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Abstract 

The emergence of the Internet of Things (IoT) combined with disparate device 

count and link capacity variation across the enterprise is driving the need for 

improved traffic classification to address enterprise networking issues. Today, a 

detailed understanding of network traffic is required to configure traffic 

classification for uses such as Quality of Service (QoS) and security; however this 

becomes impractical as IoT vastly increases the number of different device types 

and flows on the network. A solution is required that allows simple definition of 

classification policies with automated configuration deployment, so that 

organisations can apply and update traffic classification efficiently and 

effectively. This report analyses traffic classification options for enterprise 

networks in the era of IoT, proposes an architecture that leverages the capabilities 

of Software-Defined Networking (SDN) and presents results from a prototype 

implementation. 
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Chapter 1 

Introduction 
The emergence of the Internet of Things (IoT) combined with a requirement for Quality of 

Service (QoS) in enterprise networks is driving a need for improved traffic classification 

techniques [1] [2]. This project investigates potential solutions to the real world problem of 

accurate and efficient traffic classification in enterprise networks. It proposes a solution to the 

problem and evaluates the functional performance of a prototype system.  

 1.1. Context 

At its most fundamental, the usage of a data network can be described by two interlinked 

classes; firstly what connects to the network, and secondly how these participants 

communicate over the network. 

In the analogy of a legacy circuit-switched Public Switched Telephone Network (PSTN), the 

first class describes the phone lines that connect to the network (i.e. phone number, physical 

address, billing name) and the second class the calls made over the network (i.e. calling-party, 

called-party, start time, duration).  

In a packet-switched data network, this information about data (metadata) is very important 

for a number of use cases, including prioritisation and security. Conversation metadata 

(information about what communications occur) often has a gap between what the network 

knows (i.e. communications between pairs of network addresses) and what type of 

conversation actually occurs. The field of traffic classification attempts to fill this gap by 

identifying packets (or flows of packets) into types, so that they may be better understood, as 

per "Flow Enrichment" in Figure 1: 

 

 

Figure 1 - Network Usage Metadata 
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Traffic classification is an easily over-looked problem. There is a temptation to move directly 

to questions of how to treat the traffic (i.e. what level of service should that type of flow 

receive?) without consideration first for how to identify the traffic. An enterprise network (a 

private network dedicated to carrying data communications for a single organisation) may 

have thousands, if not millions of packets in transit at any given moment, so it is a non-trivial 

exercise to identify the type of individual packets. 

Traffic classification metadata is an important input into decisions regarding traffic treatment 

(i.e. decisions about priority and routing) as well as for other use cases such as security [3], 

billing [4] [5] and troubleshooting. A common consumer of traffic classification metadata is 

Quality of Service (QoS). 

Using the previous PSTN analogy, QoS is required to ensure that calls to emergency services 

can proceed even when the network is overloaded with calls (a regulatory requirement). This 

is a simple classification task, as it is only necessary to check if the destination number is a 

member of the set of emergency services numbers to know if the call is an emergency 

services call. Traffic classification in a packet-switched data network is considerably more 

complicated, as identifying the type of conversation often requires analysis of more 

parameters than just the destination address. For example IP addresses may be assigned 

dynamically so are not necessarily a reliable indicator of identity, and popular IANA assigned 

TCP port numbers such as 80 and 443 are now used to carry a wide variety of traffic types. 

Traffic classification and QoS are often used in enterprise networks to ensure acceptable user 

experience of applications, especially time sensitive ones such as voice and video, and critical 

line-of-business applications. Failure to implement QoS to protect these applications can 

result in poor user experience (examples: unintelligible audio, slow application response etc.) 

when the network is congested.  

QoS is prevalent in enterprise networks is due to three conditions that are likely to exist: 

1. Enterprise networks often have Service Level Agreements (SLA) between the operator of 

the network and business unit(s) [6]. This drives the adoption of network QoS as a means 

to ensure that Key Performance Indicators (KPI) can be met or exceeded; and 

2. Enterprise networks may have a Wide Area Network (WAN) component that has lower 

bandwidth and higher latency than Local Area Networks (LAN), giving rise to the 

potential for congestion (contention for the use of limited bandwidth) and other 

impediments such as transmission and propagation delay. These conditions require 

effective QoS to protect service levels for important traffic flows.  

3. Enterprise networks are generally under the control of a single entity, simplifying the 

deployment and maintenance of QoS, as it is not necessary to obtain the cooperation of 

multiple parties as is the case with public networks. 

The advent of the Internet of Things (IoT) poses a growing challenge to effective traffic 

classification in enterprise networks. IoT is a fundamental change whereby a massive and 

diverse range of objects are becoming network addressable. This may be the networking of 
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previously unconnected electronic devices (i.e. security cameras, building management 

systems), but is also the embedding of networked computers into previously non-electronic 

items (i.e. signage, building structures, clothing). It is estimated that the number of Internet-

connected devices will grow from approximately 2.5 billion in 2010 to between 50 and 100 

billion by 2020 [7].  In enterprise networks this manifests itself as: 

a. An increase in the total number of IP-connected devices 

b. An increase in the number of distinct device types (increasing device heterogeneity) 

c. An increase in the volume of concurrent flows on the network 

Scalable and accurate traffic classification is already a difficult problem. Roughan et al. say 

traffic classification "...is a challenging task, because many enterprise network operators who 

are interested in QoS do not know all the applications running on their network..." [8]. With 

the advent of IoT, the number of networked applications in an enterprise will likely grow 

significantly as new uses are found for the services that they provide. 

A solution is required that at least partially automates traffic classification configuration so 

that organisations can efficiently and quickly apply and monitor traffic classification at a 

policy level, without having to make configurations on a per-flow, per-device or per-port 

basis. 

 1.2. Software-Defined Networking 

Software-Defined Networking (SDN) is a promising new framework for traffic classification. 

It separates the forwarding and control functions of networking devices, making it possible to 

logically centralise control and apply a programmatic approach to the operation of a network, 

as per Figure 2 

 

Figure 2 - Monolithic vs Software-Defined Network Paradigms 
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SDN is heralded as bringing innovation to the field of networking which has become subject 

to "ossification" [9] due to predominance of vertically integrated monolithic networking 

equipment. Monolithic networking cannot on its own deliver a system-wide view of flows, 

whereas this is inherent to the SDN architecture. Traffic classification in monolithic 

architecture must be run in separate 'islands' without a view of the complete system. This is 

both limiting and inefficient. The system-wide visibility of flows and potential for rapid 

innovation make SDN an appealing choice as the platform on which to develop improved 

traffic classification. For these reasons, this project proposes a solution that leverages the 

capabilities of SDN to deliver effective traffic classification for enterprise networks within the 

era of IoT. 

 1.3. Report Structure 

The remainder the report is structured as follows. Chapter 2 describes the problem in more 

detail, including analysis of related research. Chapter 3 outlines the design of an SDN-based 

traffic classification solution along with a description of the prototype system built for this 

project. It concludes by posing a hypothesis to be tested. Chapter 4 outlines the methodology 

and results from the evaluation of the prototype system against the hypothesis and chapter 5 

presents conclusions. The appendices contain supplemental information.  
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Chapter 2 

 2. Problem Description and Analysis 

 2.1. Problem Statement 

Today, a detailed understanding of enterprise network traffic is required to design and 

configure traffic classification; however this becomes impractical as the number of different 

device types and hence flows on the network increases 

 2.2. Requirements for Traffic Classification in the Enterprise 

Enterprise networks are heterogeneous; it is not possible to specify a standard example. 

Requirements are thus surmised from common conditions that may exist. Based on the 

experiences of the author, having worked in enterprise network design roles for more than 15 

years, operators of enterprise networks are likely to have functional traffic classification 

requirements as per Table 1: 

Requirement Description Rationale 

Selective 

Determinism 

Ability to set 

deterministic classifiers 

Operators require consistent traffic classification behaviour 

for specified traffic types, so that actions (i.e. QoS 

treatment) can be performed on matching flows with a high 

degree of predictability. 

Agility Ability to classify 

unexpected traffic 

flows 

A key tenet of the problem statement is that there are now 

too many flow types on the network for the operator to 

specify them all. Traffic classification must be able to 

intelligently classify unexpected flows. 

Application 

Awareness 

Can classify dynamic 

flows based on 

knowledge of 

application behaviour 

Can appropriately classify related flows started from an 

initial known protocol. Some applications start extra 

dynamic connections (i.e. NFS, SIP starts RTP, etc.).  

Identity 

Awareness 

Support for 

classification based on 

endpoint identity  

When devices were static it was relatively simple to write 

classification rules based on IP subnet/supernet as a 

surrogate for identity. With the proliferation of portable 

devices and wireless connectivity, IP addresses or subnets 

are no longer tied to a particular device and thus are not a 

good indicator of identity. For these reasons, operators 

desire a method to include other elements of identity in 

traffic classification rules. 

Timeliness Classifications are 

made within a short 

period of time, ideally 

before a large flow has 

had time to ramp up.  

Timely classification is required for online consumers of 

traffic classification data, such as QoS and traffic 

engineering. There is no point applying QoS treatment to a 

flow if the classification data is not available until after the 

flow has finished. Timely classification is known as online 

classification [3]. 

Table 1 - Enterprise Traffic Classification Requirements 

A number of non-functional requirements also exist. The system must be efficient so that it 

does not place undue load on network equipment or links, and does not materially degrade the 
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performance of the network. The system should make traffic classification results visible so 

that operators can check the validity of the results, report on them and use them for 

diagnostics. The system should be simple to operate. It should also be secure, scalable and 

highly available. 

A common challenge identified in traffic classification literature dealing with Internet traces 

is the difficulty in establishing a ground truth from which the accuracy of traffic classification 

can be assessed during development and testing [8]. This is less of a problem in an enterprise 

network as operators are likely to have specific knowledge of their main applications and their 

features.  

 2.3. Categorising Traffic Classification Methods 

Methods for classifying traffic can be broadly distributed into one or more of the following 

categories, as listed in Table 2: 

Method Description 

Static Classification Match any combination of parameters that appear in packet headers 

(i.e. link, network or transport layer features). Also referred to as a 

port-based approach [3] 

Trust Trust the end device to signal the classification of its traffic flows via 

some means to the network (i.e. setting DSCP field in IP packets). 

This is effectively a special case of static classification. 

Identity Identity-Based Classification combines a method of checking device 

identity with a traffic classification policy tailored for this identity 

[7]. 

Payload Inspection Payload inspection, also referred to as Deep Packet Inspection (DPI) 

[3], involves pattern matching against packet payload (i.e. 

application-specific data encapsulated by the transport layer). 

Statistical Classification A statistical approach that builds classification signatures based on 

observed behaviour of traffic flows. Traffic metrics such as packet 

size and session duration are used in combination with statistical 

techniques (may include machine learning) to classify flows. 

Table 2 - Traffic Classification Methods 

Each method has strengths and weaknesses, as discussed in [2]. 

 2.4. Analysis 

Traffic classification is a classical QoS problem. While a broad range of academic papers 

cover traffic classification and QoS, there is a paucity of papers addressing the unique 

challenges of traffic classification in an enterprise environment, with the notable exception of 

[10]. The lack of focus on enterprise networks from the academic community may be due to 

the closed nature of networking systems used by many enterprises, and commercial privacy 

concerns that prevent researchers from being able to get sharable traces [3]. Additionally, the 

mechanics of enterprise networks, where many parallel paths can exist, present challenges to 

obtaining representative packet captures, as noted in [11].  
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Enterprise networks are a focus for this project as they a) have a requirement for improved 

traffic classification, b) are ripe for disruption due to their closed nature of their existing 

networking systems, c) are underrepresented in academic literature and d) are an area that 

receives substantial investment, with 7.5 billion US dollars spent worldwide on routers, 

switches and wireless LAN infrastructure in Q2 2014 [12]. 

 2.5. Possible Solutions 

Possible solutions proposed for traffic classification in enterprise networks in the era of IoT 

include: 

Payload Inspection 

Various papers propose traffic classification schemes that use payload inspection methods, 

including LASER [13] and PortLoad [14].  

Payload inspection (also known as Deep Packet Inspection (DPI)) involves pattern matching 

against packet payload data. Kim et al. [4] note that there are substantial drawbacks as 

payload inspection is "...resource-intensive, expensive, scales poorly to high bandwidths, does 

not work on encrypted traffic, and causes tremendous privacy and legal concerns..." [4]. The 

last point is generally moot in an enterprise network as employees usually waive their privacy 

rights through acceptance of the terms of their employment contract, but the point about 

encryption is valid as more applications move to secure connectivity and thus payload that 

cannot be inspected [3] [15]. 

Payload inspection relies on signatures and thus has the standard strengths and weaknesses 

associated with this type of approach - a low rate of false positives but a higher rate of false 

negatives [13]. With the heterogeneity of IoT devices and their flow types (who would write 

signatures?), it is unlikely that payload inspection on its own will provide much benefit for 

traffic classification. 

Statistical Classification 

Statistical classification schemes are popular in academic papers. Examples include [15], [16], 

[17] and [18]. Statistical classification [8] builds classification signatures based on observed 

behaviour of traffic flows. Traffic metrics (referred to as features) such as packet size and 

session duration are used in combination with statistical techniques (including machine 

learning) to classify flows. This approach has the advantage that it simplifies configuration for 

traffic classification. It may however have limited adaptability to new flow types that it was 

not trained for, and removes deterministic control favoured by operators (i.e. fails Selective 

Determinism requirement). If fire alarm packets fail to get to their destination, it might be 

difficult to argue that the statistical algorithm used was the appropriate method of traffic 

classification (or indeed what classification it applied). Meeting the requirement for timeliness 

may be a challenge. Some papers attempt to address this through specific hardware, software 

and/or protocol updates. Interestingly Sanping Li et al. describe a clever system for 

processing statistical classification data at a high rate of throughput, but then specify that 
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"After a flow has timed out (packets matching that flow have stopped arriving at the switch), 

those flow features will be encapsulated and sent to the controller" [18]. This does not meet 

the requirement for timeliness as the traffic classification determination is not made until after 

the flow has completed. 

Multiclassifier 

Roughan et al. [8] suggest that statistical classification could be augmented by combining 

with static classification to address determinism and improve accuracy. This view is echoed 

more recently by Dainotti et al. [3], and by Khalife et al. [19] in their 2014 paper on traffic 

classification taxonomy. 

Role of SDN in Solutions 

SDN decouples the control plane and data planes, allowing the control plane to be logical 

centralised. The logical centralisation of network control gives rise to innovation 

opportunities not afforded by discrete monolithic network architecture. For instance, it 

becomes possible to have a system-wide view of the network flow state. 

System-wide awareness of flows in monolithic networks requires bespoke solutions and/or 

use of identifiers carried within or around packets. Examples of the latter include use of the 

differentiated services field in IP packet headers [20].  In SDN architecture, the controller has 

a logically centralised view of the flow, removing the requirement to carry such 

administrative information in packets. This gives rise to innovation through the ability to 

write applications that leverage system-wide flow information. 

SDN may also be able to assist with a common traffic classification research problem where 

privacy considerations prevent real network traffic from being studied. A possible solution is 

to supply the analysis system to organisations (i.e. enterprises) to run themselves, with only 

the resulting analytical data shipped back to the researchers [3]. This ensures that the research 

workers have no direct access to potentially private network data. SDN, where deployed on 

production networks, could allow researchers to construct systems that carry out traffic 

analysis without any requirement to install physical hardware. The system can be 

implemented as additional software on the SDN controller layer. 

 2.6. Hypothesis 

This project proposes the following hypothesis: 

SDN architecture is a suitable foundation for development of systems that can meet the 

functional traffic classification requirements of enterprise network operators. 

Specifically, the project will test the following sub-hypothesis: 

1. A traffic classification system built on SDN architecture can accurately classify 

traffic with static classification method 
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2. A traffic classification system built on SDN architecture can accurately classify 

traffic with identity classification method 

3. A traffic classification system built on SDN architecture can accurately classify 

traffic with payload classification method 

4. A traffic classification system built on SDN architecture can accurately classify 

traffic with statistical classification method 

 2.7. Chapter Summary 

In this chapter, the problem of traffic classification in enterprise networks and requirements 

has been stated and traffic classification methods defined. Next relevant academic research 

has been summarised along with possible solutions. Finally, a hypothesis and sub-hypotheses 

have been posed to prove. 

In the following chapter a design for a SDN-based traffic classification system is outlined, and 

a prototype system that was developed for this project is detailed.  
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Chapter 3 

 3. Design 
This chapter proposes a design for a SDN-based traffic classification system, and introduces 

the prototype system that was developed for this project.  

 3.1. Architecture 

This project leverages SDN architecture by classifying new flows at the SDN controller layer, 

thus leveraging the software flexibility and processing power that SDN affords. Once a flow 

is classified, fine-grained classifiers are installed to the switch packet forwarding tables for 

efficient switching without further recourse to the controller.  

Switch matches are fine-grained so that all new flows observed by a switch are sent to the 

SDN controller classifiers. This reactive approach facilitates system-wide flow visibility and 

application of policy to classifier configuration. 

The system is a framework supporting multiple classification methods, and can thus be 

described as a multiclassifier (refer previous chapter). Classifiers can be specific (return a 

Boolean describing whether or not a match is made) or general (return parameters describing 

what they classified). Classifiers can be combined in a logical structure through use of a 

policy. 

OpenFlow 

OpenFlow [21] is a well-known architecture and protocol for establishing and maintaining 

control of the data plane. OpenFlow was chosen for the role of SDN protocol in the design 

due to its current popularity, large development community and non-proprietary nature. In the 

OpenFlow architecture, simple traffic classifiers, called flow entries, are installed onto 

switches. A flow entry contains match fields which vary dependant on the OpenFlow version. 

Where implemented in hardware, flow entry classifiers have the advantage of being relatively 

fast, but may have capacity and capability constraints [9]. As they occur within the data plane, 

their capabilities are dependent on the particular switch implementation, and they cannot 

directly leverage network knowledge outside of the switch view. The trade-off between 

latency and capability between hardware switch, software switch and SDN controller based 

classifiers is shown in Figure 3: 
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Figure 3 - Representative Comparison of Classifier Efficiency and Capability 

Hardware switch classifiers are relatively fast, but their capability is often limited due to 

constraints of the ASICs on which they are built. Software switch classifiers may be slower 

than their hardware equivalents, but are likely to have better feature support as their 

development is not dependant on support in silicon. SDN classifiers are slower again due to 

the time taken to send packet(s) to the controller; however the benefits of software-

development freedom, along with a system-wide view of flows, are judged to out-weigh the 

performance downsides in the architecture used by this project. All flows are classified 

initially by SDN controller classifiers and fine-grained classifiers are installed to switches 

once classification determinations are made. 

 3.2. Introduction to the Prototype System 

A prototype SDN multiclassifier framework was developed for this project. It has policy-

based classifier controls and produces enriched metadata output. The prototype system is 

called nmeta, short for network metadata. It runs on top of the Ryu [22] SDN controller. Ryu 

was chosen due to use and familiarity within the Victoria University ECS faculty. Ryu is 

written in the Python [23] programming language and nmeta is also written in Python to take 

advantage of existing code development on Ryu. 

The nmeta framework is novel in that it is the first solution (that the author is aware of) to 

employ a policy-based multiclassifier system on top of SDN architecture to provide extensible 

output in the form of enriched flow metadata. 

The nmeta framework is a good solution to the functional requirements as: 

 The capability to set policy statements specifying traffic feature match parameters and 

actions meets the selective determinism requirement 

 The requirement for agility can be met by sending unmatched traffic to a statistical 

classifier 

 Application awareness can come from policy that directs payload inspection on 

specific flow types (with knowledge of the protocol). Protocols that establish dynamic 

flows can be matched through payload inspection of the control packets. 
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Flow Table Entry
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 Identity Awareness comes from policy statements that reference identity metadata 

 3.3. Design Principles 

Nmeta employs a modular design that decomposes major tasks into separate modules with 

public interfaces and hidden implementation (note that Python has limitations in this area 

[24]). This standard software design principle improves maintainability of code, since changes 

within a module are less likely to have unforeseen consequences outside the module. 

The nmeta code has been written in partial compliance to the Python PEP-8 [25] coding 

conventions. Time limitations have prevented full compliance from being achieved. 

Components of nmeta are grouped into regions that share a common purpose. 

The nmeta Core region (refer orange shaded area in Figure 4) manages communications with 

switches (i.e. processing of packet-in and switch messages, adding flows etc) via Ryu and 

handles incoming REST API calls via the Ryu Python Web Server Gateway Interface (WSGI) 

libraries. It also reads in the main configuration file on initialisation. There is only one module 

in this region, nmeta.py. Packet-in messages are processed sequentially through the 

_packet_in_handler function. 

The Traffic Classification region (refer blue shaded area in Figure 4) classifies packets against 

a traffic classification policy and returns results to nmeta Core.  The tc_policy.py module 

reads in a traffic classification policy on initialisation, evaluates incoming packets against the 

policy and sends them to the appropriate classifier module (if required). The four classifier 

modules tc_static.py, tc_identity.py, tc_payload.py and tc_statistical.py are discussed in a 

following section. 

The Flow Metadata region (refer purple shaded area in Figure 4) is called after forwarding 

decisions are made so that they can be incorporated in the resulting metadata. It stores the 

enriched metadata in a Python data structure called a dictionary [26], and controls the 

installation of flow match entries to switches. 

The Metadata Consumer - QoS region (refer the red shaded area in Figure 4) is a simple stub 

that provides a QoS treatment (queue assignment) based on matching a QoS flow metadata 

tag against a simple QoS policy. Note that QoS treatment is not in scope for this project so 

this region has been implemented as just the bare minimum required to run the test use cases. 

All communication from the traffic classification region to the flow metadata region is via the 

nmeta core region. This rule is to ensure that a future forwarding module has visibility of 

traffic classification status messages. 

 



14 

 

 

Figure 4 - nmeta logical architecture 

 3.4. Traffic Classification Modules 

This section describes the modules with the traffic classification region. 

Traffic Classification Policy Module 

The traffic classification policy module reads in a policy configuration file called 

tc_policy.yaml from the config subdirectory on initialisation. This file is in YAML format and 

describes the policy controlling the use of classifiers. The file is validated to ensure it contains 

only supported values. The public function check_policy is called on every packet-in event so 

is written with efficiency in mind. It validates the incoming packet against the policy and 

decides what, if any, classifiers should be invoked. It also checks if packets need to be seen by 

the identity module and if so calls the appropriate identity function. Match results, and any 

other metadata, are returned to the nmeta core region. 

Static Classification Module 

Static classification is implemented as a simple if/elif/else Python block matching policy 

attributes, and checking their validity against the supplied packet. A Boolean is returned 

indicating the result of the match. 

module: nmeta.py

class: NMeta

module: tc_policy.py

class: TrafficClassificationPolicy

 

call tc_policy.check_policy 

function: check_policy

loop through policy rules:

if (_check_match) then return actions 

function: _check_match

Check passed policy rule conditions against 

packet and return boolean for match

return any actions

module: flow.py

class: FlowMetadata

Make forwarding decision call flow.metadata

module: tc_payload.py

class: PayloadInspect

Packet-In Send-Packet
Modify Flow 

Entry

module: tc_statistical.py

class: StatisticalInspect

module: tc_identity.py

class: IdentityInspect

module: qos.py

class: qos

pass packet, 

forwarding, actionspass packet

return any modify 

flow entry

Packet sent to switch Packet sent by switch

Ryu SDN Controller

function: update_flowmetadata

OpenFlow

function: lldp_in

_sys_identity_table

function: check_identity

_tc_policy

function: check_policy

_qos_policy

Passed a set of Flow Actions. Check if 

against QoS policy rules return any 

treatment action

flow table

LLDP packet

function: _check_policy_rule

Passed a set of Flow Actions and a QoS 

policy rule. Check if against QoS policy rules 

return any treatment action

_fm_table

Do send packet 

and modify flow 

entry

function: check_statistical function: check_payload

Metadata Consumer - QoS

1) Check QoS to see if special queueing should be applied 

2) Update Flow Metadata Table

3) Return a Flow Match (if required) and Actions to install to switch

_nic_identity_table

Traffic Classification

Flow Metadata

module: tc_static.py

class: StaticInspect

function: check_static

function: ip4_in

IPv4 packet

_fcip_table

function: <specific classifier>

_fcip_table

function: <specific classifier>

table 

maintenance

class: RESTAPIController function: list_flow_table

function: get_fm_table

function: _packet_in_handler 

REST API Calls:
nmeta/flowtable/

nmeta/identity/nictable/

nmeta/identity/systemtable/

function: maintain_fm_table

nmeta

Core
function: list_identity_nic_table

function: list_identity_system_table
function: wsgi

function: get_identity_nic_table

function: get_identity_system_table

function: maintain_identity_tables



15 

 

Identity Classification Module 

The identity classification module records the identity of endpoints that broadcast Link Layer 

Discovery Protocol (LLDP) messages. LLDP is widely supported, but not secure. 

Identity classification can be set to match against values chassisid or systemname LLDP 

attributes. The match can be a partial match defined as a regular expression for systemname. 

Identity information is stored in two dictionaries, one for Network Interface Controller (NIC) 

identities and the other for system identities. The system dictionary references entries in the 

NIC dictionary and vice versa. Two dictionaries are required since an endpoint may have 

multiple NICs. LLDP Packet-in events are used by the identity module to accumulate system 

information and likewise, IPv4 Packet-in events are used to accumulate MAC address to IPv4 

address linkages in the NIC dictionary. 

Matching against a chassisid or systemname value requires first checking if the value is 

present in the system dictionary. If present, the referenced NIC dictionary entry (caveat: code 

needs updating to deal with multiple NICs) is retrieved and the packet is compared to see if it 

matches against the MAC or IPv4 values. If it does, a True value is returned otherwise False.  

Payload Classification Module 

It is often necessary to observe multiple packets in a flow before payload is present, and hence 

the payload classification module must understand flows [3]. Nmeta defines a bi-directional 

TCP flow as a 4-tuple of ip_a, ip_b, tcp_port_a, tcp_port_b. Packets can be matched as a flow 

in either direction as long as the TCP port numbers pair correctly with the IP addresses. A 

data structure called the Flow Classification In Progress (FCIP) table (a Python dictionary) is 

used to store flow classification state. A continue_to_inspect flag is used to indicate to the 

flow module that it should not install a flow to the switch as more packets need to be 

observed. 

A single specific payload classifier is implemented in nmeta for matching FTP control and 

data traffic. This FTP payload classifier does an initial static match on packets with source or 

destination TCP port 21 to filter out FTP control traffic with minimal overhead. Matching 

packets are checked to see if they have a TCP payload and if they do this is checked for a 

match on the last 8 hex characters against pattern '504f5254'. Payload that matches this is 

dissected to obtain the FTP dynamic port number. If a dynamic port number is obtained this is 

added to the FCIP table so that packets in the dynamic port flow will be classified as FTP. 

Statistical Classification Module 

Statistical classification also requires an understanding of flows. The statistical classification 

module has the same concept of flows, FCIP data structure, and ability to signal whether or 

not to install a flow as the payload classification module. Where it differs, is in the ability to 

return actions, rather than just a Boolean for a match. The ability to return actions is required 

to be able to indicate between multiple possible results, such as classifying a flow to one of n 



16 

 

traffic types. Arguably, payload inspection would require this same capability if a general 

purpose payload classifier was developed, and it would be simple to retrofit. 

The following parameters of a bi-directional TCP flow are recorded by the module: 

 Packet arrival times 

 Packet sizes 

 Packet directionality 

 TCP flags 

 TCP window size 

 TCP acknowledgement numbers 

Packet arrival times record when a packet arrives at the classifier module. Ideally, to remove 

variability due to backhaul transmission and controller processing, the value would instead be 

the arrival time of the packets at the switch. The accuracy of module arrival time was found to 

be sufficient for this project, but it is worth noting that OpenFlow Feature eXtraction (OFX), 

as proposed by Sanping Li et al. [18], could provide access to more accurate data in future if 

implemented by switch manufacturers. 

TCP window size presented a challenge, since the SYN and SYN+ACK packets carry a 

directional Window Scale option in the TCP header [27]. Knowledge of this value, per 

direction, is required to be able to compute the actual TCP window size on subsequent 

packets from their indicated value. Packets with the TCP.SYN flag set are parsed for Window 

Scale option, and if present it is recorded in the FCIP flow record, noting the direction. These 

values are then used on subsequent packets to calculate the true window size. 

A single demonstration statistical classifier, referred to as statistical_qos_bandwidth_1, was 

developed for this project to demonstrate a basic statistical classification capability. It marks 

aggressive flows so that QoS can treat them as less than best effort class, thus protecting 

traffic in the default class. 

The statistical_qos_bandwidth_1 classifier was limited to only analysing TCP traffic for 

reasons of simplicity. To develop the classifier, traffic flows of the following protocols were 

analysed: 

 SSH (Interactive) 

 SSH (SCP) 

 Iperf (TCP) 

 HTTP 

The results showed that Iperf had a specific traffic profile characterised by a rapid increase in 

packet size at packet 5 and consistently low interpacket arrival time deltas from packet 4 

onwards as showing in Figure 5 and Figure 6. 
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Figure 5 - Observed Packets vs Max Packet Size 

 

Figure 6 - Last Directional Interpacket Arrival Delta 

Based on the above results, and drawing inspiration from papers such as [15], the 

statistical_qos_bandwidth_1 classifier was configured as follows: 

 Only match TCP flows (for simplicity) 

 Carry out analysis of the flow after 5 packets observed: 

o Retrieve the maximum packet size value (P) 

o Calculate the minimum directional interpacket arrival time delta (Dmin) 

o Calculate the maximum directional interpacket arrival time delta (Dmax) 

 Interpacket ratio (I) calculated from Dmin / Dmax. Note the use of a ratio to reduce the 

influence of a base latency on the result. 

 Threshold for maximum packet size (TPmax) set to 1200 (bytes) 

 Threshold for minimum interpacket ratio (TImin) set to 0.25 

0

200

400

600

800

1000

1200

1400

1600

4 5 6 7 8 9

M
ax

im
u

m
 O

b
se

rv
ed

 P
ac

ke
t 

Si
ze

 (B
yt

es
)

Observed Packets in Bi-directional Flow

Observed Flow Packets vs Max Packet Size

SSH (Interactive)

SCP

HTTP

Iperf TCP

Iperf has 
consistently large 
packets from packet 
5 onwards

0

0.05

0.1

0.15

0.2

0.25

0.3

3 4 5 6 7 8 9

Ti
m

e
 (

Se
co

n
d

s)
 S

in
ce

 L
as

t 
Sa

m
e

 D
ir

ec
ti

on
 F

lo
w

 P
ac

ke
t

Observed Packets in Bi-directional Flow

Last Directional Interpacket Arrival Interval

SSH (Interactive)

SCP

HTTP

Iperf TCP

Iperf has 
consistently low 
interpacket arrival 
times from packet 
4 onwards



18 

 

 If (P > TPmax) and  (I < TImin) then return action specifying flow treatment as 

low_priority otherwise default_priority   

The thresholds are set to match Iperf traffic with its very aggressive profile, but not to match 

other flows types. 

Figure 7 shows an example statistical dictionary record for an Iperf flow: 

 

Figure 7 - Example Statistical Flow Entry Dictionary (code v6.2) 

 3.5. Nmeta Supplementary Features 

Configuration 

Nmeta configuration is separated from code where practical to reduce need to modify code 

and allow customisation that is persistent through software upgrades. Configuration is stored 

in text files in the config subdirectory. Configuration files are written in YAML [28] format. 

YAML was chosen as a format due to its concise nature, human readability and capability to 

represent arbitrary data structures. Nmeta leverages a Python YAML module to read in 

configuration files, ensuring their compliance to YAML standards, translating them into 

Python dictionaries. 

Nmeta carries out additional checks to ensure that dictionaries representing configuration files 

contain only expected attributes and values. Where exceptions are found, they are logged with 

a clear explanation, and where necessary the program is halted at this point to prevent 

undesirable behaviour. 

Data Management 

Various dynamic data structures exist within nmeta requiring maintenance to prevent 

unchecked growth that compromises system performance and/or availability. Nmeta runs 
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table maintenance at the end of the packet in handler to minimise delays to packet out and 

flow install events. Timers are consulted, and if the delta from the previous maintenance is 

greater than the configured threshold then maintenance functions in modules are called to 

prune entries that are older than define maximum ages. 

Time constraints prevented a more thorough data management regime from being 

implemented. Ideally, there should also be configurable maximum table size limits to prevent 

resource exhaustion, and also management of flow table sizes on switches. 

REST API 

A REST API provides read-only access to flow and identity metadata. 

 3.6. Non-Functional Considerations 

The author chooses to out-of-scope all non-functional requirements, as project time 

constraints and restrictions on maximum report size prevent this sizeable area from being 

addressed properly. A few noteworthy considerations are listed in this section. 

Performance Considerations 

Nmeta is a single threaded Ryu application so is susceptible to blocking [29]. The REST API 

shares the same thread, so could cause performance degradation if called on a large dictionary 

while the system is under load. 

There is an opportunity to improve performance for situations where classifiers are used that 

need to see more than the first packets in a flow (i.e. payload and statistical) on flows that 

cross multiple switches.  The current nmeta behaviour is to require a packet-in from each 

switch in each direction until the classification has been made. Multiple switches result in 

duplicate packet-in events being sent to the controller that add no value. Nmeta is configured 

to ignore these duplicate packet-in events; however it is worth noting that they impact 

performance as they add load to the backhaul and controller. They also delay the forwarding 

of the packet until the controller has sent a packet-out message. If there are n switches and x 

packets must be observed then there will be x(n-1) duplicate packet-in events. To improve this 

situation, the controller could install flow table entries to all but one of the in-path switches, 

and update these entries if required based on the traffic classification determination. 

Security Considerations 

Enterprises take security very seriously. It is unlikely that SDN will take hold in enterprises 

until it can be shown to be as secure as monolithic networking. As detailed later in this 

document, it appears that SDN is lacking maturity in the area of security. 

Note that OpenFlow traffic should be protected to ensure confidentiality and integrity. In 

nmeta OpenFlow traffic is passed in plain text, which is great for troubleshooting, but not for 

security.  
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Scalability Considerations 

It should be possible to scale controllers horizontally using some means to maintain loose 

consistency of data; however this has not been investigated by this project. 

 3.7. Chapter Summary 

In this chapter, a design for a SDN-based traffic classification system has been outlined, and a 

prototype system developed for this project has been presented in detail. The following 

chapter details the methodology and results of the evaluation of the prototype system and 

concludes by using the results to prove the hypothesis. 
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Chapter 4 

 4. Evaluation 
This chapter evaluates the functional performance of the nmeta prototype system in various 

traffic classification scenarios. 

 4.1. Evaluation Methods 

Formal methods exist for evaluating the performance of traffic classification, such as overall 

accuracy, precision, recall and F-Measure [3] [4], however these are too rigorous for the 

requirements of a COMP489 project. Instead, evaluation will focus on the QoS use case as it 

can show clear and tangible benefits. 

The prototype nmeta framework has been written for this project to test the validity of the 

hypothesis. It is used in all the evaluation tests as the traffic classifier framework. 

 4.2. Lab Environments 

Lab environments are required to partially simulate an enterprise network with a WAN 

component, so that suitability and performance of the proposed solution can be tested and 

analysed. 

Inclusion of a simulated WAN is important to demonstrating the feasibility of the solution as 

many enterprise networks connect geographically dispersed sites. WAN latency and 

bandwidth constraints pose design challenges that should be considered when evaluating 

solutions for enterprises. 

The lab environments include one additional challenge - reticulation of the control traffic via 

the data plane. When an SDN deployment is limited to a single site, i.e. a data centre, it is 

feasible to use a separate network for the backhaul of traffic between the switches and SDN 

controller(s). In an enterprise with physically distributed sites, it is not likely to be practical or 

cost effective to run a separate out of band control network. For this reason the lab 

environments use the same data plane for standard network traffic to transport the control 

traffic to the SDN controller.  

Virtual Lab Environment 

A virtualised lab environment (referred to as WAN3) has been built within an Oracle 

VirtualBox hypervisor on top of a Microsoft Windows 7 PC as per Figure 8. Instructions for 

building the WAN3 environment are included in Appendix A. 

A virtualised environment has the advantage of being quick to configure and easy to make 

changes to. Downsides are that performance results may not be accurate due to variability in 

the virtualisation hypervisor and underlying host machine, and that virtualised switches may 

not accurately emulate the behaviour of hardware switches. 
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A central enterprise site is simulated by two Ubuntu guests. One guest provides a switching 

function and the other acts as a server for SDN control and testing functions. A WAN link is 

emulated by Dummynet [30] on a FreeBSD guest running as a router. It allows the setting of 

bandwidth, delay and packet loss values. 

A remote WAN site is simulated by three Ubuntu guests. One guest provides a switching 

function and the other two are clients to support test functions. 

Both switches run Open vSwitch software and are controlled via OpenFlow from the central 

SDN controller. 

 

Figure 8 - WAN3 Test Environment 

Five virtual networks are defined within Oracle VirtualBox for connectivity between guests. 

Note that while there are five virtual network connections, there are only two IP subnets 

present as the switches connect multiple segments into single subnets. 

Important lessons were learned while building the environment: 

 Guest network interfaces on the switches need to be set as promiscuous within Oracle 

VirtualBox. Without this being set, the guest interfaces will only receive packets 

destined for their MAC address or to the broadcast MAC address as the VirtualBox 

hypervisor runs internal networks as switches. In order for the guest to operate as a 
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switch (aka multi-port bridge) it must receive all packets on the network segment 

excluding those that it has sent. 

 Open vSwitch is a lot easier to install on Ubuntu 14.04 than older versions due to in-

tree kernel support 

 FreeBSD is a good platform for Dummynet as it has built-in support for it. 

 

Physical Lab Environment 

A physical lab environment was built utilising hardware SDN switches as per Figure 9: 

 

Figure 9 - Physical Lab Environment 

Components: 

 PC1 connects to the Internet, allowing remote access to the environment. It has been 

secured with Linux kernel firewall via iptables. Additionally, the SSH daemon has 
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been configured not to accept password connections, only specific SSH keys. PC1 

simulates a central enterprise site and has applications running SDN control and server 

functions. 

 A Pica8 Pronto P-3290 switch provides SDN hardware switch functionality 

connecting PC1 and PC2  

 PC2 emulates a WAN link with Dummynet [3] on a FreeBSD guest running as a 

bridge, allowing the setting of bandwidth, delay and packet loss values. 

 A Pica8 Pronto P-3290 switch provides SDN hardware switch functionality 

connecting PC2 and PC3  

 PC3 is a client to support test functions 

Asynchronous serial console cables are run from Linux PCs to Pica8 switches for out-of-band 

management connectivity for major reconfigurations. 

Ethernet cross-over cables connect the management ports on the Pica8 switches to data plane 

ports. This inelegant workaround allows control plane traffic to traverse the data plane. 

Bandwidth Congestion 

Iperf [31] is used to create network congestion on the WAN link, except for tests Payload-1 

and Payload-2 where FTP is used. 

HTTP Response Time Measurements 

The measurement of HTTP response times needs to be contained within a TCP session to 

avoid traffic classification overhead on subsequent GET requests. To achieve this result, the 

Keep-Alive header of HTTP/1.1 [32] was used. Additionally, HTTP content must not be 

cached as this would invalidate the results. 

A simple python program was written for this project to automate HTTP load time testing, 

leveraging the Python Requests library [33] for HTTP/1.1 functionality. The program is called 

htest.py and it is passed a test URL (can include a port number) on the command line. It loops 

indefinitely with a one second sleep between tests. Results for Requests elapsed.total_seconds 

and total elapsed test time and a time stamp are written to standard output and also to a text 

file in CSV format. Care was taken to ensure that the underlying HTTP adapter would retry 

multiple times to simulate a real browser connection and 'Connection': 'keep-alive' was 

specifically set in the HTTP header. The output to CSV file made it easy to import data into a 

spreadsheet for analysis. 

Full details of evaluation methodology are detailed in Appendix A - Test Details. 

 4.3. Test Use Cases 

Four sets of test use cases were developed for this project to evaluate the functional 

capabilities of the prototype system. Test use cases start off simple and increase in 

complexity, with traffic classification methods added in order of difficulty to allow for 

progressive and incremental code development. 
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The WAN link is set to a bandwidth of 2Mbps with a round-trip time of 40mS. These values 

are fairly arbitrary - they represent a rough mid-point between low bandwidth and high 

bandwidth WAN scenarios. 

Clients are located at the remote site and servers at the central site. OpenFlow Protocol traffic 

between the remote site switch and the SDN controller traverses the WAN link. 

The following QoS queueing policy is common across all use cases: 

'PolicyRule 0': 

    comment: OpenFlow traffic 

    QoS_treatment: system_priority 

    output_queue: 0 

'PolicyRule 1': 

    comment: Default priority traffic 

    QoS_treatment: default_priority 

    output_queue: 1 

'PolicyRule 2': 

    comment: High priority traffic 

    QoS_treatment: high_priority 

    output_queue: 2 

'PolicyRule 3': 

    comment: Low priority bandwidth hungry traffic 

    QoS_treatment: low_priority 

    output_queue: 3 

 

The policy defines queues into which traffic can be differentially assigned based on the value 

of the attribute 'QoS_treatment'. The rules work as follows: 

 Flows tagged with 'system_priority' will be queued in queue 0. This queue is for 

OpenFlow Protocol traffic to/from the SDN controller, as it is the default queue used 

by switches before controller connectivity is established. Use of this queue for 

OpenFlow traffic prevents a bootstrap problem, as the initial OpenFlow Protocol 

traffic cannot be assigned to a queue as connectivity to the controller hasn't been 

established yet. 

 Flows tagged with 'default_priority', and flows with no attribute 'QoS_treatment' tag 

with recognised value, will be queued in queue 1. 

 Flows tagged with 'high_priority' will be queued in queue 2. This is intended for time-

sensitive business-critical traffic. 

 Flows tagged with 'low_priority' will be queued in queue 3. This queue is intended for 

bandwidth-hungry but non-time sensitive flows.  

Lab switches were configured with four egress queues on ports that face the WAN simulator: 

q0 = used for OpenFlow traffic, max rate 300Kbps 

q1 = default, max rate 500Kbps 

q2 = high priority, max rate 1Mbps 
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q3 = low_priority, max rate 100Kbps 

The queueing configuration is depicted in Figure 10: 

 

Figure 10 - Queueing Configuration 

All queues are configured with a bandwidth ceiling of 1.8Mbps, which should allow bursting 

over the queue reserved bandwidth when other bandwidth is available, although this did not 

work in practice on either switch type. 

 4.4. Test Use Cases Static-1 and Static-2 

Goal 

Demonstrate that basic static classification can classify and treat connectivity to a server on a 

specific port differently to other traffic. 

Method 

Client1 makes regular HTTP/1.1 connections to Server1 on tcp-1234 and tcp-80. Both 

connections are used to retrieve the same HTML object and are contained within persistent 

TCP sessions. Timing results are recorded. 

After establishing a baseline, Iperf is used to congest the link in the default class in the server 

to client direction for a sustained period. This direction was chosen as it is the direction in 

which the majority of test traffic flows. Iperf is then terminated and the test runs for a further 

period to recheck baseline. 

In test Static-1, the network is configured to classify and treat tcp-1234 and tcp-22 (SSH) 

connections as high priority, tcp-6633 (OpenFlow Protocol) as system priority and all other 

traffic as default. 

Test Static-2 is a repeat of Static-1, with the only difference being an update of the traffic 

classification policy to treat tcp-80 as high priority instead of tcp-1234. This second test is 

used demonstrate that there were no other factors at play relating to the chosen TCP port 

numbers, other than the traffic classification and QoS treatment. 
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Desired Outcome(s)  

1) Load times for HTTP objects over tcp-1234 in test Static-1 are not materially affected by 

the link congestion (target less than 10% increase in response times)  

2) Load times for HTTP objects over tcp-80 in test Static-1 are noticeably affected by the 

congestion (expect >100% increase in response times) 

3) Load times for HTTP objects over tcp-80 in test Static-2 are not materially affected by the 

link congestion (target less than 10% increase in response times)  

4) Load times for HTTP objects over tcp-1234 in test Static-2 are noticeably affected by the 

congestion (expect >100% increase in response times) 

Configuration 

The following configuration was applied in the nmeta environment for test Static-1: 

'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic" 

'PolicyRule 1': 

    comment: Use Case Static-1 - High Priority Business Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 1234  

        tcp_dst: 1234 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority Business Traffic"   

'PolicyRule 2': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 22 

        tcp_dst: 22 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic"    

 

The following configuration was applied in the nmeta environment for test Static-2 (note the 

change to TCP ports in PolicyRule 1): 

'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic" 

'PolicyRule 1': 

    comment: Use Case Static-1 - High Priority Business Traffic 
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    match_type: any 

    policy_conditions: 

        tcp_src: 80  

        tcp_dst: 80  

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority Business Traffic"   

'PolicyRule 2': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 22 

        tcp_dst: 22 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic"    

Results 

 

Figure 11 - Test Static-1 in Virtual Lab on code rev 5.6  
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Figure 12 - Test Static-1 in Physical Lab on code rev 5.6 

 

 

Figure 13 - Test Static-2 in Virtual Lab on code rev 5.6 
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Figure 14 - Test Static-2 in Physical Lab on code rev 5.6 
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Additional iterations of test Static-1 with higher numbers of concurrent Iperf TCP streams 

were run to evaluate statistical significance of the results in the virtual lab. Ten tests were run 

with Iperf, starting with a set of ten concurrent sessions. Twenty samples of load time 

measured in seconds were recorded, then a further 10 tests with 50 concurrent sessions were 

run and the results are tabulated in Table 3: 
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Table 3 - Statistical Analysis for Test Static-1 in Virtual Lab 

The statistical analysis in Table 3 shows that the classification results are consistent and 

reproducible. The average load time across all twenty runs for tcp-1234 is around 0.34s while 

it takes 5.9s for tcp-80. Moreover, the range (Max-Min) for tcp-80 connections is two orders 

of magnitude higher than those in tcp-1234. Finally, the variance for tcp-1234 is small and 

consistent across the first ten runs, and only slightly higher in the next 10 runs. All these three 

statistical measures strongly suggest that the classifier is performing correctly and consistently 

and further support the significance of the results obtained through the methods used.  

Analysis 

 Response times for first tests in each series were higher due to overhead of TCP 

session establishment and flow classification via SDN controller. In the virtual lab the 

first tests took approximately 0.25 seconds longer, whereas in the physical lab they 

took approximately 0.16 seconds longer. The overheads of virtualisation are likely to 

have contributed to the higher first test page load time in the virtual lab when 

compared to the physical lab. Both the higher first page load times and the difference 

between virtual and physical are expected behaviour. 

 Response times for HTTP connections on tcp-1234 in test Static-1 in the virtual lab 

were not materially affected by the link congestion, meeting the expectations of 

desired outcome 1. 

 Response times for HTTP connections on tcp-80 in test Static-1 in the virtual lab were 

noticeably affected by the congestion. Maximum response time was an increase by a 

TCP 80 (20 Samples) TCP 1234 (20 Samples)

Average (s) Max (s) Min (s) Range (s) StdDev (s) Average (s) Max (s) Min (s) Range (s) StdDev (s)

Test 1 4.91 75.61 0.17 75.44 17.41 0.24 1.21 0.15 1.06 0.18

Test 2 2.15 40.41 0.18 40.23 7.36 0.22 0.78 0.16 0.62 0.09

Test 3 4.81 54.90 0.17 54.73 12.99 0.30 1.73 0.16 1.57 0.28

Test 4 3.12 33.05 0.17 32.88 7.43 0.29 1.34 0.16 1.18 0.23

Test 5 4.07 43.23 0.17 43.06 9.91 0.28 2.35 0.14 2.20 0.27

Test 6 4.14 42.97 0.17 42.80 9.30 0.23 0.79 0.16 0.63 0.11

Test 7 4.69 47.90 0.18 47.73 11.26 0.26 0.87 0.15 0.71 0.14

Test 8 4.07 41.27 0.18 41.09 9.34 0.30 1.38 0.16 1.22 0.26

Test 9 3.85 25.54 0.18 25.36 7.86 0.34 2.70 0.16 2.54 0.36

Test 10 2.89 16.34 0.18 16.16 4.83 0.28 1.62 0.16 1.46 0.20

Test 11 9.84 91.01 0.18 90.83 23.91 0.32 1.17 0.16 1.01 0.24

Test 12 5.19 76.93 0.18 76.75 18.14 0.39 3.40 0.17 3.23 0.44

Test 13 6.89 63.03 0.16 62.87 19.02 0.40 2.43 0.16 2.26 0.37

Test 14 7.34 55.65 0.18 55.48 16.94 0.33 2.00 0.16 1.84 0.30

Test 15 5.44 51.11 0.18 50.94 14.38 0.41 2.40 0.17 2.22 0.37

Test 16 6.39 56.31 0.18 56.13 15.69 0.46 4.13 0.17 3.96 0.57

Test 17 16.29 206.35 0.17 206.18 48.10 0.41 5.65 0.17 5.48 0.73

Test 18 2.61 51.05 0.18 50.87 9.41 0.52 3.70 0.16 3.54 0.68

Test 19 10.62 128.23 0.17 128.06 32.52 0.36 1.67 0.16 1.51 0.34

Test 20 9.33 132.15 0.17 131.99 32.15 0.39 3.55 0.15 3.40 0.48
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factor of 80 over the pre-congestion time. This meets the expectations of desired 

outcome 2. 

 Response times for HTTP connections on tcp-80 were not materially affected by the 

link congestion in test Static-2 in the virtual lab, meeting the expectations of desired 

outcome 3. 

 Response times for HTTP connections on tcp-1234 in test Static-2 in the virtual lab 

were noticeably affected by the congestion. Maximum response time was an increase 

by a factor of 68 over the pre-congestion time. This meets the expectations of desired 

outcome 4. 

 Physical lab results were unreliable (increased response times observed outside of 

Iperf congestion period) and desired outcomes 1 & 2 were not met. The traffic in the 

high_priority queue was impacted by the Iperf congestion to within 68% of the 

increase observed in the default_priority queue. The cause is the hardware queueing 

implementation on the Pica8 Pronto P-3290 switches, although the exact cause 

remains unknown. 

 Repeatability experiment of test Static-1 in the virtual lab showed a very low level of 

standard deviation for the prioritised page load times over tcp-1234 demonstrating the 

reliability of the traffic classification, even under significant congestion. It also proved 

that the results in the virtual lab have a high degree of repeatability.   

Summary of Static Traffic Classification Findings 

Test Static-1 passed in virtual lab but failed in the physical lab. The failure in the physical lab 

is as a result of the hardware queueing implementation on the Pica8 Pronto P-3290 switches, 

not the nmeta software. The physical lab test failure highlights the importance of choosing 

SDN switch hardware carefully, and testing it to ensure that it meets requirements. 

Subsequent tests are run exclusively in the virtual lab as the failure of the physical lab tests 

would be repeated due to the commonality of queueing across the testing suite. The scope of 

this report is limited to traffic classification and thus the observed difficulties with QoS 

treatment on the physical switches are out of scope. Additionally, a comparison of the 

baseline and peak measurements between physical and virtual labs shows a comparable ratio 

and reliable no-congestion readings in the virtual environment. Repeatability tests also 

showed a consistency of results across multiple runs of the same test. For these reasons, the 

virtual lab is a suitable environment for the remaining tests.  

 4.5. Test Use Cases Identity-1 and Identity-2 

Goal 

Demonstrate that identity classification can classify traffic to provide differential treatment of 

connectivity to/from a particular endpoint. 
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Method 

Traffic classification is configured to treat as high priority any connections to or from hosts 

that have an LLDP system name of *.audit.example.com.  

Client1 with LLDP system name pc1.dev.example.com is not matched by the identity 

classification. 

Client2 has an LLDP system name of pc2.audit.example.com and has its connections 

classified and treated as high priority based on the configured wildcard match for 

*.audit.example.com. 

Both Client1 and Client2 make regular HTTP connections to Server1 on tcp-80 and retrieve 

the same HTML object. Timing results are recorded. 

After establishing a baseline, Iperf from Server 1 to Client1 and Client2 is used to congest the 

link in the default class for a sustained period. Iperf is then terminated and the test runs for a 

further period to recheck baseline. 

Test Identity-2 is a repeat of Identity-1, with the only difference being an update of the traffic 

classification policy to treat *.dev.example.com as high priority instead of 

*.audit.example.com. This second test is used demonstrate that there were no other factors at 

play relating to the chosen TCP port numbers, other than the traffic classification and QoS 

treatment. 

Desired Outcome(s) 

1) In test Identity-1, load times for HTTP connections from Client2 (pc2.audit.example.com) 

to the server are not materially affected by the Iperf congestion of the link (target less than 

10% increase in response times)  

2) In test Identity-1, response times for HTTP connections from Client1 

(pc1.dev.example.com) to the server are noticeably affected by the congestion (expect >100% 

increase in response times) 

3) In test Identity-2, load times for HTTP connections from Client1 (pc1.dev.example.com) to 

the server are not materially affected by the Iperf congestion of the link (target less than 10% 

increase in response times)  

4) In test Identity-2, response times for HTTP connections from Client2 

(pc2.audit.example.com) to the server are noticeably affected by the congestion (expect 

>100% increase in response times) 

Configuration 

An identity rule carried out a regular expression match against the domain name portion of the 

LLDP system name. A rule was used to explicitly classify Iperf traffic on tcp-5001 into the 

default queue, as otherwise it would be set as high priority when sent to or from clients 

matching the identity rule.  

The following configuration was applied in the nmeta environment for test Identity-1: 
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'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic" 

'PolicyRule 1': 

    comment: Explicitly set Iperf traffic to default class 

    match_type: any 

    policy_conditions: 

        tcp_src: 5001 

        tcp_dst: 5001 

    actions: 

        set_qos_tag: QoS_treatment=default_priority 

        set_desc_tag: description="Default Priority Iperf Traffic"   

'PolicyRule 2': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 22 

        tcp_dst: 22 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic" 

'PolicyRule 3': 

    comment: Use Case Identity-1 - High Priority Business Traffic 

    match_type: any 

    policy_conditions: 

        identity_lldp_systemname_re: '.*\.audit\.example\.com' 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority Business Traffic"  

 

The following configuration was applied in the nmeta environment for test Identity-2 (note 

the change in the regular expression in PolicyRule 3): 

'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic" 

'PolicyRule 1': 

    comment: Explicitly set Iperf traffic to default class 

    match_type: any 

    policy_conditions: 

        tcp_src: 5001 

        tcp_dst: 5001 

    actions: 

        set_qos_tag: QoS_treatment=default_priority 

        set_desc_tag: description="Default Priority Iperf Traffic"   

'PolicyRule 2': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 
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        tcp_src: 22 

        tcp_dst: 22 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic" 

'PolicyRule 3': 

    comment: Use Case Identity-1 - High Priority Business Traffic 

    match_type: any 

    policy_conditions: 

        identity_lldp_systemname_re: '.*\.dev\.example\.com' 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority Business Traffic"  
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Results 

 

Figure 15 - Test Identity-1 in Virtual Lab on code rev 5.6 
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Figure 16 - Test Identity-2 in Virtual Lab on code rev 5.6 

Analysis 

 Client2 (pc2.audit.example.com) HTTP object load times in test Identity-1 were not 

materially affected by the Iperf link congestion, meeting the expectations of desired 

outcome 1. 

 Client1 (pc1.dev.example.com) HTTP object load times in test Identity-1 were 

noticeably affected by the congestion. Maximum load time was an increase by a factor 

of 55 over the pre-congestion time. This meets the expectations of desired outcome 2. 

 Client1 (pc1.dev.example.com) HTTP object load times in test Identity-2 were not 

materially affected by the Iperf link congestion, meeting the expectations of desired 

outcome 3. 

 Client2 (pc2.audit.example.com) HTTP object load times in test Identity-2 were 

noticeably affected by the congestion. Maximum load time was an increase by a factor 

of 85 over the pre-congestion time. This meets the expectations of desired outcome 4. 

Summary of Identity Traffic Classification Findings 

Tests Identity-1 and Identity-2 passed, proving that it is possible to classify traffic based on 

identity in an SDN environment. The use of wildcard match on identity, as demonstrated, 

would be a desirable feature to operators dealing with scale issues. 

Traffic differentiation was applied in both directions on the matched flows, including on the 

switch not directly connected to the identified device. This ability to make a system wide 

determination and apply it to all elements on the traffic path is an advantage conferred by 

SDN. 

 4.6. Test Use Cases Payload-1 and Payload-2 

Goal 

Demonstrate that basic payload classification can classify and differentially treat connectivity 

over a specific protocol, including traffic on a separate flow with dynamically assigned port. 

Method 

Traffic classification is configured to treat any connections with payload match on FTP as low 

priority. 

Client1 makes regular HTTP connections to Server1 on tcp-80 retrieving the same HTML 

object. Timing results are recorded.  

Client2 makes an FTP connection to Server1 on the standard FTP port of tcp-21 and remains 

in the default active mode. Client2 requests a file download (t2.jar, size 2209984 bytes) and 

this is served over a dynamically negotiated connection from the server to the client. 
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A control test (Payload-2) is performed with same method but the payload match removed 

from the nmeta configuration. 

Desired Outcome(s) 

1) Response times for HTTP connections on tcp-80 in test Payload-1 are not materially 

affected by the FTP congestion (target less than 10% increase in response times)  

2) Response times for HTTP connections on tcp-80 in test Payload-2 are noticeably affected 

by the FTP congestion (expect >100% increase in response times) 

Configuration 

The following configuration was applied in the nmeta environment for test Payload-1: 

'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic"  

'PolicyRule 1': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 22 

        tcp_dst: 22 

    actions: 

        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic" 

'PolicyRule 2': 

    comment: Use Case Payload-1 - Low Priority FTP Traffic 

    match_type: any 

    policy_conditions: 

        payload_type: ftp 

    actions: 

        set_qos_tag: QoS_treatment=low_priority 

        set_desc_tag: description="Low Priority FTP Traffic" 

 

The following configuration was applied in the nmeta environment for test Payload-2: 

'PolicyRule 0': 

    comment: OpenFlow Protocol Traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 6633 

        tcp_dst: 6633 

    actions: 

        set_qos_tag: QoS_treatment=system_priority 

        set_desc_tag: description="OpenFlow Protocol Traffic"  

'PolicyRule 1': 

    comment: SSH traffic 

    match_type: any 

    policy_conditions: 

        tcp_src: 22 

        tcp_dst: 22 

    actions: 
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        set_qos_tag: QoS_treatment=high_priority 

        set_desc_tag: description="High Priority SSH Traffic" 

Results 

 

Figure 17 - Test Payload-1 in Virtual Lab on code rev 6.5 
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Figure 18 - Test Payload-2 in Virtual Lab on code rev 6.5 

Analysis 

In test Payload-1, the FTP payload classifier successfully identified the dynamically 

negotiated destination TCP port of the flow to be set up from the server to the client and this 

information was used to classify this new flow into the low priority queue. 

Response times for HTTP connections on tcp-80 in test Payload-1 were not materially 

affected by the FTP link congestion, meeting the expectations of desired outcome 1. 

Test Payload-2 was a control test. Response times for HTTP connections on tcp-80 were 

noticeably affected by the FTP congestion. Maximum response time was an increase by a 

factor of 69 over the pre-congestion time. This meets the expectations of desired outcome 2. 

It is worth noting that the same result can be achieved with static classification, for even 

though FTP active mode dynamically negotiates a port number for the data transfer, the 

source port number is always 20. The following snippet of nmeta traffic classification 

configuration achieves the same result as test Payload-1: 

'PolicyRule 2': 
    comment: FTP Control traffic 
    match_type: any 
    policy_conditions: 
        tcp_src: 21 
        tcp_dst: 21 
    actions: 
        set_qos_tag: QoS_treatment=low_priority 
        set_desc_tag: description="Low Priority FTP Control Traffic" 
'PolicyRule 3': 
    comment: FTP Data traffic 
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    match_type: any 
    policy_conditions: 
        tcp_src: 20 
        tcp_dst: 20 
    actions: 
        set_qos_tag: QoS_treatment=low_priority 
        set_desc_tag: description="Low Priority FTP Data Traffic" 
 

This serves as an important reminder that simpler, more efficient static classifiers can 

sometimes fulfil the role of a specific payload classifier.   

Summary of Payload Traffic Classification Findings 

Tests Payload-1 and Payload-2 both passed. This demonstrates the SDN capability to run 

payload inspection on multiple packets in a flow, extracting dynamic information and acting 

on it. 

 4.7. Test Use Cases Statistical-1 and Statistical-2 

Goal 

Demonstrate that statistical classification can classify based on the statistical profile of a 

traffic flow, and the results can be used to provide differential QoS treatment for the flow. 

Method 

Traffic classification is configured to treat SSH traffic (tcp-22) as high priority and all other 

traffic is passed through the statistical_qos_bandwidth_1 statistical classifier.  

Client2 makes regular HTTP connections to Server1 on tcp-80 and retrieves the same HTML 

object. Timing results are recorded. 

After establishing a baseline, Iperf from Server1 to Client2 is used to congest the link for a 

sustained period. Iperf is then terminated and the test runs for a further period to recheck 

baseline. 

A second test (Statistical-2) is run as a control, without the statistical classifier configured. 

Desired Outcome(s) 

The statistical classifier should classify the Iperf traffic into the low_priority queue, based on 

its flow behaviour, and thus the Iperf traffic cannot impact the HTTP traffic since they are in 

different queues. Specific measures are: 

1) Response times for HTTP connections on tcp-80 in the non-control test are not materially 

affected by the link congestion (target less than 10% increase in response times). 

2) Response times in the control test for HTTP connections on tcp-80 are noticeably affected 

by the congestion (expect >100% increase in response times). 

Configuration 

Statistical-1 Configuration: 

'PolicyRule 0': 
    comment: SSH traffic 
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    match_type: any 
    policy_conditions: 
        tcp_src: 22 
        tcp_dst: 22 
    actions: 
        set_qos_tag: QoS_treatment=high_priority 
        set_desc_tag: description="High Priority SSH Traffic" 
'PolicyRule 1': 
    comment: Basic Statistical Classifier 
    match_type: statistical 
    policy_conditions: 
        statistical_qos_bandwidth_1: on 
    actions: 
        pass_return_tags: true 
 

Statistical-2 (Control) Configuration: 

'PolicyRule 0': 
    comment: SSH traffic 
    match_type: any 
    policy_conditions: 
        tcp_src: 22 
        tcp_dst: 22 
    actions: 
        set_qos_tag: QoS_treatment=high_priority 
        set_desc_tag: description="High Priority SSH Traffic" 
 

SSH (tcp-22) traffic is included in the above configurations, but is not used in the testing. 

The control configuration does not run the statistical classifier. 

Results 

 

Figure 19 - Test Statistical-1 in Virtual Lab on code rev 6.2 
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Figure 20 - Test Statistical-2 (control) in Virtual Lab on code rev 6.2 

Analysis 

 In test Statistical-1, the Iperf traffic was matched by the statistical classifier and 

moved from the default_priority to low_priority queue. This change of queueing 

prevented Iperf from congesting the default_priority queue and thus the HTTP load 

times were not materially affected by the Iperf congestion, meeting the expectations of 

desired outcome 1. 

 Test Statistical-2 was a control test. Response times for HTTP connections on tcp-80 

were noticeably affected by the FTP congestion. Maximum response time was an 

increase by a factor of 100 over the pre-congestion time. This meets the expectations 

of desired outcome 2. 

Iperf classification is an unlikely use case for an enterprise network; however it does 

demonstrate the principle that statistical classification can be used to differentiate flows based 

on their behavioural profile.  

Note that the statistical classifier does not reference the flow TCP port numbers, so Iperf 

could be run on any TCP port number (other than 22 since it is defined as a static classifier) 

and the results would be the same. 
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Summary of Statistical Traffic Classification Findings 

Tests Statistical-1 and Statistical-2 both passed. This demonstrates the SDN capability to run 

statistical analysis on flows with the results used in real-time (i.e. online) to modify network 

behaviour appropriately. 

 4.8. Evaluation of Hypothesis 

Experimental results from the prototype nmeta SDN traffic classification system have shown 

the hypothesis posed by this project to be true for functional requirements. Four test use cases 

were evaluated and the results all met the desired outcomes, with the exception of those run in 

the physical lab. The failure of the physical lab is due to the limitations of the particular 

switch hardware and does not invalidate the hypothesis. We can thus conclude that the 4 sub-

hypotheses are all proven true as results showed that the prototype nmeta traffic classification 

system built on SDN architecture can accurately classify traffic using static, identity, payload 

and statistical methods.  

Tests Static-1 and Static-2 prove that an SDN traffic classification system can do policy-based 

static classification, meeting the requirement of selective determinism. 

Tests Identity-1 and Identity-2 prove that an SDN traffic classification system can be used to 

apply QoS treatment based on the identity of an endpoint. This meets the requirement for 

identity awareness.  

Tests Payload-1 and Payload-2 prove that an SDN traffic classification system can be used to 

identify the type of traffic contained in a flow and additionally to ascertain details of the set-

up of a dynamic flow and apply QoS treatment to this new flow. This meets the requirement 

for application awareness. 

Tests Statistical-1 and Statistical-2 prove that an SDN traffic classification system can make 

statistical classifications that differentiate flows based on their behavioural profile, meeting 

the requirement for agility. The Statistical-1 test also met the requirement for timeliness by 

showing that a flow can be classified before it has had time to ramp up to a point where it is 

causing congestion. 

By proving the 4 sub-hypotheses are all proven true, and that the functional requirements are 

also true, the main hypothesis that SDN architecture is a suitable foundation for development 

of systems that can meet the functional traffic classification requirements of enterprise 

network operators is also proven to be true. 

 4.9. Chapter Summary 

In this chapter, details the methodology and results of the evaluation of the prototype system 

have been presented, along with a test of the hypothesis that was shown to prove it to be true. 

The next and final chapter presents conclusions and other observations. 
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Chapter 5 

 5. Conclusion 
This project posed the hypothesis that SDN architecture is a suitable foundation for 

development of systems that can meet the traffic classification requirements of enterprise 

network operators. This hypothesis was proven by analysis of experimental results from the 

prototype nmeta system that was specially developed for this project. The fact that a 

functional prototype system can be built within the timeframe of a COMP489 project 

demonstrates the rapid innovation potential that SDN opens up to the networking community. 

The prototype system produced enriched network metadata as per the 'Flow Enrichment' 

information in the right of Figure 1, but also extended left into the area of identity. This is a 

powerful result as it creates a foundation on which innovative applications can be built that 

mine the identity and flow data for both current and as yet unforeseen benefits. 

 5.1. Other Observations 

Reticulation of the OpenFlow Protocol  

The lab environments in this project featured backhaul of the OpenFlow protocol over the 

data plane. The remote switch OpenFlow traffic had to cross a simulated WAN link to reach 

the controller. This configuration was intended to push the limits of what could be achieved 

with SDN, but was found to be workable in the limited tests that were carried out. The author 

however would not recommend running OpenFlow protocol over a WAN due to the potential 

for performance and availability issues. 

Denial of Service Vulnerabilities 

It was found that LLDP packets passed to Ryu with the default packet-in maximum size of 

128 bytes are truncated and cause Ryu to halt. This is a problem for both availability and 

security where it could be used to execute a Denial of Service (DoS) attack. 

Non-Functional Requirements 

Non-functional requirements were put out of scope due to the size of the task.  

SDN developers can learn lessons regarding non-functional requirements from the 

development of monolithic networking, as they are very similar. Key non-functional 

requirements are availability and security. The author recalls an incident in 1998 when he 

upgraded the software on routers for an enterprise client. The upgrade was performed and 

passed testing but the client called up the next day the client complaining that their entire 

network was broken, with their business substantially impacted. The change was backed out 

and subsequent investigations showed that the new router software would stop receiving 

packets on the router LAN interface if a particular sequence of packets was received. This 

sequence had occurred overnight at all sites and thus none of the LAN interfaces were 
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operational the next morning resulting in no network connectivity between sites. The lesson 

from this story is that monolithic networking has matured significantly over the intervening 

16 years as it would be highly unusual for a modern commercially-sourced router or switch to 

stop routing/switching due to a software fault of this nature. Also, this type of fault would 

now be classified as security vulnerability, since it presents a vector for a Denial of Service 

(DoS) attack. While it is now highly unusual for a monolithic router/switch to fail 

unexpectedly, it was found to be a reasonably common occurrence in the SDN lab 

environments. The author suspects that SDN software still has a long journey ahead to reach 

the non-functional maturity of monolithic networking, based on experiences gained during 

this project (i.e. previously mentioned LLDP DoS example), however this journey could be 

shortened if lessons are learnt from the development of monolithic networking software. 
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Appendix A - Test Details 
This appendix contains configuration details for the set-up and running of the tests carried out 

for this project in the physical lab environment. 

Installation 

Server (PC1) Configuration 

Install Iperf: 

sudo apt-get install iperf 
 

Set up a web server. Copy the latest version of websvr.py (a Python program written as part of 

this project) into the home directory. Create a subdirectory called static and copy into it the 

file index.html. 

Install the web.py library: 

sudo easy_install web.py 
 

Client (PC3) Installation and Configuration 

Install PIP: 

sudo apt-get install python-pip 
 

Install python requests module: 

pip install requests 
 

Install Iperf: 

sudo apt-get install iperf 

 
 

Create HTTP Request Test Scripts. Copy the latest version of htest.py (a Python program 

written as part of this project) into the home directory.  

 

Set up QoS Queues on Switches 

Set up four egress queues on ports that face the WAN simulator: 

q0 = used for OpenFlow traffic, max rate 300Kbps 

q1 = default, max rate 500Kbps 

q2 = high priority, max rate 1Mbps 

q3 = low_priority, max rate 100Kbps 

All queues are configured with a ceiling of 1.8Mbps, which allows bursting over the queue 

reserved bandwidth when other bandwidth is available. 

Physical Lab Central Pica8 Open vSwitch (Switch 2): 
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ovs-vsctl clear Port ge-1/1/3 qos 
ovs-vsctl --all destroy qos 
ovs-vsctl -- --all destroy Queue 
ovs-vsctl -- set Port ge-1/1/3 qos=@newqos \ 
-- --id=@newqos create QoS type=PRONTO_STRICT queues=0=@q0,1=@q1,2=@q2,3=@q3 \ 
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \ 
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \ 
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000  \ 
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000 

 

Physical Lab Remote Pica8 Open vSwitch (Switch 1): 

ovs-vsctl clear Port ge-1/1/1 qos 
ovs-vsctl --all destroy qos 
ovs-vsctl -- --all destroy Queue 
ovs-vsctl -- set Port ge-1/1/1 qos=@newqos \ 
-- --id=@newqos create QoS type=PRONTO_STRICT queues=0=@q0,1=@q1,2=@q2,3=@q3 \ 
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \ 
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \ 
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000  \ 
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000 

 

Virtual Lab (WAN3) Central Switch: 

sudo ovs-vsctl clear Port eth2 qos 
sudo ovs-vsctl --all destroy qos 
sudo ovs-vsctl -- --all destroy Queue 
sudo ovs-vsctl -- set Port eth2 qos=@newqos \ 
-- --id=@newqos create QoS type=linux-htb queues=0=@q0,1=@q1,2=@q2,3=@q3 \ 
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \ 
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \ 
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000  \ 
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000 

 

Virtual Lab (WAN3) Remote Switch: 

sudo ovs-vsctl clear Port eth1 qos 
sudo ovs-vsctl --all destroy qos 
sudo ovs-vsctl -- --all destroy Queue 
sudo ovs-vsctl -- set Port eth1 qos=@newqos \ 
-- --id=@newqos create QoS type=linux-htb queues=0=@q0,1=@q1,2=@q2,3=@q3 \ 
-- --id=@q0 create Queue other-config:min-rate=300000 other-config:max-rate=300000 other-config:ceil=1800000 \ 
-- --id=@q1 create Queue other-config:min-rate=500000 other-config:max-rate=500000 other-config:ceil=1800000 \ 
-- --id=@q2 create Queue other-config:min-rate=1000000 other-config:max-rate=1000000 other-config:ceil=1800000  \ 
-- --id=@q3 create Queue other-config:min-rate=100000 other-config:max-rate=100000 other-config:ceil=1800000 

 

Configuration can be checked with the following commands: 

ovs-vsctl list port <interface> 
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The reference in output above is displayed in the output below along with references for the 

individual queues: 

ovs-vsctl list qos 
 

 
 

Check the individual queue configurations with the following command: 

ovs-vsctl list queue 
 

 
 

Check queue statistics: 

ovs-ofctl queue-stats br0 
 

This command does not work on Pica8 switches due to a bug, so output shown from a switch 

in the WAN3 virtual environment: 



54 

 

 

 5.2. Running Tests 

Test Use Case Static-1 and Static-2 

On server (PC1), start web servers in separate terminal sessions: 

sudo python websvr.py 80 
(alias h80) 
 
sudo python websvr.py 1234 
(alias h1234) 

 

On server (PC1), check that qos_policy.yaml  and tc_policy.yaml are set appropriately 

On server (PC1), start nmeta: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py 
(alias nm) 
 

On client (PC3), start Iperf server: 

iperf -s -i 1 
(alias ipf) 
 

On client (PC3), start the HTTP on TCP port 80 Python script: 

python htest.py http://10.255.255.1:80/80 
(alias ht80) 
 

On client (PC3), start the HTTP on TCP port 1234 Python script: 

python htest.py http://10.255.255.1:1234/1234 
(alias ht1234) 
 

On server (PC1), after waiting approximately 15 seconds, start Iperf: 

iperf -c 10.255.254.100 -t 30 
(alias ipf1) 

(it will run for 30 seconds) 

Wait an additional 15 seconds after Iperf completes then stop both htest.py instances and 

record their results. 

Test Use Cases Identity-1 and Identity-2 

On server (VM1), start web server: 

sudo python websvr.py 80 
(alias h80) 
 

On server (VM1), check that qos_policy.yaml  and tc_policy.yaml are set appropriately 

On server (VM1), start nmeta: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py 

http://10.255.255.1/80
http://10.255.255.1:1234/1234
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(alias nm) 
 

On clients (VM5 & VM6), start Iperf server: 

iperf -s -i 1 
(alias ipf) 
 

On client 1 (VM5), start the HTTP on TCP port 80 Python script: 

python htest.py http://192.168.57.40:80/80 
(alias ht80) 
 

On client 2 (VM6), start the HTTP on TCP port 80 Python script: 

python htest.py http://192.168.57.40:80/80 
(alias ht80) 
 

On server (VM1), after waiting approximately 15 seconds, start two Iperf sessions 

concurrently: 

iperf -c 192.168.56.11 -t 30 
(alias ipf1) 
 

In separate window: 

 
iperf -c 192.168.56.12 -t 30 
(alias ipf2) 
 

(they will run for approximately 30 seconds) 

Wait an additional 15 seconds after the Iperf sessions complete then stop both htest.py 

instances and record their results. 

Test Use Cases Payload-1 and Payload-2 

On server (VM1), check that qos_policy.yaml  and tc_policy.yaml are set appropriately 

On server (VM1), start nmeta: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py 
(alias nm) 
 

On server (VM1), start web server: 

sudo python websvr.py 80 
(alias h80) 
 

On client1 (VM5), start the HTTP on TCP port 80 Python script: 

python htest.py http://192.168.57.40:80/80 
(alias ht80) 
 

On client2 (VM5), start an FTP to the server and retrieve the object: 

Error! Hyperlink reference not valid. 
(alias ftp1) 
 
<log in> 
 
get t2.jar 
 

http://192.168.57.40/80
http://10.255.255.1/80
http://192.168.57.40/80
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Test Use Case Statistical-1 

Pretests: 

On server (VM1), check that qos_policy.yaml  and tc_policy.yaml are set appropriately 

On server (VM1), start nmeta: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py 
(alias nm) 
 

On server (VM1), start web server: 

sudo python websvr.py 80 
(alias h80) 
 

On server (VM1), start an Iperf server: 

iperf -s -i 1 
(alias ipfs) 
 

On client (VM6), carry out the following tests and record the statistical analysis figures 

reported by nmeta: 

Iperf: 

iperf -c 192.168.57.40 -t 30 
(alias ipf) 
 

HTTP: 

python htest.py http://192.168.57.40:80/80 
(alias ht80) 
 

SSH (Interactive): 

ssh bob@192.168.57.40 
 

SCP: 

scp Downloads/t1.jpg bob@192.168.57.40:t1.jpg 
(alias scp1) 

 

Set the statistical classifier to use different values for the maximum packets to accumulate in a 

flow before making a classification (variable _max_packets) 

Main Tests 

On server (VM1), check that qos_policy.yaml  and tc_policy.yaml are set appropriately 

On server (VM1), start nmeta: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager ryu/app/nmeta/nmeta.py 
(alias nm) 
 

On server (VM1), start web server: 

sudo python websvr.py 80 
(alias h80) 
 

On client (VM6), start Iperf server: 

http://192.168.57.40/80
mailto:bob@192.168.57.40
mailto:bob@192.168.57.40:t1.jpg
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iperf -s -i 1 
(alias ipf) 
 

On client (VM6), start the HTTP on TCP port 80 Python script: 

python htest.py http://192.168.57.40:80/80 
(alias ht80) 
 

On server (VM1), after waiting approximately 15 seconds, start Iperf session: 

iperf -c 192.168.56.12 -t 30 
(alias ipf2) 
 

(will run for approximately 30 seconds) 

Wait an additional 15 seconds after the Iperf session completes then stop htest.py record 

results. 

Repeat test for control configuration of tc_policy.yaml  

 

Appendix B - WAN3 Build Instructions 
These instructions are included to assist the experimenter with building the WAN3 virtualised 

environment. They should hopefully save a lot of time that was needed to figure out obtuse 

features. See Figure 8 for a logical diagram of the environment. Note that these instructions 

are untested as they are based on build notes and have not been used for a fresh install, so 

some things may not work as advertised... 

Pre-Requisites 

 Oracle VirtualBox hypervisor version 4.3.10 running on Microsoft Windows 7. Note: 

may work on other versions of VirtualBox and Host OS, but not tested. 

 Host PC must have sufficient RAM (test PC had 8GB RAM) 

VM1 – Server / Controller 

Download Ubuntu 13.10 ISO (32-bit desktop). Note that other versions of Ubuntu are 

probably fine to use, up to you if you prefer another one. 

Create a new Ubuntu guest with 1024MB of RAM and 12GB of storage. 

Go into the guest settings to configure it to boot off the ISO. Under Storage, click on the 

Controller: IDE row and then click on the Add CD/DVD Device Icon, "Choose disk" and 

browse to the ISO: 

http://10.255.255.1/80
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Do the same process to add the ISO for the Guest Additions. On Windows it is located in 

C:\Program Files\Oracle\VirtualBox\VBoxGuestAdditions.iso 

 

As above, there should now be two ISO files associated. 

Leave Adapter 1 as per defaults to allow NAT access to the Internet (required for 

downloading software packages from the Internet). Configure Adapter 2 as per screenshot 

below to connect to Internal Network "WAN3-1": 

 

Start the VM and install as per the defaults. Note that VirtualBox may ask you to confirm 

which ISO to boot from: 
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Install VirtualBox Additions 

Once built, start a terminal window (CTRL+ALT+T) and install the VirtualBox additions for 

improved host-guest integration: 

cd /media 
 

Look for the appropriate subdirectories that contain the correct additions version. Example: 

 

Run the additions: 

sudo ./VBoxLinuxAdditions.run 
 

It will probably be necessary to restart the guest to get the additions running. You may want 

to change the copy/paste settings in VirtualBox to allow pasting to the guest: 

 

Configure Networking 

Add the following to /etc/network/interfaces: 

auto eth1 
iface eth1 inet static 
address 192.168.57.40 
netmask 255.255.255.0 
# 
up route add -net 192.168.56.0/24 gw 192.168.57.1 dev eth1 
 

Restart networking: 

sudo /etc/init.d/networking restart 

Install Ryu 

Install git: 

sudo apt-get install git 
 

Clone Ryu: 
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git clone git://github.com/osrg/ryu.git 
 

Python stuff: 

sudo apt-get install python-setuptools 
sudo apt-get install python-pip 
sudo apt-get install libxml2-dev 
sudo apt-get install libxslt-dev 
# Fix python-six (compatibility library) version issue: 
sudo pip install six --upgrade 
sudo apt-get install python-dev 
 

Install YAML ("YAML Ain't Markup Language") for parsing config and policy files: 

sudo apt-get install python-yaml 
 

Install Ryu: 

cd ryu 
sudo python ./setup.py install  

 

Run Ryu (simple switch) to check that it works: 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager --verbose ryu/app/simple_switch.py 
 

Note: Ryu version can subsequently be upgraded as follows if required: 

cd ryu 
sudo git pull 
 

VM2 – Central Open vSwitch 

Download Ubuntu 14.04 ISO (32-bit desktop). Note that version 14.04 is a minimum 

requirement due to additional of in-tree kernel support for Open vSwitch from that version. 

Create a new Ubuntu guest with 512MB of RAM and 8GB of storage as per instructions for 

VM1 including the association of ISO images. 

Leave Adapter 1 as per defaults to allow NAT access to the Internet. Configure Adapter 2 and 

3 as per screenshots below: 
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Note the use of named Internal Networks and selection of Promiscuous Mode Allow VMs. 

This mode is required to allow the guest to function as a switch. MAC addresses can be left as 

per their default values as long as they are unique within the environment. 

Start the VM and install as per instructions for VM1 including guest additions. 

Install Open vSwitch: 

Install openvswitch-common and openvswitch-switch (both in same package): 

sudo apt-get install openvswitch-switch 

 

Check that it is running: 

sudo ovs-vsctl show 
 

 

Set up bridge 'br0': 

sudo ovs-vsctl add-br br0 
 

Add physical interfaces: 

sudo ovs-vsctl add-port br0 eth1 
sudo ovs-vsctl add-port br0 eth2 

 

Configure Networking 

Add the following to /etc/network/interfaces: 

auto br0 
iface br0 inet static 
address 192.168.57.3 
network 192.168.57.0 
netmask 255.255.255.0 
broadcast 192.168.57.255 
gateway 192.168.57.1 
# 
up route add -net 192.168.56.0/24 gw 192.168.57.1 dev br0 
 

Now do a full restart of the guest. 
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Configure Open vSwitch 

Check connectivity to the OpenFlow controller: 

ping 192.168.57.40 
 

Start OpenFlow Controller (on VM1) 

cd ryu 
PYTHONPATH=. ./bin/ryu-manager --verbose ryu/app/simple_switch.py 
 

Set Open vSwitch to contact Controller (on VM2) 

sudo ovs-vsctl set-controller br0 tcp:192.168.57.40:6633 
 

Check Open vSwitch connectivity to OpenFlow Controller: 

sudo ovs-vsctl show 
 

Here is output showing successful connection with the controller: 

 

 

VM3 - WAN Simulation 

Build Guest 

Download FreeBSD 10.0 ISO 

Create a new BSD guest:  

 

Chose 256MB of RAM and the default storage options and a new VM will be created. 
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Go into the guest settings to configure it to boot off the ISO. Under Storage, click on the 

Controller: IDE row and then click on the Add CD/DVD Device Icon (circled in orange in 

screenshot below): 

 

Browse to the location of the ISO: 

 

Leave Adapter 1 as per defaults to allow NAT access to the Internet. Configure Adapter 2 and 

3 as per screenshots below: 
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Note the use of named Internal Networks. MAC addresses can be left as per their default 

values as long as they are unique within the environment. 

Start the VM and install as per the defaults. Once built, shut the VM down and remove the 

ISO from the Storage setting otherwise it will try and rebuilt when started. 

Configure Networking 

Start the VM and configure networking by editing /etc/rc.conf and adding these lines: 

ifconfig_em1="inet 192.168.56.1 netmask 255.255.255.0" 

ifconfig_em2="inet 192.168.57.1 netmask 255.255.255.0" 

# 

# Enable IP Routing: 

gateway_enable="YES" 

# 

# Enable IPFW (used for Dummynet): 

firewall_enable="YES" 

firewall_type="open" 

firewall_script="/etc/ipfw.rules" 

 

Enable Kernel Support for Dummynet by modifying the /boot/loader.conf file: 

dummynet_load="YES" 

 

Configure Dummynet by creating a new file /etc/ipfw.rules 

ipfw -q flush 

ipfw add pipe 1 ip from any to any 

ipfw pipe 1 config delay 10ms bw 2Mbit/s plr 0 

 

The bandwidth can be any of bit/s, Kbit/s, Mbits/s, Byte/s, KByte/s, MByte/s. A bandwidth of 

zero results in no bandwidth limitation 

Note that the rule is applied 4 times as the request packet is received and sent out and the 

reply is received and sent out, i.e. 10ms configured is 40ms RTT. 

Make config live: 

service ipfw restart 

 

Check with: 

ipfw pipe 1 show 
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VM4 – Remote Open vSwitch 

Build as per VM2, but with the following differences: 

 Adapter2 connects to network WAN3-3 

 Adapter3 connects to network WAN3-4 

 Adapter4 connects to network WAN3-5 

 The config added to /etc/network/interfaces is: 

auto br0 
iface br0 inet static 
address 192.168.56.3 
network 192.168.56.0 
netmask 255.255.255.0 
broadcast 192.168.56.255 
gateway 192.168.56.1 
# 
up route add -net 192.168.57.0/24 gw 192.168.56.1 dev br0 

VM5 - Client 1 

Build as per VM1, but with the following differences: 

 Adapter2 connects to network WAN3-4 

 The config added to /etc/network/interfaces is: 

 
auto eth1 
iface eth1 inet static 
address 192.168.56.11 
netmask 255.255.255.0 
# 
up route add -net 192.168.57.0/24 gw 192.168.56.1 dev eth1 
 

 The /etc/hostname file was set as follows: 

pc1 
 

 The entry in /etc/hosts file for 127.0.1.1 was updated as follows: 

127.0.1.1 pc1.dev.example.com pc1 
 

VM6 - Client 2 

Build as per VM1, but with the following differences: 

 Adapter2 connects to network WAN3-5 

 The config added to /etc/network/interfaces is: 

 
auto eth1 
iface eth1 inet static 
address 192.168.56.12 
netmask 255.255.255.0 
# 
up route add -net 192.168.57.0/24 gw 192.168.56.1 dev eth1 
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 The /etc/hostname file was set as follows: 

pc2 
 

 The entry in /etc/hosts file for 127.0.1.1 was updated as follows: 

127.0.1.1 pc2.audit.example.com pc2 

 

Appendix C - Troubleshooting 
The following commands may come in useful for troubleshooting and diagnostics. 

Open vSwitch Troubleshooting 

Note: may need to precede commands with 'sudo' on software implementations of Open 

vSwitch. 

General Switch Commands 

Show the general state of the Open vSwitch: 

ovs-vsctl show 
 

 

Note that the switch name is used in some of the following commands, if the name of the 

switch is not 'br0' then replace with the appropriate name. 

OpenFlow Commands 

Show OpenFlow config: 

ovs-ofctl show br0 
 

Display OpenFlow flows: 

ovs-ofctl dump-flows br0 
 
 

Snoop the OpenFlow messages: 

ovs-ofctl snoop br0 
 

View switch port statistics: 

ovs-ofctl dump-ports br0 
 

Change OpenFlow Version 

Change OpenFlow Version to just v1.0: 

ovs-vsctl set bridge br0 protocols=OpenFlow10 
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Change OpenFlow Version to 1.0, 1.2 & 1.3: 

ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow12,OpenFlow13 
 

Check Queueing 

Check Queueing Configuration: 

ovs-vsctl list port <interface> 
ovs-vsctl list qos 
ovs-vsctl list queue 
 

Display Queue Stats: 

ovs-ofctl queue-stats br0 

 

Pica8 Troubleshooting 

Logs 

Logs are stored in /tmp/log/messages  

 

Dummynet Troubleshooting 

Check ipfw configuration: 

ipfw show 
 

Check pipe: 

ipfw pipe 1 show 
 
 

Appendix D - nmeta Caveats 

Caveats 

 Updates required to support identity for systems with multiple NICs 

 As noted, further work is required on data management to prevent table size bloat.  

 The system only supports OpenFlow version 1.0. 

 YAML creates an unordered dictionary, require strict order for policy 

 Written and tested on Python version 2.7.5. May not work as expected on Python 3.x 

Future Enhancements 

 Complete data management work 

 Consider event driven tidy-up too, i.e. port goes down, purge any port related data 

from tables 
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 Improve TC policy functionality by adding nesting ability etc. 

 Add support in static module for IP address range and netmask matches 

 Add support for IPv6 

 Add support for IP multicast 

 Add support for IP fragments 

 Add support in identity module for IEEE 802.1x 

 Consider moving tables to a database 

 Improve API functionality 

 Add support for OpenFlow versions 1.2 and 1.3 including meters 

 Add support for VLANs and other similar network virtualisation features 

 Add support for distribution of controllers such that flow metadata maintains loose 

consistency across the distributed system allowing horizontal controller scaling 

 Add security features. Really this should be top of the list. How can DoS of the system 

be prevented? As the system receives packets from the network, is it vulnerable to 

exploits sent in network packets not directly to it? How can this be mitigated? 

 Make the routing/switching configurable (currently just a basic switch). Leverage 

other systems that do this rather than writing something new. 

 Make classifiers plug-ins so that they can be developed and added/removed without 

requiring changes to the main code. 


