Statistical-2 .. 41

Goal .. 41

Method ... 41

Desired Outcome(s) .. 41

Configuration ... 41

Results .. 42

Analysis .. 43

Summary of Statistical Traffic Classification Findings ... 44

4.8. Evaluation of Hypothesis... 44

4.9. Chapter Summary .. 44

5. Conclusion .. 46

5.1. Other Observations .. 46

Reticulation of the OpenFlow Protocol .. 46

Denial of Service Vulnerabilities ... 46

Non-Functional Requirements ... 46

Appendix A - Test Details .. 51

Installation .. 51

Server (PC1) Configuration ... 51

Client (PC3) Installation and Configuration .. 51

Set up QoS Queues on Switches .. 51

5.2. Running Tests .. 54

Test Use Case Static-1 and Static-2 ... 54

Test Use Cases Identity-1 and Identity-2 ... 54

Test Use Cases Payload-1 and Payload-2 .. 55

Test Use Case Statistical-1 ... 56

Appendix B - WAN3 Build Instructions .. 57

Pre-Requisites ... 57

VM1 – Server / Controller ... 57

Install VirtualBox Additions .. 59

Configure Networking .. 59

Install Ryu .. 59

VM2 – Central Open vSwitch .. 60

Install Open vSwitch: ... 61

Configure Networking .. 61

Configure Open vSwitch .. 62

vi

VM3 - WAN Simulation .. 62

Build Guest ... 62

Configure Networking .. 64

VM4 – Remote Open vSwitch ... 65

VM5 - Client 1 ... 65

VM6 - Client 2 ... 65

Appendix C - Troubleshooting ... 66

Open vSwitch Troubleshooting .. 66

General Switch Commands .. 66

OpenFlow Commands .. 66

Change OpenFlow Version .. 66

Check Queueing ... 67

Pica8 Troubleshooting .. 67

Logs .. 67

Dummynet Troubleshooting .. 67

Appendix D - nmeta Caveats ... 67

Caveats ... 67

Future Enhancements ... 67

vii

Figures

Figure 1 - Network Usage Metadata .. 1
Figure 2 - Monolithic vs Software-Defined Network Paradigms .. 3
Figure 3 - Representative Comparison of Classifier Efficiency and Capability 12
Figure 4 - nmeta logical architecture .. 14
Figure 5 - Observed Packets vs Max Packet Size .. 17

Figure 6 - Last Directional Interpacket Arrival Delta .. 17
Figure 7 - Example Statistical Flow Entry Dictionary (code v6.2) .. 18

Figure 8 - WAN3 Test Environment .. 22
Figure 9 - Physical Lab Environment .. 23
Figure 10 - Queueing Configuration .. 26
Figure 11 - Test Static-1 in Virtual Lab on code rev 5.6 ... 28
Figure 12 - Test Static-1 in Physical Lab on code rev 5.6 ... 29

Figure 13 - Test Static-2 in Virtual Lab on code rev 5.6 ... 29
Figure 14 - Test Static-2 in Physical Lab on code rev 5.6 ... 30
Figure 15 - Test Identity-1 in Virtual Lab on code rev 5.6 .. 36
Figure 16 - Test Identity-2 in Virtual Lab on code rev 5.6 .. 37

Figure 17 - Test Payload-1 in Virtual Lab on code rev 6.5 .. 39
Figure 18 - Test Payload-2 in Virtual Lab on code rev 6.5 .. 40

Figure 19 - Test Statistical-1 in Virtual Lab on code rev 6.2 ... 42

Figure 20 - Test Statistical-2 (control) in Virtual Lab on code rev 6.2 43

viii

1

Chapter 1

Introduction
The emergence of the Internet of Things (IoT) combined with a requirement for Quality of

Service (QoS) in enterprise networks is driving a need for improved traffic classification

techniques [1] [2]. This project investigates potential solutions to the real world problem of

accurate and efficient traffic classification in enterprise networks. It proposes a solution to the

problem and evaluates the functional performance of a prototype system.

 1.1. Context

At its most fundamental, the usage of a data network can be described by two interlinked

classes; firstly what connects to the network, and secondly how these participants

communicate over the network.

In the analogy of a legacy circuit-switched Public Switched Telephone Network (PSTN), the

first class describes the phone lines that connect to the network (i.e. phone number, physical

address, billing name) and the second class the calls made over the network (i.e. calling-party,

called-party, start time, duration).

In a packet-switched data network, this information about data (metadata) is very important

for a number of use cases, including prioritisation and security. Conversation metadata

(information about what communications occur) often has a gap between what the network

knows (i.e. communications between pairs of network addresses) and what type of

conversation actually occurs. The field of traffic classification attempts to fill this gap by

identifying packets (or flows of packets) into types, so that they may be better understood, as

per "Flow Enrichment" in Figure 1:

Figure 1 - Network Usage Metadata

Participants Conversations

User Identity
i.e.bob@example.com

System Identity
i.e. desktop10.example.com

System Features
i.e. SysDescr: Ubuntu precise,

PortDescr: eth1

System Services
i.e. web server

Flow Enrichment
i.e. Application=Intranet,

Security=normal

QoS_treatment=silver

What networks

generally know today

Traffic classification adds extra

context to conversations

Transport Protocols
Protocol, ports

Addressing
i.e.MAC address,

IP address

Connectivity
i.e.Switch Ports,

Wireless

Associations,

VLAN

State
Start time, end time, bytes

transferred

2

Traffic classification is an easily over-looked problem. There is a temptation to move directly

to questions of how to treat the traffic (i.e. what level of service should that type of flow

receive?) without consideration first for how to identify the traffic. An enterprise network (a

private network dedicated to carrying data communications for a single organisation) may

have thousands, if not millions of packets in transit at any given moment, so it is a non-trivial

exercise to identify the type of individual packets.

Traffic classification metadata is an important input into decisions regarding traffic treatment

(i.e. decisions about priority and routing) as well as for other use cases such as security [3],

billing [4] [5] and troubleshooting. A common consumer of traffic classification metadata is

Quality of Service (QoS).

Using the previous PSTN analogy, QoS is required to ensure that calls to emergency services

can proceed even when the network is overloaded with calls (a regulatory requirement). This

is a simple classification task, as it is only necessary to check if the destination number is a

member of the set of emergency services numbers to know if the call is an emergency

services call. Traffic classification in a packet-switched data network is considerably more

complicated, as identifying the type of conversation often requires analysis of more

parameters than just the destination address. For example IP addresses may be assigned

dynamically so are not necessarily a reliable indicator of identity, and popular IANA assigned

TCP port numbers such as 80 and 443 are now used to carry a wide variety of traffic types.

Traffic classification and QoS are often used in enterprise networks to ensure acceptable user

experience of applications, especially time sensitive ones such as voice and video, and critical

line-of-business applications. Failure to implement QoS to protect these applications can

result in poor user experience (examples: unintelligible audio, slow application response etc.)

when the network is congested.

QoS is prevalent in enterprise networks is due to three conditions that are likely to exist:

1. Enterprise networks often have Service Level Agreements (SLA) between the operator of

the network and business unit(s) [6]. This drives the adoption of network QoS as a means

to ensure that Key Performance Indicators (KPI) can be met or exceeded; and

2. Enterprise networks may have a Wide Area Network (WAN) component that has lower

bandwidth and higher latency than Local Area Networks (LAN), giving rise to the

potential for congestion (contention for the use of limited bandwidth) and other

impediments such as transmission and propagation delay. These conditions require

effective QoS to protect service levels for important traffic flows.

3. Enterprise networks are generally under the control of a single entity, simplifying the

deployment and maintenance of QoS, as it is not necessary to obtain the cooperation of

multiple parties as is the case with public networks.

The advent of the Internet of Things (IoT) poses a growing challenge to effective traffic

classification in enterprise networks. IoT is a fundamental change whereby a massive and

diverse range of objects are becoming network addressable. This may be the networking of

3

previously unconnected electronic devices (i.e. security cameras, building management

systems), but is also the embedding of networked computers into previously non-electronic

items (i.e. signage, building structures, clothing). It is estimated that the number of Internet-

connected devices will grow from approximately 2.5 billion in 2010 to between 50 and 100

billion by 2020 [7]. In enterprise networks this manifests itself as:

a. An increase in the total number of IP-connected devices

b. An increase in the number of distinct device types (increasing device heterogeneity)

c. An increase in the volume of concurrent flows on the network

Scalable and accurate traffic classification is already a difficult problem. Roughan et al. say

traffic classification "...is a challenging task, because many enterprise network operators who

are interested in QoS do not know all the applications running on their network..." [8]. With

the advent of IoT, the number of networked applications in an enterprise will likely grow

significantly as new uses are found for the services that they provide.

A solution is required that at least partially automates traffic classification configuration so

that organisations can efficiently and quickly apply and monitor traffic classification at a

policy level, without having to make configurations on a per-flow, per-device or per-port

basis.

 1.2. Software-Defined Networking

Software-Defined Networking (SDN) is a promising new framework for traffic classification.

It separates the forwarding and control functions of networking devices, making it possible to

logically centralise control and apply a programmatic approach to the operation of a network,

as per Figure 2

Figure 2 - Monolithic vs Software-Defined Network Paradigms

Monolithic Network

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Data Plane

Data Plane

Data Plane

Data Plane

Control Plane

Software-Defined Network

API

4

SDN is heralded as bringing innovation to the field of networking which has become subject

to "ossification" [9] due to predominance of vertically integrated monolithic networking

equipment. Monolithic networking cannot on its own deliver a system-wide view of flows,

whereas this is inherent to the SDN architecture. Traffic classification in monolithic

architecture must be run in separate 'islands' without a view of the complete system. This is

both limiting and inefficient. The system-wide visibility of flows and potential for rapid

innovation make SDN an appealing choice as the platform on which to develop improved

traffic classification. For these reasons, this project proposes a solution that leverages the

capabilities of SDN to deliver effective traffic classification for enterprise networks within the

era of IoT.

 1.3. Report Structure

The remainder the report is structured as follows. Chapter 2 describes the problem in more

detail, including analysis of related research. Chapter 3 outlines the design of an SDN-based

traffic classification solution along with a description of the prototype system built for this

project. It concludes by posing a hypothesis to be tested. Chapter 4 outlines the methodology

and results from the evaluation of the prototype system against the hypothesis and chapter 5

presents conclusions. The appendices contain supplemental information.

5

Chapter 2

 2. Problem Description and Analysis

 2.1. Problem Statement

Today, a detailed understanding of enterprise network traffic is required to design and

configure traffic classification; however this becomes impractical as the number of different

device types and hence flows on the network increases

 2.2. Requirements for Traffic Classification in the Enterprise

Enterprise networks are heterogeneous; it is not possible to specify a standard example.

Requirements are thus surmised from common conditions that may exist. Based on the

experiences of the author, having worked in enterprise network design roles for more than 15

years, operators of enterprise networks are likely to have functional traffic classification

requirements as per Table 1:

Requirement Description Rationale

Selective

Determinism

Ability to set

deterministic classifiers

Operators require consistent traffic classification behaviour

for specified traffic types, so that actions (i.e. QoS

treatment) can be performed on matching flows with a high

degree of predictability.

Agility Ability to classify

unexpected traffic

flows

A key tenet of the problem statement is that there are now

too many flow types on the network for the operator to

specify them all. Traffic classification must be able to

intelligently classify unexpected flows.

Application

Awareness

Can classify dynamic

flows based on

knowledge of

application behaviour

Can appropriately classify related flows started from an

initial known protocol. Some applications start extra

dynamic connections (i.e. NFS, SIP starts RTP, etc.).

Identity

Awareness

Support for

classification based on

endpoint identity

When devices were static it was relatively simple to write

classification rules based on IP subnet/supernet as a

surrogate for identity. With the proliferation of portable

devices and wireless connectivity, IP addresses or subnets

are no longer tied to a particular device and thus are not a

good indicator of identity. For these reasons, operators

desire a method to include other elements of identity in

traffic classification rules.

Timeliness Classifications are

made within a short

period of time, ideally

before a large flow has

had time to ramp up.

Timely classification is required for online consumers of

traffic classification data, such as QoS and traffic

engineering. There is no point applying QoS treatment to a

flow if the classification data is not available until after the

flow has finished. Timely classification is known as online

classification [3].

Table 1 - Enterprise Traffic Classification Requirements

A number of non-functional requirements also exist. The system must be efficient so that it

does not place undue load on network equipment or links, and does not materially degrade the

6

performance of the network. The system should make traffic classification results visible so

that operators can check the validity of the results, report on them and use them for

diagnostics. The system should be simple to operate. It should also be secure, scalable and

highly available.

A common challenge identified in traffic classification literature dealing with Internet traces

is the difficulty in establishing a ground truth from which the accuracy of traffic classification

can be assessed during development and testing [8]. This is less of a problem in an enterprise

network as operators are likely to have specific knowledge of their main applications and their

features.

 2.3. Categorising Traffic Classification Methods

Methods for classifying traffic can be broadly distributed into one or more of the following

categories, as listed in Table 2:

Method Description

Static Classification Match any combination of parameters that appear in packet headers

(i.e. link, network or transport layer features). Also referred to as a

port-based approach [3]

Trust Trust the end device to signal the classification of its traffic flows via

some means to the network (i.e. setting DSCP field in IP packets).

This is effectively a special case of static classification.

Identity Identity-Based Classification combines a method of checking device

identity with a traffic classification policy tailored for this identity

[7].

Payload Inspection Payload inspection, also referred to as Deep Packet Inspection (DPI)

[3], involves pattern matching against packet payload (i.e.

application-specific data encapsulated by the transport layer).

Statistical Classification A statistical approach that builds classification signatures based on

observed behaviour of traffic flows. Traffic metrics such as packet

size and session duration are used in combination with statistical

techniques (may include machine learning) to classify flows.

Table 2 - Traffic Classification Methods

Each method has strengths and weaknesses, as discussed in [2].

 2.4. Analysis

Traffic classification is a classical QoS problem. While a broad range of academic papers

cover traffic classification and QoS, there is a paucity of papers addressing the unique

challenges of traffic classification in an enterprise environment, with the notable exception of

[10]. The lack of focus on enterprise networks from the academic community may be due to

the closed nature of networking systems used by many enterprises, and commercial privacy

concerns that prevent researchers from being able to get sharable traces [3]. Additionally, the

mechanics of enterprise networks, where many parallel paths can exist, present challenges to

obtaining representative packet captures, as noted in [11].

7

Enterprise networks are a focus for this project as they a) have a requirement for improved

traffic classification, b) are ripe for disruption due to their closed nature of their existing

networking systems, c) are underrepresented in academic literature and d) are an area that

receives substantial investment, with 7.5 billion US dollars spent worldwide on routers,

switches and wireless LAN infrastructure in Q2 2014 [12].

 2.5. Possible Solutions

Possible solutions proposed for traffic classification in enterprise networks in the era of IoT

include:

Payload Inspection

Various papers propose traffic classification schemes that use payload inspection methods,

including LASER [13] and PortLoad [14].

Payload inspection (also known as Deep Packet Inspection (DPI)) involves pattern matching

against packet payload data. Kim et al. [4] note that there are substantial drawbacks as

payload inspection is "...resource-intensive, expensive, scales poorly to high bandwidths, does

not work on encrypted traffic, and causes tremendous privacy and legal concerns..." [4]. The

last point is generally moot in an enterprise network as employees usually waive their privacy

rights through acceptance of the terms of their employment contract, but the point about

encryption is valid as more applications move to secure connectivity and thus payload that

cannot be inspected [3] [15].

Payload inspection relies on signatures and thus has the standard strengths and weaknesses

associated with this type of approach - a low rate of false positives but a higher rate of false

negatives [13]. With the heterogeneity of IoT devices and their flow types (who would write

signatures?), it is unlikely that payload inspection on its own will provide much benefit for

traffic classification.

Statistical Classification

Statistical classification schemes are popular in academic papers. Examples include [15], [16],

[17] and [18]. Statistical classification [8] builds classification signatures based on observed

behaviour of traffic flows. Traffic metrics (referred to as features) such as packet size and

session duration are used in combination with statistical techniques (including machine

learning) to classify flows. This approach has the advantage that it simplifies configuration for

traffic classification. It may however have limited adaptability to new flow types that it was

not trained for, and removes deterministic control favoured by operators (i.e. fails Selective

Determinism requirement). If fire alarm packets fail to get to their destination, it might be

difficult to argue that the statistical algorithm used was the appropriate method of traffic

classification (or indeed what classification it applied). Meeting the requirement for timeliness

may be a challenge. Some papers attempt to address this through specific hardware, software

and/or protocol updates. Interestingly Sanping Li et al. describe a clever system for

processing statistical classification data at a high rate of throughput, but then specify that

8

"After a flow has timed out (packets matching that flow have stopped arriving at the switch),

those flow features will be encapsulated and sent to the controller" [18]. This does not meet

the requirement for timeliness as the traffic classification determination is not made until after

the flow has completed.

Multiclassifier

Roughan et al. [8] suggest that statistical classification could be augmented by combining

with static classification to address determinism and improve accuracy. This view is echoed

more recently by Dainotti et al. [3], and by Khalife et al. [19] in their 2014 paper on traffic

classification taxonomy.

Role of SDN in Solutions

SDN decouples the control plane and data planes, allowing the control plane to be logical

centralised. The logical centralisation of network control gives rise to innovation

opportunities not afforded by discrete monolithic network architecture. For instance, it

becomes possible to have a system-wide view of the network flow state.

System-wide awareness of flows in monolithic networks requires bespoke solutions and/or

use of identifiers carried within or around packets. Examples of the latter include use of the

differentiated services field in IP packet headers [20]. In SDN architecture, the controller has

a logically centralised view of the flow, removing the requirement to carry such

administrative information in packets. This gives rise to innovation through the ability to

write applications that leverage system-wide flow information.

SDN may also be able to assist with a common traffic classification research problem where

privacy considerations prevent real network traffic from being studied. A possible solution is

to supply the analysis system to organisations (i.e. enterprises) to run themselves, with only

the resulting analytical data shipped back to the researchers [3]. This ensures that the research

workers have no direct access to potentially private network data. SDN, where deployed on

production networks, could allow researchers to construct systems that carry out traffic

analysis without any requirement to install physical hardware. The system can be

implemented as additional software on the SDN controller layer.

 2.6. Hypothesis

This project proposes the following hypothesis:

SDN architecture is a suitable foundation for development of systems that can meet the

functional traffic classification requirements of enterprise network operators.

Specifically, the project will test the following sub-hypothesis:

1. A traffic classification system built on SDN architecture can accurately classify

traffic with static classification method

9

2. A traffic classification system built on SDN architecture can accurately classify

traffic with identity classification method

3. A traffic classification system built on SDN architecture can accurately classify

traffic with payload classification method

4. A traffic classification system built on SDN architecture can accurately classify

traffic with statistical classification method

 2.7. Chapter Summary

In this chapter, the problem of traffic classification in enterprise networks and requirements

has been stated and traffic classification methods defined. Next relevant academic research

has been summarised along with possible solutions. Finally, a hypothesis and sub-hypotheses

have been posed to prove.

In the following chapter a design for a SDN-based traffic classification system is outlined, and

a prototype system that was developed for this project is detailed.

10

11

Chapter 3

 3. Design
This chapter proposes a design for a SDN-based traffic classification system, and introduces

the prototype system that was developed for this project.

 3.1. Architecture

This project leverages SDN architecture by classifying new flows at the SDN controller layer,

thus leveraging the software flexibility and processing power that SDN affords. Once a flow

is classified, fine-grained classifiers are installed to the switch packet forwarding tables for

efficient switching without further recourse to the controller.

Switch matches are fine-grained so that all new flows observed by a switch are sent to the

SDN controller classifiers. This reactive approach facilitates system-wide flow visibility and

application of policy to classifier configuration.

The system is a framework supporting multiple classification methods, and can thus be

described as a multiclassifier (refer previous chapter). Classifiers can be specific (return a

Boolean describing whether or not a match is made) or general (return parameters describing

what they classified). Classifiers can be combined in a logical structure through use of a

policy.

OpenFlow

OpenFlow [21] is a well-known architecture and protocol for establishing and maintaining

control of the data plane. OpenFlow was chosen for the role of SDN protocol in the design

due to its current popularity, large development community and non-proprietary nature. In the

OpenFlow architecture, simple traffic classifiers, called flow entries, are installed onto

switches. A flow entry contains match fields which vary dependant on the OpenFlow version.

Where implemented in hardware, flow entry classifiers have the advantage of being relatively

fast, but may have capacity and capability constraints [9]. As they occur within the data plane,

their capabilities are dependent on the particular switch implementation, and they cannot

directly leverage network knowledge outside of the switch view. The trade-off between

latency and capability between hardware switch, software switch and SDN controller based

classifiers is shown in Figure 3:

12

Figure 3 - Representative Comparison of Classifier Efficiency and Capability

Hardware switch classifiers are relatively fast, but their capability is often limited due to

constraints of the ASICs on which they are built. Software switch classifiers may be slower

than their hardware equivalents, but are likely to have better feature support as their

development is not dependant on support in silicon. SDN classifiers are slower again due to

the time taken to send packet(s) to the controller; however the benefits of software-

development freedom, along with a system-wide view of flows, are judged to out-weigh the

performance downsides in the architecture used by this project. All flows are classified

initially by SDN controller classifiers and fine-grained classifiers are installed to switches

once classification determinations are made.

 3.2. Introduction to the Prototype System

A prototype SDN multiclassifier framework was developed for this project. It has policy-

based classifier controls and produces enriched metadata output. The prototype system is

called nmeta, short for network metadata. It runs on top of the Ryu [22] SDN controller. Ryu

was chosen due to use and familiarity within the Victoria University ECS faculty. Ryu is

written in the Python [23] programming language and nmeta is also written in Python to take

advantage of existing code development on Ryu.

The nmeta framework is novel in that it is the first solution (that the author is aware of) to

employ a policy-based multiclassifier system on top of SDN architecture to provide extensible

output in the form of enriched flow metadata.

The nmeta framework is a good solution to the functional requirements as:

 The capability to set policy statements specifying traffic feature match parameters and

actions meets the selective determinism requirement

 The requirement for agility can be met by sending unmatched traffic to a statistical

classifier

 Application awareness can come from policy that directs payload inspection on

specific flow types (with knowledge of the protocol). Protocols that establish dynamic

flows can be matched through payload inspection of the control packets.

Low Latency

High Latency

Low Capability High Capability

OpenFlow

Hardware Switch

Flow Table Entry

OpenFlow

Software Switch

Flow Table Entry

SDN Controller

Software-based

Classifier

13

 Identity Awareness comes from policy statements that reference identity metadata

 3.3. Design Principles

Nmeta employs a modular design that decomposes major tasks into separate modules with

public interfaces and hidden implementation (note that Python has limitations in this area

[24]). This standard software design principle improves maintainability of code, since changes

within a module are less likely to have unforeseen consequences outside the module.

The nmeta code has been written in partial compliance to the Python PEP-8 [25] coding

conventions. Time limitations have prevented full compliance from being achieved.

Components of nmeta are grouped into regions that share a common purpose.

The nmeta Core region (refer orange shaded area in Figure 4) manages communications with

switches (i.e. processing of packet-in and switch messages, adding flows etc) via Ryu and

handles incoming REST API calls via the Ryu Python Web Server Gateway Interface (WSGI)

libraries. It also reads in the main configuration file on initialisation. There is only one module

in this region, nmeta.py. Packet-in messages are processed sequentially through the

_packet_in_handler function.

The Traffic Classification region (refer blue shaded area in Figure 4) classifies packets against

a traffic classification policy and returns results to nmeta Core. The tc_policy.py module

reads in a traffic classification policy on initialisation, evaluates incoming packets against the

policy and sends them to the appropriate classifier module (if required). The four classifier

modules tc_static.py, tc_identity.py, tc_payload.py and tc_statistical.py are discussed in a

following section.

The Flow Metadata region (refer purple shaded area in Figure 4) is called after forwarding

decisions are made so that they can be incorporated in the resulting metadata. It stores the

enriched metadata in a Python data structure called a dictionary [26], and controls the

installation of flow match entries to switches.

The Metadata Consumer - QoS region (refer the red shaded area in Figure 4) is a simple stub

that provides a QoS treatment (queue assignment) based on matching a QoS flow metadata

tag against a simple QoS policy. Note that QoS treatment is not in scope for this project so

this region has been implemented as just the bare minimum required to run the test use cases.

All communication from the traffic classification region to the flow metadata region is via the

nmeta core region. This rule is to ensure that a future forwarding module has visibility of

traffic classification status messages.

14

Figure 4 - nmeta logical architecture

 3.4. Traffic Classification Modules

This section describes the modules with the traffic classification region.

Traffic Classification Policy Module

The traffic classification policy module reads in a policy configuration file called

tc_policy.yaml from the config subdirectory on initialisation. This file is in YAML format and

describes the policy controlling the use of classifiers. The file is validated to ensure it contains

only supported values. The public function check_policy is called on every packet-in event so

is written with efficiency in mind. It validates the incoming packet against the policy and

decides what, if any, classifiers should be invoked. It also checks if packets need to be seen by

the identity module and if so calls the appropriate identity function. Match results, and any

other metadata, are returned to the nmeta core region.

Static Classification Module

Static classification is implemented as a simple if/elif/else Python block matching policy

attributes, and checking their validity against the supplied packet. A Boolean is returned

indicating the result of the match.

module: nmeta.py

class: NMeta

module: tc_policy.py

class: TrafficClassificationPolicy

call tc_policy.check_policy

function: check_policy

loop through policy rules:

if (_check_match) then return actions

function: _check_match

Check passed policy rule conditions against

packet and return boolean for match

return any actions

module: flow.py

class: FlowMetadata

Make forwarding decision call flow.metadata

module: tc_payload.py

class: PayloadInspect

Packet-In Send-Packet
Modify Flow

Entry

module: tc_statistical.py

class: StatisticalInspect

module: tc_identity.py

class: IdentityInspect

module: qos.py

class: qos

pass packet,

forwarding, actionspass packet

return any modify

flow entry

Packet sent to switch Packet sent by switch

Ryu SDN Controller

function: update_flowmetadata

OpenFlow

function: lldp_in

_sys_identity_table

function: check_identity

_tc_policy

function: check_policy

_qos_policy

Passed a set of Flow Actions. Check if

against QoS policy rules return any

treatment action

flow table

LLDP packet

function: _check_policy_rule

Passed a set of Flow Actions and a QoS

policy rule. Check if against QoS policy rules

return any treatment action

_fm_table

Do send packet

and modify flow

entry

function: check_statistical function: check_payload

Metadata Consumer - QoS

1) Check QoS to see if special queueing should be applied

2) Update Flow Metadata Table

3) Return a Flow Match (if required) and Actions to install to switch

_nic_identity_table

Traffic Classification

Flow Metadata

module: tc_static.py

class: StaticInspect

function: check_static

function: ip4_in

IPv4 packet

_fcip_table

function: <specific classifier>

_fcip_table

function: <specific classifier>

table

maintenance

class: RESTAPIController function: list_flow_table

function: get_fm_table

function: _packet_in_handler

REST API Calls:
nmeta/flowtable/

nmeta/identity/nictable/

nmeta/identity/systemtable/

function: maintain_fm_table

nmeta

Core
function: list_identity_nic_table

function: list_identity_system_table
function: wsgi

function: get_identity_nic_table

function: get_identity_system_table

function: maintain_identity_tables

15

Identity Classification Module

The identity classification module records the identity of endpoints that broadcast Link Layer

Discovery Protocol (LLDP) messages. LLDP is widely supported, but not secure.

Identity classification can be set to match against values chassisid or systemname LLDP

attributes. The match can be a partial match defined as a regular expression for systemname.

Identity information is stored in two dictionaries, one for Network Interface Controller (NIC)

identities and the other for system identities. The system dictionary references entries in the

NIC dictionary and vice versa. Two dictionaries are required since an endpoint may have

multiple NICs. LLDP Packet-in events are used by the identity module to accumulate system

information and likewise, IPv4 Packet-in events are used to accumulate MAC address to IPv4

address linkages in the NIC dictionary.

Matching against a chassisid or systemname value requires first checking if the value is

present in the system dictionary. If present, the referenced NIC dictionary entry (caveat: code

needs updating to deal with multiple NICs) is retrieved and the packet is compared to see if it

matches against the MAC or IPv4 values. If it does, a True value is returned otherwise False.

Payload Classification Module

It is often necessary to observe multiple packets in a flow before payload is present, and hence

the payload classification module must understand flows [3]. Nmeta defines a bi-directional

TCP flow as a 4-tuple of ip_a, ip_b, tcp_port_a, tcp_port_b. Packets can be matched as a flow

in either direction as long as the TCP port numbers pair correctly with the IP addresses. A

data structure called the Flow Classification In Progress (FCIP) table (a Python dictionary) is

used to store flow classification state. A continue_to_inspect flag is used to indicate to the

flow module that it should not install a flow to the switch as more packets need to be

observed.

A single specific payload classifier is implemented in nmeta for matching FTP control and

data traffic. This FTP payload classifier does an initial static match on packets with source or

destination TCP port 21 to filter out FTP control traffic with minimal overhead. Matching

packets are checked to see if they have a TCP payload and if they do this is checked for a

match on the last 8 hex characters against pattern '504f5254'. Payload that matches this is

dissected to obtain the FTP dynamic port number. If a dynamic port number is obtained this is

added to the FCIP table so that packets in the dynamic port flow will be classified as FTP.

Statistical Classification Module

Statistical classification also requires an understanding of flows. The statistical classification

module has the same concept of flows, FCIP data structure, and ability to signal whether or

not to install a flow as the payload classification module. Where it differs, is in the ability to

return actions, rather than just a Boolean for a match. The ability to return actions is required

to be able to indicate between multiple possible results, such as classifying a flow to one of n

16

traffic types. Arguably, payload inspection would require this same capability if a general

purpose payload classifier was developed, and it would be simple to retrofit.

The following parameters of a bi-directional TCP flow are recorded by the module:

 Packet arrival times

 Packet sizes

 Packet directionality

 TCP flags

 TCP window size

 TCP acknowledgement numbers

Packet arrival times record when a packet arrives at the classifier module. Ideally, to remove

variability due to backhaul transmission and controller processing, the value would instead be

the arrival time of the packets at the switch. The accuracy of module arrival time was found to

be sufficient for this project, but it is worth noting that OpenFlow Feature eXtraction (OFX),

as proposed by Sanping Li et al. [18], could provide access to more accurate data in future if

implemented by switch manufacturers.

TCP window size presented a challenge, since the SYN and SYN+ACK packets carry a

directional Window Scale option in the TCP header [27]. Knowledge of this value, per

direction, is required to be able to compute the actual TCP window size on subsequent

packets from their indicated value. Packets with the TCP.SYN flag set are parsed for Window

Scale option, and if present it is recorded in the FCIP flow record, noting the direction. These

values are then used on subsequent packets to calculate the true window size.

A single demonstration statistical classifier, referred to as statistical_qos_bandwidth_1, was

developed for this project to demonstrate a basic statistical classification capability. It marks

aggressive flows so that QoS can treat them as less than best effort class, thus protecting

traffic in the default class.

The statistical_qos_bandwidth_1 classifier was limited to only analysing TCP traffic for

reasons of simplicity. To develop the classifier, traffic flows of the following protocols were

analysed:

 SSH (Interactive)

 SSH (SCP)

 Iperf (TCP)

 HTTP

The results showed that Iperf had a specific traffic profile characterised by a rapid increase in

packet size at packet 5 and consistently low interpacket arrival time deltas from packet 4

onwards as showing in Figure 5 and Figure 6.

17

Figure 5 - Observed Packets vs Max Packet Size

Figure 6 - Last Directional Interpacket Arrival Delta

Based on the above results, and drawing inspiration from papers such as [15], the

statistical_qos_bandwidth_1 classifier was configured as follows:

 Only match TCP flows (for simplicity)

 Carry out analysis of the flow after 5 packets observed:

o Retrieve the maximum packet size value (P)

o Calculate the minimum directional interpacket arrival time delta (Dmin)

o Calculate the maximum directional interpacket arrival time delta (Dmax)

 Interpacket ratio (I) calculated from Dmin / Dmax. Note the use of a ratio to reduce the

influence of a base latency on the result.

 Threshold for maximum packet size (TPmax) set to 1200 (bytes)

 Threshold for minimum interpacket ratio (TImin) set to 0.25

0

200

400

600

800

1000

1200

1400

1600

4 5 6 7 8 9

M
ax

im
u

m
 O

b
se

rv
ed

 P
ac

ke
t

Si
ze

 (B
yt

es
)

Observed Packets in Bi-directional Flow

Observed Flow Packets vs Max Packet Size

SSH (Interactive)

SCP

HTTP

Iperf TCP

Iperf has
consistently large
packets from packet
5 onwards

0

0.05

0.1

0.15

0.2

0.25

0.3

3 4 5 6 7 8 9

Ti
m

e
 (

Se
co

n
d

s)
 S

in
ce

 L
as

t
Sa

m
e

 D
ir

ec
ti

on
 F

lo
w

 P
ac

ke
t

Observed Packets in Bi-directional Flow

Last Directional Interpacket Arrival Interval

SSH (Interactive)

SCP

HTTP

Iperf TCP

Iperf has
consistently low
interpacket arrival
times from packet
4 onwards

18

 If (P > TPmax) and (I < TImin) then return action specifying flow treatment as

low_priority otherwise default_priority

The thresholds are set to match Iperf traffic with its very aggressive profile, but not to match

other flows types.

Figure 7 shows an example statistical dictionary record for an Iperf flow:

Figure 7 - Example Statistical Flow Entry Dictionary (code v6.2)

 3.5. Nmeta Supplementary Features

Configuration

Nmeta configuration is separated from code where practical to reduce need to modify code

and allow customisation that is persistent through software upgrades. Configuration is stored

in text files in the config subdirectory. Configuration files are written in YAML [28] format.

YAML was chosen as a format due to its concise nature, human readability and capability to

represent arbitrary data structures. Nmeta leverages a Python YAML module to read in

configuration files, ensuring their compliance to YAML standards, translating them into

Python dictionaries.

Nmeta carries out additional checks to ensure that dictionaries representing configuration files

contain only expected attributes and values. Where exceptions are found, they are logged with

a clear explanation, and where necessary the program is halted at this point to prevent

undesirable behaviour.

Data Management

Various dynamic data structures exist within nmeta requiring maintenance to prevent

unchecked growth that compromises system performance and/or availability. Nmeta runs

19

table maintenance at the end of the packet in handler to minimise delays to packet out and

flow install events. Timers are consulted, and if the delta from the previous maintenance is

greater than the configured threshold then maintenance functions in modules are called to

prune entries that are older than define maximum ages.

Time constraints prevented a more thorough data management regime from being

implemented. Ideally, there should also be configurable maximum table size limits to prevent

resource exhaustion, and also management of flow table sizes on switches.

REST API

A REST API provides read-only access to flow and identity metadata.

 3.6. Non-Functional Considerations

The author chooses to out-of-scope all non-functional requirements, as project time

constraints and restrictions on maximum report size prevent this sizeable area from being

addressed properly. A few noteworthy considerations are listed in this section.

Performance Considerations

Nmeta is a single threaded Ryu application so is susceptible to blocking [29]. The REST API

shares the same thread, so could cause performance degradation if called on a large dictionary

while the system is under load.

There is an opportunity to improve performance for situations where classifiers are used that

need to see more than the first packets in a flow (i.e. payload and statistical) on flows that

cross multiple switches. The current nmeta behaviour is to require a packet-in from each

switch in each direction until the classification has been made. Multiple switches result in

duplicate packet-in events being sent to the controller that add no value. Nmeta is configured

to ignore these duplicate packet-in events; however it is worth noting that they impact

performance as they add load to the backhaul and controller. They also delay the forwarding

of the packet until the controller has sent a packet-out message. If there are n switches and x

packets must be observed then there will be x(n-1) duplicate packet-in events. To improve this

situation, the controller could install flow table entries to all but one of the in-path switches,

and update these entries if required based on the traffic classification determination.

Security Considerations

Enterprises take security very seriously. It is unlikely that SDN will take hold in enterprises

until it can be shown to be as secure as monolithic networking. As detailed later in this

document, it appears that SDN is lacking maturity in the area of security.

Note that OpenFlow traffic should be protected to ensure confidentiality and integrity. In

nmeta OpenFlow traffic is passed in plain text, which is great for troubleshooting, but not for

security.

20

Scalability Considerations

It should be possible to scale controllers horizontally using some means to maintain loose

consistency of data; however this has not been investigated by this project.

 3.7. Chapter Summary

In this chapter, a design for a SDN-based traffic classification system has been outlined, and a

prototype system developed for this project has been presented in detail. The following

chapter details the methodology and results of the evaluation of the prototype system and

concludes by using the results to prove the hypothesis.

21

Chapter 4

 4. Evaluation
This chapter evaluates the functional performance of the nmeta prototype system in various

traffic classification scenarios.

 4.1. Evaluation Methods

Formal methods exist for evaluating the performance of traffic classification, such as overall

accuracy, precision, recall and F-Measure [3] [4], however these are too rigorous for the

requirements of a COMP489 project. Instead, evaluation will focus on the QoS use case as it

can show clear and tangible benefits.

The prototype nmeta framework has been written for this project to test the validity of the

hypothesis. It is used in all the evaluation tests as the traffic classifier framework.

 4.2. Lab Environments

Lab environments are required to partially simulate an enterprise network with a WAN

component, so that suitability and performance of the proposed solution can be tested and

analysed.

Inclusion of a simulated WAN is important to demonstrating the feasibility of the solution as

many enterprise networks connect geographically dispersed sites. WAN latency and

bandwidth constraints pose design challenges that should be considered when evaluating

solutions for enterprises.

The lab environments include one additional challenge - reticulation of the control traffic via

the data plane. When an SDN deployment is limited to a single site, i.e. a data centre, it is

feasible to use a separate network for the backhaul of traffic between the switches and SDN

controller(s). In an enterprise with physically distributed sites, it is not likely to be practical or

cost effective to run a separate out of band control network. For this reason the lab

environments use the same data plane for standard network traffic to transport the control

traffic to the SDN controller.

Virtual Lab Environment

A virtualised lab environment (referred to as WAN3) has been built within an Oracle

VirtualBox hypervisor on top of a Microsoft Windows 7 PC as per Figure 8. Instructions for

building the WAN3 environment are included in Appendix A.

A virtualised environment has the advantage of being quick to configure and easy to make

changes to. Downsides are that performance results may not be accurate due to variability in

the virtualisation hypervisor and underlying host machine, and that virtualised switches may

not accurately emulate the behaviour of hardware switches.

22

A central enterprise site is simulated by two Ubuntu guests. One guest provides a switching

function and the other acts as a server for SDN control and testing functions. A WAN link is

emulated by Dummynet [30] on a FreeBSD guest running as a router. It allows the setting of

bandwidth, delay and packet loss values.

A remote WAN site is simulated by three Ubuntu guests. One guest provides a switching

function and the other two are clients to support test functions.

Both switches run Open vSwitch software and are controlled via OpenFlow from the central

SDN controller.

Figure 8 - WAN3 Test Environment

Five virtual networks are defined within Oracle VirtualBox for connectivity between guests.

Note that while there are five virtual network connections, there are only two IP subnets

present as the switches connect multiple segments into single subnets.

Important lessons were learned while building the environment:

 Guest network interfaces on the switches need to be set as promiscuous within Oracle

VirtualBox. Without this being set, the guest interfaces will only receive packets

destined for their MAC address or to the broadcast MAC address as the VirtualBox

hypervisor runs internal networks as switches. In order for the guest to operate as a

B
ri

d
g

e
d

 S
u

b
n

e
t

N
e

tw
o

rk
 1

9
2

.1
6

8
.5

6
.0

/2
4

B
ri

d
g

e
d

 S
u

b
n

e
t

N
e

tw
o

rk
 1

9
2

.1
6

8
.5

7
.0

/2
4

VM3 - WAN Simulation

FreeBSD 10.0

VM4 – Remote Open vSwitch

VM: COMP489-WAN3-Switch-OpenvSwitch-Remote

Ubuntu 14.04

Open vSwitch version 2.0.1

ipfw (Dummynet)

VM: COMP489-WAN3-RoutedWAN-Dummynet

WAN Simulation

EM1 192.168.56.1

192.168.57.40

EM2 192.168.57.1

eth1

eth3

bridge br0

 192.168.56.3/24

OpenFlow

net name WAN3-5

VM2 – Central Open vSwitch

VM: COMP489-WAN3-Switch-OpenvSwitch-Central

Ubuntu 14.04

Open vSwitch version 2.0.1 eth1

eth2

bridge br0

 192.168.57.3/24 OpenFlow

VM1 – Server / Controller

VM: COMP489-WAN3-Controller-Ryu

Ubuntu 13.10

SDN Controller (Ryu)

VM6 – Client 2

name: pc2.audit.example.com

VM: COMP489-WAN3-Host-3

Ubuntu 14.04

net name WAN3-3

net name WAN3-2

net name WAN3-1

Iperf

Iperf

eth1 MAC 00:00:00:00:00:02

Web

server

192.168.56.12

Hypervisor - Oracle VirtualBox

Host – Microsoft Windows 7 PC

VM5 – Client 1

name: pc1.dev.example.com

VM: COMP489-WAN3-Host-2

Ubuntu 14.04

Iperf

eth1 MAC 00:00:00:00:00:01

192.168.56.11

net name WAN3-4

eth2

nmeta

htesthtest

Ryu

23

switch (aka multi-port bridge) it must receive all packets on the network segment

excluding those that it has sent.

 Open vSwitch is a lot easier to install on Ubuntu 14.04 than older versions due to in-

tree kernel support

 FreeBSD is a good platform for Dummynet as it has built-in support for it.

Physical Lab Environment

A physical lab environment was built utilising hardware SDN switches as per Figure 9:

Figure 9 - Physical Lab Environment

Components:

 PC1 connects to the Internet, allowing remote access to the environment. It has been

secured with Linux kernel firewall via iptables. Additionally, the SSH daemon has

B
ri

d
g

e
d

 S
u

b
n

e
t

N
e

tw
o

rk
 1

0
.2

5
5
.2

5
5

.0
/2

4

B
ri

d
g

e
d

 S
u

b
n

e
t

N
e

tw
o

rk
 1

0
.2

5
5

.2
5

4
.0

/2
4

PC3 – Client 1

PC2 - WAN Simulation

PC1 - Data Centre Simulation and

Gateway to Phy Lab

Ubuntu Linux

103.10.233.108

eth0

eth1

Internet

GW 103.10.233.97

Net 103.10.233.96/27

10.255.255.30

Switch 2

Pronto 3290

Mgmt 10.255.255.32

Switch 1

Pronto 3290

Mgmt 10.255.254.31

S/N QTFCA62370176

10.255.255.1

s0

con0 ge-1/1/1

con0

ipfw (Dummynet) - routing

Built on FreeBSD

s0

ge-1/1/2

eth0

em1

em0

ge-1/1/3

eth0

ge-1/1/2

eth0

10.255.254.100

c
ro

s
s
o

v
e

r
c
a

b
le

 f
o

r
c
o

n
tr

o
l
to

d
a

ta
 p

la
n

e
 c

o
n

n
e

c
ti
v
it
y

ge-1/1/1

ge-1/1/3

OpenFlow

c
ro

s
s
o

v
e

r
c
a

b
le

 f
o

r
c
o

n
tr

o
l
to

d
a

ta
 p

la
n

e
 c

o
n

n
e

c
ti
v
it
y

OpenFlow

10.255.254.1

nmeta Web

server

Iperf htest

Iperf
Ryu

24

been configured not to accept password connections, only specific SSH keys. PC1

simulates a central enterprise site and has applications running SDN control and server

functions.

 A Pica8 Pronto P-3290 switch provides SDN hardware switch functionality

connecting PC1 and PC2

 PC2 emulates a WAN link with Dummynet [3] on a FreeBSD guest running as a

bridge, allowing the setting of bandwidth, delay and packet loss values.

 A Pica8 Pronto P-3290 switch provides SDN hardware switch functionality

connecting PC2 and PC3

 PC3 is a client to support test functions

Asynchronous serial console cables are run from Linux PCs to Pica8 switches for out-of-band

management connectivity for major reconfigurations.

Ethernet cross-over cables connect the management ports on the Pica8 switches to data plane

ports. This inelegant workaround allows control plane traffic to traverse the data plane.

Bandwidth Congestion

Iperf [31] is used to create network congestion on the WAN link, except for tests Payload-1

and Payload-2 where FTP is used.

HTTP Response Time Measurements

The measurement of HTTP response times needs to be contained within a TCP session to

avoid traffic classification overhead on subsequent GET requests. To achieve this result, the

Keep-Alive header of HTTP/1.1 [32] was used. Additionally, HTTP content must not be

cached as this would invalidate the results.

A simple python program was written for this project to automate HTTP load time testing,

leveraging the Python Requests library [33] for HTTP/1.1 functionality. The program is called

htest.py and it is passed a test URL (can include a port number) on the command line. It loops

indefinitely with a one second sleep between tests. Results for Requests elapsed.total_seconds

and total elapsed test time and a time stamp are written to standard output and also to a text

file in CSV format. Care was taken to ensure that the underlying HTTP adapter would retry

multiple times to simulate a real browser connection and 'Connection': 'keep-alive' was

specifically set in the HTTP header. The output to CSV file made it easy to import data into a

spreadsheet for analysis.

Full details of evaluation methodology are detailed in Appendix A - Test Details.

 4.3. Test Use Cases

Four sets of test use cases were developed for this project to evaluate the functional

capabilities of the prototype system. Test use cases start off simple and increase in

complexity, with traffic classification methods added in order of difficulty to allow for

progressive and incremental code development.

25

The WAN link is set to a bandwidth of 2Mbps with a round-trip time of 40mS. These values

are fairly arbitrary - they represent a rough mid-point between low bandwidth and high

bandwidth WAN scenarios.

Clients are located at the remote site and servers at the central site. OpenFlow Protocol traffic

between the remote site switch and the SDN controller traverses the WAN link.

The following QoS queueing policy is common across all use cases:

'PolicyRule 0':

 comment: OpenFlow traffic

 QoS_treatment: system_priority

 output_queue: 0

'PolicyRule 1':

 comment: Default priority traffic

 QoS_treatment: default_priority

 output_queue: 1

'PolicyRule 2':

 comment: High priority traffic

 QoS_treatment: high_priority

 output_queue: 2

'PolicyRule 3':

 comment: Low priority bandwidth hungry traffic

 QoS_treatment: low_priority

 output_queue: 3

The policy defines queues into which traffic can be differentially assigned based on the value

of the attribute 'QoS_treatment'. The rules work as follows:

 Flows tagged with 'system_priority' will be queued in queue 0. This queue is for

OpenFlow Protocol traffic to/from the SDN controller, as it is the default queue used

by switches before controller connectivity is established. Use of this queue for

OpenFlow traffic prevents a bootstrap problem, as the initial OpenFlow Protocol

traffic cannot be assigned to a queue as connectivity to the controller hasn't been

established yet.

 Flows tagged with 'default_priority', and flows with no attribute 'QoS_treatment' tag

with recognised value, will be queued in queue 1.

 Flows tagged with 'high_priority' will be queued in queue 2. This is intended for time-

sensitive business-critical traffic.

 Flows tagged with 'low_priority' will be queued in queue 3. This queue is intended for

bandwidth-hungry but non-time sensitive flows.

Lab switches were configured with four egress queues on ports that face the WAN simulator:

q0 = used for OpenFlow traffic, max rate 300Kbps

q1 = default, max rate 500Kbps

q2 = high priority, max rate 1Mbps

26

q3 = low_priority, max rate 100Kbps

The queueing configuration is depicted in Figure 10:

Figure 10 - Queueing Configuration

All queues are configured with a bandwidth ceiling of 1.8Mbps, which should allow bursting

over the queue reserved bandwidth when other bandwidth is available, although this did not

work in practice on either switch type.

 4.4. Test Use Cases Static-1 and Static-2

Goal

Demonstrate that basic static classification can classify and treat connectivity to a server on a

specific port differently to other traffic.

Method

Client1 makes regular HTTP/1.1 connections to Server1 on tcp-1234 and tcp-80. Both

connections are used to retrieve the same HTML object and are contained within persistent

TCP sessions. Timing results are recorded.

After establishing a baseline, Iperf is used to congest the link in the default class in the server

to client direction for a sustained period. This direction was chosen as it is the direction in

which the majority of test traffic flows. Iperf is then terminated and the test runs for a further

period to recheck baseline.

In test Static-1, the network is configured to classify and treat tcp-1234 and tcp-22 (SSH)

connections as high priority, tcp-6633 (OpenFlow Protocol) as system priority and all other

traffic as default.

Test Static-2 is a repeat of Static-1, with the only difference being an update of the traffic

classification policy to treat tcp-80 as high priority instead of tcp-1234. This second test is

used demonstrate that there were no other factors at play relating to the chosen TCP port

numbers, other than the traffic classification and QoS treatment.

q0: system_priority

q1: default_priority

q2: high_priority

q3: low_priority

300Kbps

500Kbps

1Mbps

100Kbps

OpenFlow nmeta
Ryu2Mbps WAN

EndpointsEndpoints

27

Desired Outcome(s)

1) Load times for HTTP objects over tcp-1234 in test Static-1 are not materially affected by

the link congestion (target less than 10% increase in response times)

2) Load times for HTTP objects over tcp-80 in test Static-1 are noticeably affected by the

congestion (expect >100% increase in response times)

3) Load times for HTTP objects over tcp-80 in test Static-2 are not materially affected by the

link congestion (target less than 10% increase in response times)

4) Load times for HTTP objects over tcp-1234 in test Static-2 are noticeably affected by the

congestion (expect >100% increase in response times)

Configuration

The following configuration was applied in the nmeta environment for test Static-1:

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: Use Case Static-1 - High Priority Business Traffic

 match_type: any

 policy_conditions:

 tcp_src: 1234

 tcp_dst: 1234

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority Business Traffic"

'PolicyRule 2':

 comment: SSH traffic

 match_type: any

 policy_conditions:

 tcp_src: 22

 tcp_dst: 22

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

The following configuration was applied in the nmeta environment for test Static-2 (note the

change to TCP ports in PolicyRule 1):

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: Use Case Static-1 - High Priority Business Traffic

28

 match_type: any

 policy_conditions:

 tcp_src: 80

 tcp_dst: 80

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority Business Traffic"

'PolicyRule 2':

 comment: SSH traffic

 match_type: any

 policy_conditions:

 tcp_src: 22

 tcp_dst: 22

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

Results

Figure 11 - Test Static-1 in Virtual Lab on code rev 5.6

0.1

1

10

100

12:31:24 12:31:41 12:31:58 12:32:15 12:32:33 12:32:50 12:33:07

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Static-1 in Virtual Lab

tcp-80 (default)

tcp-1234 (high_priority)

10 per. Mov. Avg. (tcp-80 (default))

10 per. Mov. Avg. (tcp-1234 (high_priority))

Period of Iperf congestion in default queue

Iperf congestion
causes increase in
tcp-80 page load
times

Extra delays on
first page load
due to TCP
setup and static
classification
overhead (circa
extra 0.25
seconds)

Maximum page load
time is 14.45 seconds

Base page load time
circa 0.15-0.22
seconds

Iperf congestion has no
impact on tcp-1234
page load times

29

Figure 12 - Test Static-1 in Physical Lab on code rev 5.6

Figure 13 - Test Static-2 in Virtual Lab on code rev 5.6

0.01

0.1

1

10

9:30:49 9:31:06 9:31:24 9:31:41 9:31:58 9:32:15 9:32:33 9:32:50 9:33:07

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Static-1 in Physical Lab

tcp-80 (default)

tcp-1234 (high_priority)

10 per. Mov. Avg. (tcp-80 (default))

10 per. Mov. Avg. (tcp-1234 (high_priority))

Period of Iperf congestion in default queue

Extra delays
on first page
load due to
TCP setup
and static
classification
overhead
(circa extra
0.16 seconds)

Maximum page load
time is 2.76 seconds

Maximum page load
time for tcp-1234 is
1.89 seconds

Iperf congestion
causes increase in
tcp-80 and tcp-
1234 page load
times

Random increases in page load times for tcp-80
and tcp-1234 outside of Iperf congestion period

Base page load time
circa 0.047 seconds

0.1

1

10

100

12:35:43 12:36:00 12:36:17 12:36:35 12:36:52 12:37:09 12:37:26 12:37:44

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Static-2 in Virtual Lab

tcp-80 (high_priority)

tcp-1234 (default)

10 per. Mov. Avg. (tcp-80 (high_priority))

10 per. Mov. Avg. (tcp-1234 (default))

Period of Iperf congestion in default queue

Extra delays on
first page load
due to TCP
setup and static
classification
overhead (circa
extra 0.25
seconds)

Maximum page load
time is 12.08 seconds

Iperf congestion
causes increase in
tcp-1234 page load
times

Iperf congestion has no
impact on tcp-80 page
load times Base page load time

circa 0.15-0.22
seconds

30

Figure 14 - Test Static-2 in Physical Lab on code rev 5.6

Repeatability Test and Results

Additional iterations of test Static-1 with higher numbers of concurrent Iperf TCP streams

were run to evaluate statistical significance of the results in the virtual lab. Ten tests were run

with Iperf, starting with a set of ten concurrent sessions. Twenty samples of load time

measured in seconds were recorded, then a further 10 tests with 50 concurrent sessions were

run and the results are tabulated in Table 3:

0.01

0.1

1

10

9:34:51 9:35:08 9:35:25 9:35:43 9:36:00 9:36:17 9:36:35

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Static-2 in Physical Lab

tcp-80 (high_priority)

tcp-1234 (default)

10 per. Mov. Avg. (tcp-80 (high_priority))

10 per. Mov. Avg. (tcp-1234 (default))

Period of Iperf congestion in default queue
Extra delays on
first page load
due to TCP setup
and static
classification
overhead (circa
extra 0.16 - 0.29
seconds)

Iperf congestion causes
increase in tcp-80 and
tcp-1234 page load
times

Maximum page load
time is 2.76 seconds

Maximum page load
time for tcp-80 is
1.89 seconds

Random increase in page load times for tcp-80 and
tcp-1234 outside of Iperf congestion period

Base page load time
circa 0.047 seconds

31

Table 3 - Statistical Analysis for Test Static-1 in Virtual Lab

The statistical analysis in Table 3 shows that the classification results are consistent and

reproducible. The average load time across all twenty runs for tcp-1234 is around 0.34s while

it takes 5.9s for tcp-80. Moreover, the range (Max-Min) for tcp-80 connections is two orders

of magnitude higher than those in tcp-1234. Finally, the variance for tcp-1234 is small and

consistent across the first ten runs, and only slightly higher in the next 10 runs. All these three

statistical measures strongly suggest that the classifier is performing correctly and consistently

and further support the significance of the results obtained through the methods used.

Analysis

 Response times for first tests in each series were higher due to overhead of TCP

session establishment and flow classification via SDN controller. In the virtual lab the

first tests took approximately 0.25 seconds longer, whereas in the physical lab they

took approximately 0.16 seconds longer. The overheads of virtualisation are likely to

have contributed to the higher first test page load time in the virtual lab when

compared to the physical lab. Both the higher first page load times and the difference

between virtual and physical are expected behaviour.

 Response times for HTTP connections on tcp-1234 in test Static-1 in the virtual lab

were not materially affected by the link congestion, meeting the expectations of

desired outcome 1.

 Response times for HTTP connections on tcp-80 in test Static-1 in the virtual lab were

noticeably affected by the congestion. Maximum response time was an increase by a

TCP 80 (20 Samples) TCP 1234 (20 Samples)

Average (s) Max (s) Min (s) Range (s) StdDev (s) Average (s) Max (s) Min (s) Range (s) StdDev (s)

Test 1 4.91 75.61 0.17 75.44 17.41 0.24 1.21 0.15 1.06 0.18

Test 2 2.15 40.41 0.18 40.23 7.36 0.22 0.78 0.16 0.62 0.09

Test 3 4.81 54.90 0.17 54.73 12.99 0.30 1.73 0.16 1.57 0.28

Test 4 3.12 33.05 0.17 32.88 7.43 0.29 1.34 0.16 1.18 0.23

Test 5 4.07 43.23 0.17 43.06 9.91 0.28 2.35 0.14 2.20 0.27

Test 6 4.14 42.97 0.17 42.80 9.30 0.23 0.79 0.16 0.63 0.11

Test 7 4.69 47.90 0.18 47.73 11.26 0.26 0.87 0.15 0.71 0.14

Test 8 4.07 41.27 0.18 41.09 9.34 0.30 1.38 0.16 1.22 0.26

Test 9 3.85 25.54 0.18 25.36 7.86 0.34 2.70 0.16 2.54 0.36

Test 10 2.89 16.34 0.18 16.16 4.83 0.28 1.62 0.16 1.46 0.20

Test 11 9.84 91.01 0.18 90.83 23.91 0.32 1.17 0.16 1.01 0.24

Test 12 5.19 76.93 0.18 76.75 18.14 0.39 3.40 0.17 3.23 0.44

Test 13 6.89 63.03 0.16 62.87 19.02 0.40 2.43 0.16 2.26 0.37

Test 14 7.34 55.65 0.18 55.48 16.94 0.33 2.00 0.16 1.84 0.30

Test 15 5.44 51.11 0.18 50.94 14.38 0.41 2.40 0.17 2.22 0.37

Test 16 6.39 56.31 0.18 56.13 15.69 0.46 4.13 0.17 3.96 0.57

Test 17 16.29 206.35 0.17 206.18 48.10 0.41 5.65 0.17 5.48 0.73

Test 18 2.61 51.05 0.18 50.87 9.41 0.52 3.70 0.16 3.54 0.68

Test 19 10.62 128.23 0.17 128.06 32.52 0.36 1.67 0.16 1.51 0.34

Test 20 9.33 132.15 0.17 131.99 32.15 0.39 3.55 0.15 3.40 0.48

1
0

 C
o

n
cu

rr
en

t
Ip

er
f

Se
ss

io
n

s
5

0
 C

o
n

cu
rr

en
t

Ip
er

f
Se

ss
io

n
s

32

factor of 80 over the pre-congestion time. This meets the expectations of desired

outcome 2.

 Response times for HTTP connections on tcp-80 were not materially affected by the

link congestion in test Static-2 in the virtual lab, meeting the expectations of desired

outcome 3.

 Response times for HTTP connections on tcp-1234 in test Static-2 in the virtual lab

were noticeably affected by the congestion. Maximum response time was an increase

by a factor of 68 over the pre-congestion time. This meets the expectations of desired

outcome 4.

 Physical lab results were unreliable (increased response times observed outside of

Iperf congestion period) and desired outcomes 1 & 2 were not met. The traffic in the

high_priority queue was impacted by the Iperf congestion to within 68% of the

increase observed in the default_priority queue. The cause is the hardware queueing

implementation on the Pica8 Pronto P-3290 switches, although the exact cause

remains unknown.

 Repeatability experiment of test Static-1 in the virtual lab showed a very low level of

standard deviation for the prioritised page load times over tcp-1234 demonstrating the

reliability of the traffic classification, even under significant congestion. It also proved

that the results in the virtual lab have a high degree of repeatability.

Summary of Static Traffic Classification Findings

Test Static-1 passed in virtual lab but failed in the physical lab. The failure in the physical lab

is as a result of the hardware queueing implementation on the Pica8 Pronto P-3290 switches,

not the nmeta software. The physical lab test failure highlights the importance of choosing

SDN switch hardware carefully, and testing it to ensure that it meets requirements.

Subsequent tests are run exclusively in the virtual lab as the failure of the physical lab tests

would be repeated due to the commonality of queueing across the testing suite. The scope of

this report is limited to traffic classification and thus the observed difficulties with QoS

treatment on the physical switches are out of scope. Additionally, a comparison of the

baseline and peak measurements between physical and virtual labs shows a comparable ratio

and reliable no-congestion readings in the virtual environment. Repeatability tests also

showed a consistency of results across multiple runs of the same test. For these reasons, the

virtual lab is a suitable environment for the remaining tests.

 4.5. Test Use Cases Identity-1 and Identity-2

Goal

Demonstrate that identity classification can classify traffic to provide differential treatment of

connectivity to/from a particular endpoint.

33

Method

Traffic classification is configured to treat as high priority any connections to or from hosts

that have an LLDP system name of *.audit.example.com.

Client1 with LLDP system name pc1.dev.example.com is not matched by the identity

classification.

Client2 has an LLDP system name of pc2.audit.example.com and has its connections

classified and treated as high priority based on the configured wildcard match for

*.audit.example.com.

Both Client1 and Client2 make regular HTTP connections to Server1 on tcp-80 and retrieve

the same HTML object. Timing results are recorded.

After establishing a baseline, Iperf from Server 1 to Client1 and Client2 is used to congest the

link in the default class for a sustained period. Iperf is then terminated and the test runs for a

further period to recheck baseline.

Test Identity-2 is a repeat of Identity-1, with the only difference being an update of the traffic

classification policy to treat *.dev.example.com as high priority instead of

*.audit.example.com. This second test is used demonstrate that there were no other factors at

play relating to the chosen TCP port numbers, other than the traffic classification and QoS

treatment.

Desired Outcome(s)

1) In test Identity-1, load times for HTTP connections from Client2 (pc2.audit.example.com)

to the server are not materially affected by the Iperf congestion of the link (target less than

10% increase in response times)

2) In test Identity-1, response times for HTTP connections from Client1

(pc1.dev.example.com) to the server are noticeably affected by the congestion (expect >100%

increase in response times)

3) In test Identity-2, load times for HTTP connections from Client1 (pc1.dev.example.com) to

the server are not materially affected by the Iperf congestion of the link (target less than 10%

increase in response times)

4) In test Identity-2, response times for HTTP connections from Client2

(pc2.audit.example.com) to the server are noticeably affected by the congestion (expect

>100% increase in response times)

Configuration

An identity rule carried out a regular expression match against the domain name portion of the

LLDP system name. A rule was used to explicitly classify Iperf traffic on tcp-5001 into the

default queue, as otherwise it would be set as high priority when sent to or from clients

matching the identity rule.

The following configuration was applied in the nmeta environment for test Identity-1:

34

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: Explicitly set Iperf traffic to default class

 match_type: any

 policy_conditions:

 tcp_src: 5001

 tcp_dst: 5001

 actions:

 set_qos_tag: QoS_treatment=default_priority

 set_desc_tag: description="Default Priority Iperf Traffic"

'PolicyRule 2':

 comment: SSH traffic

 match_type: any

 policy_conditions:

 tcp_src: 22

 tcp_dst: 22

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

'PolicyRule 3':

 comment: Use Case Identity-1 - High Priority Business Traffic

 match_type: any

 policy_conditions:

 identity_lldp_systemname_re: '.*\.audit\.example\.com'

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority Business Traffic"

The following configuration was applied in the nmeta environment for test Identity-2 (note

the change in the regular expression in PolicyRule 3):

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: Explicitly set Iperf traffic to default class

 match_type: any

 policy_conditions:

 tcp_src: 5001

 tcp_dst: 5001

 actions:

 set_qos_tag: QoS_treatment=default_priority

 set_desc_tag: description="Default Priority Iperf Traffic"

'PolicyRule 2':

 comment: SSH traffic

 match_type: any

 policy_conditions:

35

 tcp_src: 22

 tcp_dst: 22

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

'PolicyRule 3':

 comment: Use Case Identity-1 - High Priority Business Traffic

 match_type: any

 policy_conditions:

 identity_lldp_systemname_re: '.*\.dev\.example\.com'

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority Business Traffic"

36

Results

Figure 15 - Test Identity-1 in Virtual Lab on code rev 5.6

0.1

1

10

100

13:24:40 13:24:58 13:25:15 13:25:32 13:25:49 13:26:07 13:26:24 13:26:41

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Identity-1 in Virtual Lab

pc1.dev.example.com (default)

pc2.audit.example.com (high priority)

10 per. Mov. Avg. (pc1.dev.example.com (default))

10 per. Mov. Avg. (pc2.audit.example.com (high
priority))

Period of Iperf congestion in default queue

Extra delays on first
page load due to TCP
setup and identity
classification overhead
(circa extra 0.5
seconds) Iperf congestion

causes increase in
pc1 load times

Iperf congestion has
no impact on pc2
load times

Base load time circa
0.15-0.22 seconds

Maximum load time
is 11.09 seconds

0.1

1

10

100

13:37:21 13:37:38 13:37:55 13:38:12 13:38:30 13:38:47 13:39:04 13:39:22 13:39:39

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Test Identity-2 in Virtual Lab

pc1.dev.example.com (high priority)

pc2.audit.example.com (default)

10 per. Mov. Avg. (pc1.dev.example.com (high
priority))

10 per. Mov. Avg. (pc2.audit.example.com
(default))

Period of Iperf congestion in default queue

Extra delays on first
load due to TCP setup
and identity
classification overhead
(circa extra 0.5
seconds)

Iperf congestion
causes increase in
pc2 load times

Iperf congestion has
no impact on pc1
load times

Base load time circa
0.16-0.21 seconds

Maximum load time
is 16.93 seconds

37

Figure 16 - Test Identity-2 in Virtual Lab on code rev 5.6

Analysis

 Client2 (pc2.audit.example.com) HTTP object load times in test Identity-1 were not

materially affected by the Iperf link congestion, meeting the expectations of desired

outcome 1.

 Client1 (pc1.dev.example.com) HTTP object load times in test Identity-1 were

noticeably affected by the congestion. Maximum load time was an increase by a factor

of 55 over the pre-congestion time. This meets the expectations of desired outcome 2.

 Client1 (pc1.dev.example.com) HTTP object load times in test Identity-2 were not

materially affected by the Iperf link congestion, meeting the expectations of desired

outcome 3.

 Client2 (pc2.audit.example.com) HTTP object load times in test Identity-2 were

noticeably affected by the congestion. Maximum load time was an increase by a factor

of 85 over the pre-congestion time. This meets the expectations of desired outcome 4.

Summary of Identity Traffic Classification Findings

Tests Identity-1 and Identity-2 passed, proving that it is possible to classify traffic based on

identity in an SDN environment. The use of wildcard match on identity, as demonstrated,

would be a desirable feature to operators dealing with scale issues.

Traffic differentiation was applied in both directions on the matched flows, including on the

switch not directly connected to the identified device. This ability to make a system wide

determination and apply it to all elements on the traffic path is an advantage conferred by

SDN.

 4.6. Test Use Cases Payload-1 and Payload-2

Goal

Demonstrate that basic payload classification can classify and differentially treat connectivity

over a specific protocol, including traffic on a separate flow with dynamically assigned port.

Method

Traffic classification is configured to treat any connections with payload match on FTP as low

priority.

Client1 makes regular HTTP connections to Server1 on tcp-80 retrieving the same HTML

object. Timing results are recorded.

Client2 makes an FTP connection to Server1 on the standard FTP port of tcp-21 and remains

in the default active mode. Client2 requests a file download (t2.jar, size 2209984 bytes) and

this is served over a dynamically negotiated connection from the server to the client.

38

A control test (Payload-2) is performed with same method but the payload match removed

from the nmeta configuration.

Desired Outcome(s)

1) Response times for HTTP connections on tcp-80 in test Payload-1 are not materially

affected by the FTP congestion (target less than 10% increase in response times)

2) Response times for HTTP connections on tcp-80 in test Payload-2 are noticeably affected

by the FTP congestion (expect >100% increase in response times)

Configuration

The following configuration was applied in the nmeta environment for test Payload-1:

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: SSH traffic

 match_type: any

 policy_conditions:

 tcp_src: 22

 tcp_dst: 22

 actions:

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

'PolicyRule 2':

 comment: Use Case Payload-1 - Low Priority FTP Traffic

 match_type: any

 policy_conditions:

 payload_type: ftp

 actions:

 set_qos_tag: QoS_treatment=low_priority

 set_desc_tag: description="Low Priority FTP Traffic"

The following configuration was applied in the nmeta environment for test Payload-2:

'PolicyRule 0':

 comment: OpenFlow Protocol Traffic

 match_type: any

 policy_conditions:

 tcp_src: 6633

 tcp_dst: 6633

 actions:

 set_qos_tag: QoS_treatment=system_priority

 set_desc_tag: description="OpenFlow Protocol Traffic"

'PolicyRule 1':

 comment: SSH traffic

 match_type: any

 policy_conditions:

 tcp_src: 22

 tcp_dst: 22

 actions:

39

 set_qos_tag: QoS_treatment=high_priority

 set_desc_tag: description="High Priority SSH Traffic"

Results

Figure 17 - Test Payload-1 in Virtual Lab on code rev 6.5

0.1

1

10

100

20:46:19 20:47:02 20:47:46 20:48:29 20:49:12 20:49:55 20:50:38 20:51:22 20:52:05

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Page Load Times - Test Payload-1

Payload-1

10 per. Mov. Avg. (Payload-1)

Extra delay on
first page load
due to payload
classification
overhead
(circa extra
0.35 seconds)

Approximate period of FTP congestion in low
priority queue

FTP traffic has no material
impact on HTTP page load times

40

Figure 18 - Test Payload-2 in Virtual Lab on code rev 6.5

Analysis

In test Payload-1, the FTP payload classifier successfully identified the dynamically

negotiated destination TCP port of the flow to be set up from the server to the client and this

information was used to classify this new flow into the low priority queue.

Response times for HTTP connections on tcp-80 in test Payload-1 were not materially

affected by the FTP link congestion, meeting the expectations of desired outcome 1.

Test Payload-2 was a control test. Response times for HTTP connections on tcp-80 were

noticeably affected by the FTP congestion. Maximum response time was an increase by a

factor of 69 over the pre-congestion time. This meets the expectations of desired outcome 2.

It is worth noting that the same result can be achieved with static classification, for even

though FTP active mode dynamically negotiates a port number for the data transfer, the

source port number is always 20. The following snippet of nmeta traffic classification

configuration achieves the same result as test Payload-1:

'PolicyRule 2':
 comment: FTP Control traffic
 match_type: any
 policy_conditions:
 tcp_src: 21
 tcp_dst: 21
 actions:
 set_qos_tag: QoS_treatment=low_priority
 set_desc_tag: description="Low Priority FTP Control Traffic"
'PolicyRule 3':
 comment: FTP Data traffic

0.1

1

10

100

20:43:00 20:43:18 20:43:35 20:43:52 20:44:10 20:44:27 20:44:44 20:45:01 20:45:19

Lo
ad

 T
im

e
 (

se
co

n
d

s)
 -

Lo
g1

0
 S

ca
le

Time

Page Load Times - Test Payload-2

Payload-2

10 per. Mov. Avg. (Payload-2)

Extra delay on first
page load due to
payload
classification
overhead (circa
extra 0.32 seconds)

Approximate period of FTP congestion in default
priority queue

Page load times increase
to a maximum of 14.6
seconds due to FTP
congestion in same
(default) queue

41

 match_type: any
 policy_conditions:
 tcp_src: 20
 tcp_dst: 20
 actions:
 set_qos_tag: QoS_treatment=low_priority
 set_desc_tag: description="Low Priority FTP Data Traffic"

This serves as an important reminder that simpler, more efficient static classifiers can

sometimes fulfil the role of a specific payload classifier.

Summary of Payload Traffic Classification Findings

Tests Payload-1 and Payload-2 both passed. This demonstrates the SDN capability to run

payload inspection on multiple packets in a flow, extracting dynamic information and acting

on it.

 4.7. Test Use Cases Statistical-1 and Statistical-2

Goal

Demonstrate that statistical classification can classify based on the statistical profile of a

traffic flow, and the results can be used to provide differential QoS treatment for the flow.

Method

Traffic classification is configured to treat SSH traffic (tcp-22) as high priority and all other

traffic is passed through the statistical_qos_bandwidth_1 statistical classifier.

Client2 makes regular HTTP connections to Server1 on tcp-80 and retrieves the same HTML

object. Timing results are recorded.

After establishing a baseline, Iperf from Server1 to Client2 is used to congest the link for a

sustained period. Iperf is then terminated and the test runs for a further period to recheck

baseline.

A second test (Statistical-2) is run as a control, without the statistical classifier configured.

Desired Outcome(s)

The statistical classifier should classify the Iperf traffic into the low_priority queue, based on

its flow behaviour, and thus the Iperf traffic cannot impact the HTTP traffic since they are in

different queues. Specific measures are:

1) Response times for HTTP connections on tcp-80 in the non-control test are not materially

affected by the link congestion (target less than 10% increase in response times).

2) Response times in the control test for HTTP connections on tcp-80 are noticeably affected

by the congestion (expect >100% increase in response times).

Configuration

Statistical-1 Configuration:

'PolicyRule 0':
 comment: SSH traffic

42

 match_type: any
 policy_conditions:
 tcp_src: 22
 tcp_dst: 22
 actions:
 set_qos_tag: QoS_treatment=high_priority
 set_desc_tag: description="High Priority SSH Traffic"
'PolicyRule 1':
 comment: Basic Statistical Classifier
 match_type: statistical
 policy_conditions:
 statistical_qos_bandwidth_1: on
 actions:
 pass_return_tags: true

Statistical-2 (Control) Configuration:

'PolicyRule 0':
 comment: SSH traffic
 match_type: any
 policy_conditions:
 tcp_src: 22
 tcp_dst: 22
 actions:
 set_qos_tag: QoS_treatment=high_priority
 set_desc_tag: description="High Priority SSH Traffic"

SSH (tcp-22) traffic is included in the above configurations, but is not used in the testing.

The control configuration does not run the statistical classifier.

Results

Figure 19 - Test Statistical-1 in Virtual Lab on code rev 6.2

0.1

1

21:12:14 21:12:23 21:12:32 21:12:40 21:12:49 21:12:58 21:13:06 21:13:15 21:13:24 21:13:32 21:13:41

Lo
ad

 T
im

e
(s

ec
o

n
d

s)
 -

Lo
g1

0
Sc

al
e

Time

page load time (statistical classifier)

page load time

10 per. Mov. Avg. (page load time)

Approximate period of Iperf congestion in low
priority queue

Extra delay on first page
load due to statistical
classification overhead
(circa extra 0.6 seconds)

Iperf traffic has no
material impact on HTTP
page load times

43

Figure 20 - Test Statistical-2 (control) in Virtual Lab on code rev 6.2

Analysis

 In test Statistical-1, the Iperf traffic was matched by the statistical classifier and

moved from the default_priority to low_priority queue. This change of queueing

prevented Iperf from congesting the default_priority queue and thus the HTTP load

times were not materially affected by the Iperf congestion, meeting the expectations of

desired outcome 1.

 Test Statistical-2 was a control test. Response times for HTTP connections on tcp-80

were noticeably affected by the FTP congestion. Maximum response time was an

increase by a factor of 100 over the pre-congestion time. This meets the expectations

of desired outcome 2.

Iperf classification is an unlikely use case for an enterprise network; however it does

demonstrate the principle that statistical classification can be used to differentiate flows based

on their behavioural profile.

Note that the statistical classifier does not reference the flow TCP port numbers, so Iperf

could be run on any TCP port number (other than 22 since it is defined as a static classifier)

and the results would be the same.

0.1

1

10

100

21:15:33 21:15:50 21:16:08 21:16:25 21:16:42 21:17:00 21:17:17 21:17:34

Lo
ad

 T
im

e
(s

ec
o

n
d

s)
 -

Lo
g1

0
Sc

al
e

Time

page load time (control)

page load time

10 per. Mov. Avg. (page load time)

Approximate period of Iperf congestion in default
priority queue

Extra delay on first page
load due to statistical
classification overhead
(circa extra 0.6 seconds)

Page load times increase
to a maximum of 19.34
seconds due to Iperf
congestion in same
(default) queue

Base page load times of
0.18 - 0.21 seconds

44

Summary of Statistical Traffic Classification Findings

Tests Statistical-1 and Statistical-2 both passed. This demonstrates the SDN capability to run

statistical analysis on flows with the results used in real-time (i.e. online) to modify network

behaviour appropriately.

 4.8. Evaluation of Hypothesis

Experimental results from the prototype nmeta SDN traffic classification system have shown

the hypothesis posed by this project to be true for functional requirements. Four test use cases

were evaluated and the results all met the desired outcomes, with the exception of those run in

the physical lab. The failure of the physical lab is due to the limitations of the particular

switch hardware and does not invalidate the hypothesis. We can thus conclude that the 4 sub-

hypotheses are all proven true as results showed that the prototype nmeta traffic classification

system built on SDN architecture can accurately classify traffic using static, identity, payload

and statistical methods.

Tests Static-1 and Static-2 prove that an SDN traffic classification system can do policy-based

static classification, meeting the requirement of selective determinism.

Tests Identity-1 and Identity-2 prove that an SDN traffic classification system can be used to

apply QoS treatment based on the identity of an endpoint. This meets the requirement for

identity awareness.

Tests Payload-1 and Payload-2 prove that an SDN traffic classification system can be used to

identify the type of traffic contained in a flow and additionally to ascertain details of the set-

up of a dynamic flow and apply QoS treatment to this new flow. This meets the requirement

for application awareness.

Tests Statistical-1 and Statistical-2 prove that an SDN traffic classification system can make

statistical classifications that differentiate flows based on their behavioural profile, meeting

the requirement for agility. The Statistical-1 test also met the requirement for timeliness by

showing that a flow can be classified before it has had time to ramp up to a point where it is

causing congestion.

By proving the 4 sub-hypotheses are all proven true, and that the functional requirements are

also true, the main hypothesis that SDN architecture is a suitable foundation for development

of systems that can meet the functional traffic classification requirements of enterprise

network operators is also proven to be true.

 4.9. Chapter Summary

In this chapter, details the methodology and results of the evaluation of the prototype system

have been presented, along with a test of the hypothesis that was shown to prove it to be true.

The next and final chapter presents conclusions and other observations.

45

46

Chapter 5

 5. Conclusion
This project posed the hypothesis that SDN architecture is a suitable foundation for

development of systems that can meet the traffic classification requirements of enterprise

network operators. This hypothesis was proven by analysis of experimental results from the

prototype nmeta system that was specially developed for this project. The fact that a

functional prototype system can be built within the timeframe of a COMP489 project

demonstrates the rapid innovation potential that SDN opens up to the networking community.

The prototype system produced enriched network metadata as per the 'Flow Enrichment'

information in the right of Figure 1, but also extended left into the area of identity. This is a

powerful result as it creates a foundation on which innovative applications can be built that

mine the identity and flow data for both current and as yet unforeseen benefits.

 5.1. Other Observations

Reticulation of the OpenFlow Protocol

The lab environments in this project featured backhaul of the OpenFlow protocol over the

data plane. The remote switch OpenFlow traffic had to cross a simulated WAN link to reach

the controller. This configuration was intended to push the limits of what could be achieved

with SDN, but was found to be workable in the limited tests that were carried out. The author

however would not recommend running OpenFlow protocol over a WAN due to the potential

for performance and availability issues.

Denial of Service Vulnerabilities

It was found that LLDP packets passed to Ryu with the default packet-in maximum size of

128 bytes are truncated and cause Ryu to halt. This is a problem for both availability and

security where it could be used to execute a Denial of Service (DoS) attack.

Non-Functional Requirements

Non-functional requirements were put out of scope due to the size of the task.

SDN developers can learn lessons regarding non-functional requirements from the

development of monolithic networking, as they are very similar. Key non-functional

requirements are availability and security. The author recalls an incident in 1998 when he

upgraded the software on routers for an enterprise client. The upgrade was performed and

passed testing but the client called up the next day the client complaining that their entire

network was broken, with their business substantially impacted. The change was backed out

and subsequent investigations showed that the new router software would stop receiving

packets on the router LAN interface if a particular sequence of packets was received. This

sequence had occurred overnight at all sites and thus none of the LAN interfaces were

47

operational the next morning resulting in no network connectivity between sites. The lesson

from this story is that monolithic networking has matured significantly over the intervening

16 years as it would be highly unusual for a modern commercially-sourced router or switch to

stop routing/switching due to a software fault of this nature. Also, this type of fault would

now be classified as security vulnerability, since it presents a vector for a Denial of Service

(DoS) attack. While it is now highly unusual for a monolithic router/switch to fail

unexpectedly, it was found to be a reasonably common occurrence in the SDN lab

environments. The author suspects that SDN software still has a long journey ahead to reach

the non-functional maturity of monolithic networking, based on experiences gained during

this project (i.e. previously mentioned LLDP DoS example), however this journey could be

shortened if lessons are learnt from the development of monolithic networking software.

48

Bibliography

[1] M. Hayes, "Quality of Service Classification Mechanisms for IoT," Victoria University,

Wellington, New Zealand, Term Paper 2013.

[2] M. Hayes, B. Ng, and W. Seah, "Traffic Classification in Enterprise Networks within the

Era of IoT," no. Submitted to IEEE Communications Magazine.

[3] A. Dainotti, A. Pescape, and K.C Claffy, "Issues and future directions in traffic

classification," IEEE Network, vol. 26, no. 1, pp. 35-40, 2012.

[4] H. Kim et al., "Internet traffic classification demystified: myths, caveats, and the best

practices," in Proceedings of the 2008 ACM CoNEXT Conference (CoNEXT '08),

Madrid, Spain, 9-12 December 2008.

[5] A. Dainotti, W. de Donato, and A. Pescapé, "Tie: A community-oriented traffic

classification platform.," in Traffic Monitoring and Analysis, First International

Workshop, Aachen, Germany, 2009, pp. 64-74.

[6] J. Kosinski et al., "SLA monitoring and management framework for telecommunication

services," in Networking and Services, 2008. ICNS 2008. Fourth International

Conference on, Gosier, Guadeloupe, 2008, pp. 170-175.

[7] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. (2010) Vision and Challenges

for Realising the Internet of Things, March 2010. [Online]. http://www.internet-of-

things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf

[8] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, "Class of Service Mapping for QoS

A Statistical Signature based Approach to IP Traffic Classification," in Proceedings of

the 4th ACM SIGCOMM conference on Internet measurement (IMC), Sicily, Italy, 25-27

October 2004.

[9] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti. (2013, June) HAL -

Inria. [Online]. http://hal.inria.fr/docs/00/93/29/82/PDF/hal_final.pdf

[10] T. En-Najjary and G. Urvoy-Keller, "A first look at traffic classification in enterprise

networks," in In Proceedings of the 6th International Wireless Communications and

Mobile Computing Conference, Caen, France, 2010, pp. 764-768.

[11] R. Pang et al., "A first look at modern enterprise traffic," in Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurement, Berkeley, CA, USA, 2005, pp. 2-2.

[12] Canalys. (2014, October) Network infrastructure, Worldwide, value ($) by technology,

Q2 2014 and Q2 2013. [Online]. http://www.canalys.com/chart/index.html#display-314

[13] B. Park, Y. Won, M. Kim, and J. Hong, "Towards Automated Application Signature

Generation for Traffic Identification," in Network Operations and Management

Symposium, 2008. NOMS 2008. IEEE, Salvador, Bahia, Brazil, 2008, pp. 160-167.

[14] G. Aceto, A. Dainotti, W. De Donato, and A Pescapé, "PortLoad: taking the best of two

worlds in traffic classification," in INFOCOM IEEE Conference on Computer

http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://hal.inria.fr/docs/00/93/29/82/PDF/hal_final.pdf
http://www.canalys.com/chart/index.html#display-314

49

Communications Workshops, San Diego, USA, 15-19 March 2010, pp. 1-5.

[15] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, "Traffic

Classification On The Fly," ACM SIGCOMM Computer Communication Review, vol. 36,

no. 2, pp. 23-26, April 2006.

[16] R. Alshammari and A. Zincir-Heywood, "A flow based approach for ssh traffic

detection," in Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference

on , Montreal, Canada, October 2007, pp. 296-301.

[17] G. Xie, M. Iliofotou, R. Keralapura, M. Faloutsos, and A. Nucci, "Subflow: Towards

practical flow-level traffic classification," in INFOCOM, 2012 Proceedings IEEE ,

Orlando, FL, USA, 25-30 March 2012 , pp. 2541-2545.

[18] S. Li, E. Murray, and Y. Luo, "Programmable Network Traffic Classification with

OpenFlow Extensions," in Network Innovation through OpenFlow and SDN : Principles

and Design, F. Hu, Ed. Boca Raton, FL, USA: CRC Press, 2014, ch. 13, pp. 269-299.

[19] J. Khalife, A. Hajjar, and J Diaz-Verdejo, "A multilevel taxonomy and requirements for

an optimal traffic-classification model," International Journal of Network Management,

vol. 24, no. 2, pp. 101-120, January 2014.

[20] K. Nichols, S. Blake, F. Baker, and D Black. (1998, December) Definition of the

Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. [Online].

http://tools.ietf.org/pdf/rfc2474.pdf

[21] Open Networking Foundation. (2013, October) OpenFlow. [Online].

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.4.0.pdf

[22] Ryu Community. (2014, September) Ryu SDN Framework. [Online].

http://osrg.github.io/ryu/

[23] Python Software Foundation. (2014, September) Python.org. [Online].

https://www.python.org/

[24] Python Software Foundation. (2014, September) Private Variables and Class-local

References. [Online]. https://docs.python.org/2/tutorial/classes.html#tut-private

[25] G. van Rossum, B. Warsaw, and N. Coghlan. (2014, September) PEP 8 -- Style Guide

for Python Code. [Online]. http://legacy.python.org/dev/peps/pep-0008/

[26] Python Software Foundation. (2014, October) Data Structures. [Online].

https://docs.python.org/2/tutorial/datastructures.html#dictionaries

[27] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger. (September, 2014) TCP

Extensions for High Performance. [Online]. http://tools.ietf.org/pdf/rfc7323.pdf

[28] C. Evans. The Official YAML Web Site. [Online]. http://www.yaml.org/

[29] Ryu Community. (2014, October) Ryu application API. [Online].

http://ryu.readthedocs.org/en/latest/ryu_app_api.html

http://tools.ietf.org/pdf/rfc2474.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://osrg.github.io/ryu/
https://www.python.org/
https://docs.python.org/2/tutorial/classes.html#tut-private
http://legacy.python.org/dev/peps/pep-0008/
https://docs.python.org/2/tutorial/datastructures.html#dictionaries
http://tools.ietf.org/pdf/rfc7323.pdf
http://www.yaml.org/
http://ryu.readthedocs.org/en/latest/ryu_app_api.html

50

[30] M. Carbone and L. Rizzo, "Dummynet Revisited," ACM SIGCOMM Computer

Communication Review, vol. Volume 40, no. Issue 2, pp. 12-20, April 2010.

[31] J Dugan and M Kutzko. (2014, September) Iperf. [Online].

http://sourceforge.net/projects/iperf/

[32] R. Fielding and J. Reschke. (2014, June) RFC 7230: Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. [Online]. http://tools.ietf.org/pdf/rfc7230.pdf

[33] K. Reitz. (2014, September) Requests: HTTP for Humans. [Online]. http://docs.python-

requests.org/en/latest/

[34] H. Yin et al. "SDNi: A Message Exchange Protocol for Software Defined Networks

(SDNS) across Multiple Domains", IETF Internet Drafts, 29 December 2012. [Online].

http://tools.ietf.org/pdf/draft-yin-sdn-sdni-00.pdf

http://sourceforge.net/projects/iperf/
http://tools.ietf.org/pdf/rfc7230.pdf
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
http://tools.ietf.org/pdf/draft-yin-sdn-sdni-00.pdf

51

Appendix A - Test Details
This appendix contains configuration details for the set-up and running of the tests carried out

for this project in the physical lab environment.

Installation

Server (PC1) Configuration

Install Iperf:

sudo apt-get install iperf

Set up a web server. Copy the latest version of websvr.py (a Python program written as part of

this project) into the home directory. Create a subdirectory called static and copy into it the

file index.html.

Install the web.py library:

sudo easy_install web.py

Client (PC3) Installation and Configuration

Install PIP:

sudo apt-get install python-pip

Install python requests module:

pip install requests

Install Iperf:

sudo apt-get install iperf

Create HTTP Request Test Scripts. Copy the latest version of htest.py (a Python program

written as part of this project) into the home directory.

Set up QoS Queues on Switches

Set up four egress queues on ports that face the WAN simulator:

q0 = used for OpenFlow traffic, max rate 300Kbps

q1 = default, max rate 500Kbps

q2 = high priority, max rate 1Mbps

q3 = low_priority, max rate 100Kbps

All queues are configured with a ceiling of 1.8Mbps, which allows bursting over the queue

reserved bandwidth when other bandwidth is available.

Physical Lab Central Pica8 Open vSwitch (Switch 2):

52

ovs-vsctl clear Port ge-1/1/3 qos
ovs-vsctl --all destroy qos
ovs-vsctl -- --all destroy Queue
ovs-vsctl -- set Port ge-1/1/3 qos=@newqos \
-- --id=@newqos create QoS type=PRONTO_STRICT queues=0=@q0,1=@q1,2=@q2,3=@q3 \
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000 \
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000

Physical Lab Remote Pica8 Open vSwitch (Switch 1):

ovs-vsctl clear Port ge-1/1/1 qos
ovs-vsctl --all destroy qos
ovs-vsctl -- --all destroy Queue
ovs-vsctl -- set Port ge-1/1/1 qos=@newqos \
-- --id=@newqos create QoS type=PRONTO_STRICT queues=0=@q0,1=@q1,2=@q2,3=@q3 \
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000 \
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000

Virtual Lab (WAN3) Central Switch:

sudo ovs-vsctl clear Port eth2 qos
sudo ovs-vsctl --all destroy qos
sudo ovs-vsctl -- --all destroy Queue
sudo ovs-vsctl -- set Port eth2 qos=@newqos \
-- --id=@newqos create QoS type=linux-htb queues=0=@q0,1=@q1,2=@q2,3=@q3 \
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000 \
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000

Virtual Lab (WAN3) Remote Switch:

sudo ovs-vsctl clear Port eth1 qos
sudo ovs-vsctl --all destroy qos
sudo ovs-vsctl -- --all destroy Queue
sudo ovs-vsctl -- set Port eth1 qos=@newqos \
-- --id=@newqos create QoS type=linux-htb queues=0=@q0,1=@q1,2=@q2,3=@q3 \
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000 \
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000

Configuration can be checked with the following commands:

ovs-vsctl list port <interface>

53

The reference in output above is displayed in the output below along with references for the

individual queues:

ovs-vsctl list qos

Check the individual queue configurations with the following command:

ovs-vsctl list queue

Check queue statistics:

ovs-ofctl queue-stats br0

This command does not work on Pica8 switches due to a bug, so output shown from a switch

in the WAN3 virtual environment:

54

 5.2. Running Tests

Test Use Case Static-1 and Static-2

On server (PC1), start web servers in separate terminal sessions:

sudo python websvr.py 80
(alias h80)

sudo python websvr.py 1234
(alias h1234)

On server (PC1), check that qos_policy.yaml and tc_policy.yaml are set appropriately

On server (PC1), start nmeta:

cd ryu
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py
(alias nm)

On client (PC3), start Iperf server:

iperf -s -i 1
(alias ipf)

On client (PC3), start the HTTP on TCP port 80 Python script:

python htest.py http://10.255.255.1:80/80
(alias ht80)

On client (PC3), start the HTTP on TCP port 1234 Python script:

python htest.py http://10.255.255.1:1234/1234
(alias ht1234)

On server (PC1), after waiting approximately 15 seconds, start Iperf:

iperf -c 10.255.254.100 -t 30
(alias ipf1)

(it will run for 30 seconds)

Wait an additional 15 seconds after Iperf completes then stop both htest.py instances and

record their results.

Test Use Cases Identity-1 and Identity-2

On server (VM1), start web server:

sudo python websvr.py 80
(alias h80)

On server (VM1), check that qos_policy.yaml and tc_policy.yaml are set appropriately

On server (VM1), start nmeta:

cd ryu
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py

http://10.255.255.1/80
http://10.255.255.1:1234/1234

55

(alias nm)

On clients (VM5 & VM6), start Iperf server:

iperf -s -i 1
(alias ipf)

On client 1 (VM5), start the HTTP on TCP port 80 Python script:

python htest.py http://192.168.57.40:80/80
(alias ht80)

On client 2 (VM6), start the HTTP on TCP port 80 Python script:

python htest.py http://192.168.57.40:80/80
(alias ht80)

On server (VM1), after waiting approximately 15 seconds, start two Iperf sessions

concurrently:

iperf -c 192.168.56.11 -t 30
(alias ipf1)

In separate window:

iperf -c 192.168.56.12 -t 30
(alias ipf2)

(they will run for approximately 30 seconds)

Wait an additional 15 seconds after the Iperf sessions complete then stop both htest.py

instances and record their results.

Test Use Cases Payload-1 and Payload-2

On server (VM1), check that qos_policy.yaml and tc_policy.yaml are set appropriately

On server (VM1), start nmeta:

cd ryu
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py
(alias nm)

On server (VM1), start web server:

sudo python websvr.py 80
(alias h80)

On client1 (VM5), start the HTTP on TCP port 80 Python script:

python htest.py http://192.168.57.40:80/80
(alias ht80)

On client2 (VM5), start an FTP to the server and retrieve the object:

Error! Hyperlink reference not valid.
(alias ftp1)

<log in>

get t2.jar

http://192.168.57.40/80
http://10.255.255.1/80
http://192.168.57.40/80

56

Test Use Case Statistical-1

Pretests:

On server (VM1), check that qos_policy.yaml and tc_policy.yaml are set appropriately

On server (VM1), start nmeta:

cd ryu
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py
(alias nm)

On server (VM1), start web server:

sudo python websvr.py 80
(alias h80)

On server (VM1), start an Iperf server:

iperf -s -i 1
(alias ipfs)

On client (VM6), carry out the following tests and record the statistical analysis figures

reported by nmeta:

Iperf:

iperf -c 192.168.57.40 -t 30
(alias ipf)

HTTP:

python htest.py http://192.168.57.40:80/80
(alias ht80)

SSH (Interactive):

ssh bob@192.168.57.40

SCP:

scp Downloads/t1.jpg bob@192.168.57.40:t1.jpg
(alias scp1)

Set the statistical classifier to use different values for the maximum packets to accumulate in a

flow before making a classification (variable _max_packets)

Main Tests

On server (VM1), check that qos_policy.yaml and tc_policy.yaml are set appropriately

On server (VM1), start nmeta:

cd ryu
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py
(alias nm)

On server (VM1), start web server:

sudo python websvr.py 80
(alias h80)

On client (VM6), start Iperf server:

http://192.168.57.40/80
mailto:bob@192.168.57.40
mailto:bob@192.168.57.40:t1.jpg

57

iperf -s -i 1
(alias ipf)

On client (VM6), start the HTTP on TCP port 80 Python script:

python htest.py http://192.168.57.40:80/80
(alias ht80)

On server (VM1), after waiting approximately 15 seconds, start Iperf session:

iperf -c 192.168.56.12 -t 30
(alias ipf2)

(will run for approximately 30 seconds)

Wait an additional 15 seconds after the Iperf session completes then stop htest.py record

results.

Repeat test for control configuration of tc_policy.yaml

Appendix B - WAN3 Build Instructions
These instructions are included to assist the experimenter with building the WAN3 virtualised

environment. They should hopefully save a lot of time that was needed to figure out obtuse

features. See Figure 8 for a logical diagram of the environment. Note that these instructions

are untested as they are based on build notes and have not been used for a fresh install, so

some things may not work as advertised...

Pre-Requisites

 Oracle VirtualBox hypervisor version 4.3.10 running on Microsoft Windows 7. Note:

may work on other versions of VirtualBox and Host OS, but not tested.

 Host PC must have sufficient RAM (test PC had 8GB RAM)

VM1 – Server / Controller

Download Ubuntu 13.10 ISO (32-bit desktop). Note that other versions of Ubuntu are

probably fine to use, up to you if you prefer another one.

Create a new Ubuntu guest with 1024MB of RAM and 12GB of storage.

Go into the guest settings to configure it to boot off the ISO. Under Storage, click on the

Controller: IDE row and then click on the Add CD/DVD Device Icon, "Choose disk" and

browse to the ISO:

http://10.255.255.1/80

58

Do the same process to add the ISO for the Guest Additions. On Windows it is located in

C:\Program Files\Oracle\VirtualBox\VBoxGuestAdditions.iso

As above, there should now be two ISO files associated.

Leave Adapter 1 as per defaults to allow NAT access to the Internet (required for

downloading software packages from the Internet). Configure Adapter 2 as per screenshot

below to connect to Internal Network "WAN3-1":

Start the VM and install as per the defaults. Note that VirtualBox may ask you to confirm

which ISO to boot from:

59

Install VirtualBox Additions

Once built, start a terminal window (CTRL+ALT+T) and install the VirtualBox additions for

improved host-guest integration:

cd /media

Look for the appropriate subdirectories that contain the correct additions version. Example:

Run the additions:

sudo ./VBoxLinuxAdditions.run

It will probably be necessary to restart the guest to get the additions running. You may want

to change the copy/paste settings in VirtualBox to allow pasting to the guest:

Configure Networking

Add the following to /etc/network/interfaces:

auto eth1
iface eth1 inet static
address 192.168.57.40
netmask 255.255.255.0

up route add -net 192.168.56.0/24 gw 192.168.57.1 dev eth1

Restart networking:

sudo /etc/init.d/networking restart

Install Ryu

Install git:

sudo apt-get install git

Clone Ryu:

60

git clone git://github.com/osrg/ryu.git

Python stuff:

sudo apt-get install python-setuptools
sudo apt-get install python-pip
sudo apt-get install libxml2-dev
sudo apt-get install libxslt-dev
Fix python-six (compatibility library) version issue:
sudo pip install six --upgrade
sudo apt-get install python-dev

Install YAML ("YAML Ain't Markup Language") for parsing config and policy files:

sudo apt-get install python-yaml

Install Ryu:

cd ryu
sudo python ./setup.py install

Run Ryu (simple switch) to check that it works:

cd ryu
PYTHONPATH=. ./bin/ryu-manager --verbose ryu/app/simple_switch.py

Note: Ryu version can subsequently be upgraded as follows if required:

cd ryu
sudo git pull

VM2 – Central Open vSwitch

Download Ubuntu 14.04 ISO (32-bit desktop). Note that version 14.04 is a minimum

requirement due to additional of in-tree kernel support for Open vSwitch from that version.

Create a new Ubuntu guest with 512MB of RAM and 8GB of storage as per instructions for

VM1 including the association of ISO images.

Leave Adapter 1 as per defaults to allow NAT access to the Internet. Configure Adapter 2 and

3 as per screenshots below:

61

Note the use of named Internal Networks and selection of Promiscuous Mode Allow VMs.

This mode is required to allow the guest to function as a switch. MAC addresses can be left as

per their default values as long as they are unique within the environment.

Start the VM and install as per instructions for VM1 including guest additions.

Install Open vSwitch:

Install openvswitch-common and openvswitch-switch (both in same package):

sudo apt-get install openvswitch-switch

Check that it is running:

sudo ovs-vsctl show

Set up bridge 'br0':

sudo ovs-vsctl add-br br0

Add physical interfaces:

sudo ovs-vsctl add-port br0 eth1
sudo ovs-vsctl add-port br0 eth2

Configure Networking

Add the following to /etc/network/interfaces:

auto br0
iface br0 inet static
address 192.168.57.3
network 192.168.57.0
netmask 255.255.255.0
broadcast 192.168.57.255
gateway 192.168.57.1

up route add -net 192.168.56.0/24 gw 192.168.57.1 dev br0

Now do a full restart of the guest.

62

Configure Open vSwitch

Check connectivity to the OpenFlow controller:

ping 192.168.57.40

Start OpenFlow Controller (on VM1)

cd ryu
PYTHONPATH=. ./bin/ryu-manager --verbose ryu/app/simple_switch.py

Set Open vSwitch to contact Controller (on VM2)

sudo ovs-vsctl set-controller br0 tcp:192.168.57.40:6633

Check Open vSwitch connectivity to OpenFlow Controller:

sudo ovs-vsctl show

Here is output showing successful connection with the controller:

VM3 - WAN Simulation

Build Guest

Download FreeBSD 10.0 ISO

Create a new BSD guest:

Chose 256MB of RAM and the default storage options and a new VM will be created.

63

Go into the guest settings to configure it to boot off the ISO. Under Storage, click on the

Controller: IDE row and then click on the Add CD/DVD Device Icon (circled in orange in

screenshot below):

Browse to the location of the ISO:

Leave Adapter 1 as per defaults to allow NAT access to the Internet. Configure Adapter 2 and

3 as per screenshots below:

64

Note the use of named Internal Networks. MAC addresses can be left as per their default

values as long as they are unique within the environment.

Start the VM and install as per the defaults. Once built, shut the VM down and remove the

ISO from the Storage setting otherwise it will try and rebuilt when started.

Configure Networking

Start the VM and configure networking by editing /etc/rc.conf and adding these lines:

ifconfig_em1="inet 192.168.56.1 netmask 255.255.255.0"

ifconfig_em2="inet 192.168.57.1 netmask 255.255.255.0"

Enable IP Routing:

gateway_enable="YES"

Enable IPFW (used for Dummynet):

firewall_enable="YES"

firewall_type="open"

firewall_script="/etc/ipfw.rules"

Enable Kernel Support for Dummynet by modifying the /boot/loader.conf file:

dummynet_load="YES"

Configure Dummynet by creating a new file /etc/ipfw.rules

ipfw -q flush

ipfw add pipe 1 ip from any to any

ipfw pipe 1 config delay 10ms bw 2Mbit/s plr 0

The bandwidth can be any of bit/s, Kbit/s, Mbits/s, Byte/s, KByte/s, MByte/s. A bandwidth of

zero results in no bandwidth limitation

Note that the rule is applied 4 times as the request packet is received and sent out and the

reply is received and sent out, i.e. 10ms configured is 40ms RTT.

Make config live:

service ipfw restart

Check with:

ipfw pipe 1 show

65

VM4 – Remote Open vSwitch

Build as per VM2, but with the following differences:

 Adapter2 connects to network WAN3-3

 Adapter3 connects to network WAN3-4

 Adapter4 connects to network WAN3-5

 The config added to /etc/network/interfaces is:

auto br0
iface br0 inet static
address 192.168.56.3
network 192.168.56.0
netmask 255.255.255.0
broadcast 192.168.56.255
gateway 192.168.56.1

up route add -net 192.168.57.0/24 gw 192.168.56.1 dev br0

VM5 - Client 1

Build as per VM1, but with the following differences:

 Adapter2 connects to network WAN3-4

 The config added to /etc/network/interfaces is:

auto eth1
iface eth1 inet static
address 192.168.56.11
netmask 255.255.255.0

up route add -net 192.168.57.0/24 gw 192.168.56.1 dev eth1

 The /etc/hostname file was set as follows:

pc1

 The entry in /etc/hosts file for 127.0.1.1 was updated as follows:

127.0.1.1 pc1.dev.example.com pc1

VM6 - Client 2

Build as per VM1, but with the following differences:

 Adapter2 connects to network WAN3-5

 The config added to /etc/network/interfaces is:

auto eth1
iface eth1 inet static
address 192.168.56.12
netmask 255.255.255.0

up route add -net 192.168.57.0/24 gw 192.168.56.1 dev eth1

66

 The /etc/hostname file was set as follows:

pc2

 The entry in /etc/hosts file for 127.0.1.1 was updated as follows:

127.0.1.1 pc2.audit.example.com pc2

Appendix C - Troubleshooting
The following commands may come in useful for troubleshooting and diagnostics.

Open vSwitch Troubleshooting

Note: may need to precede commands with 'sudo' on software implementations of Open

vSwitch.

General Switch Commands

Show the general state of the Open vSwitch:

ovs-vsctl show

Note that the switch name is used in some of the following commands, if the name of the

switch is not 'br0' then replace with the appropriate name.

OpenFlow Commands

Show OpenFlow config:

ovs-ofctl show br0

Display OpenFlow flows:

ovs-ofctl dump-flows br0

Snoop the OpenFlow messages:

ovs-ofctl snoop br0

View switch port statistics:

ovs-ofctl dump-ports br0

Change OpenFlow Version

Change OpenFlow Version to just v1.0:

ovs-vsctl set bridge br0 protocols=OpenFlow10

67

Change OpenFlow Version to 1.0, 1.2 & 1.3:

ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow12,OpenFlow13

Check Queueing

Check Queueing Configuration:

ovs-vsctl list port <interface>
ovs-vsctl list qos
ovs-vsctl list queue

Display Queue Stats:

ovs-ofctl queue-stats br0

Pica8 Troubleshooting

Logs

Logs are stored in /tmp/log/messages

Dummynet Troubleshooting

Check ipfw configuration:

ipfw show

Check pipe:

ipfw pipe 1 show

Appendix D - nmeta Caveats

Caveats

 Updates required to support identity for systems with multiple NICs

 As noted, further work is required on data management to prevent table size bloat.

 The system only supports OpenFlow version 1.0.

 YAML creates an unordered dictionary, require strict order for policy

 Written and tested on Python version 2.7.5. May not work as expected on Python 3.x

Future Enhancements

 Complete data management work

 Consider event driven tidy-up too, i.e. port goes down, purge any port related data

from tables

68

 Improve TC policy functionality by adding nesting ability etc.

 Add support in static module for IP address range and netmask matches

 Add support for IPv6

 Add support for IP multicast

 Add support for IP fragments

 Add support in identity module for IEEE 802.1x

 Consider moving tables to a database

 Improve API functionality

 Add support for OpenFlow versions 1.2 and 1.3 including meters

 Add support for VLANs and other similar network virtualisation features

 Add support for distribution of controllers such that flow metadata maintains loose

consistency across the distributed system allowing horizontal controller scaling

 Add security features. Really this should be top of the list. How can DoS of the system

be prevented? As the system receives packets from the network, is it vulnerable to

exploits sent in network packets not directly to it? How can this be mitigated?

 Make the routing/switching configurable (currently just a basic switch). Leverage

other systems that do this rather than writing something new.

 Make classifiers plug-ins so that they can be developed and added/removed without

requiring changes to the main code.

