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Abstract
An increasing number of network applications are implementing proprietary

or unknown protocols. The proprietary protocols do not have their specifications
available to the public. Analysing and understanding the functionality of these
proprietary protocols is an important aspect to discovering security loop holes
in the implementation of these protocols. By inferring and modelling a proto-
col using a state machine, we may be able to understand its behaviour. In this
project, we developed an open-source automatic state machine inference tool
called kTail-PSM. We use an open-source tool called Netzob to extract proto-
col specifications (symbols). The protocol symbols extracted using Netzob are
then fed into the kTail-PSM tool to infer the protocol state machine. We evalu-
ate our tool with one text-based protocol (SMTP) and one binary protocol (TCP),
finding our tool was able to generate a high quality state machine for each pro-
tocol. We compared our protocol state machines against the reference protocol
state machines specified in the RFC, also found that our protocol state machines
generated by our tool showed more detail than the ones defined in the RFC spec-
ifications.





Acknowledgements

I would like to take this opportunity with great pleasure to thank all of the people who
provided time and resources to support this project. In particular, I would like to thank
Dr Ian Welch and Dr David Streader, for supervising the project and for supporting and
giving me insights into the understanding of Protocol Reverse Engineering concepts and the
formal modelling concepts. Special thanks to Truong Trung for the support and continuous
discussions towards my project. I would also like to extend my special thanks to Matthew
Stevens for proofreading my project report.

Furthermore, I would also like to thank my parents, late Nerit Warom and Rup Warom
who provided me with continuous support and their prayers. Also my special thanks to
wife Sylvia, three sons Quizta’Lenz, Mangii’lenz, Qualdri’Lenz and also to uncle Danat
Tinapit for their patience and continuous support they have provided throughout the two
years of my study. Finally but not the least, I would like to thank the New Zealand Govern-
ment through Ministry of Foreign Affairs and Trade (MFAT) for giving me the prestigious
scholarship opportunity to complete Master of Computer Science degree at Victoria Univer-
sity of Wellington.

i



ii



Contents

1 Introduction 1

2 Background and Literature Review 3
2.1 Protocol Reverse Engineering (PRE) Prerequisites . . . . . . . . . . . . . . . . 3

2.1.1 Network Trace-based Input . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Program-based Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Target Protocol Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Protocol Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Protocol Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Protocol Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Finite State Machines (FSM) . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Protocol Specification Extraction Methods . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Grammatical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Keyword Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.4 Static and Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Classification of Automatic PRE Tools . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Protocol Message Format/Syntax Extraction Tools . . . . . . . . . . . . 7
2.4.2 Protocol State Machine Modelling Tools . . . . . . . . . . . . . . . . . . 9
2.4.3 Availability of automatic PRE Tools . . . . . . . . . . . . . . . . . . . . 10

2.5 k-Tail Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Using FSM for validation and Parsing Tokens . . . . . . . . . . . . . . . . . . . 11

3 Design 13
3.1 Engineering Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Using Netzob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Using Wireshark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 k-Tail Protocol State Machine(PSM) Tool . . . . . . . . . . . . . . . . . 17
3.3.4 Finite State Automata (FSA) Representation of Protocol Symbols . . . 18
3.3.5 Defining States and Transitions from a given Sequence of Symbols . . 18

4 Implementation 19
4.1 kTail-PSM Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Development Environment and Dependency Framework . . . . . . . 19
4.1.2 k-Tail Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Implementation of FSM Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



4.4 Visualizing Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Evaluation 25
5.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Existing Tools Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Symbol Extraction Format . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Trade-off between Precision and Generalisation based on k . . . . . . . . . . . 27
5.4 kTail-PSM average execution time . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Case Study 31
6.1 Experimenting kTail-PSM Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.2 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Inferred Protocol State Machines (TCP/SMTP) . . . . . . . . . . . . . . . . . . 31
6.2.1 TCP Protocol State Machine (PSM) . . . . . . . . . . . . . . . . . . . . . 32
6.2.2 Inferred SMTP Protocol State Machine . . . . . . . . . . . . . . . . . . . 33

7 Conclusions 35
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Appendix 37
8.1 Customized Export Functionality integrated into Netzob . . . . . . . . . . . . 37
8.2 Lua Script to extract TCP Flag codes . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Implementation of k-Tail Equivalent State checking and Merging them . . . . 38
8.4 kTail-PSM tool Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . 39
8.5 TCP Reference Protocol State Machine . . . . . . . . . . . . . . . . . . . . . . . 40
8.6 Simplified SMTP Reference Protocol State Machine . . . . . . . . . . . . . . . 40
8.7 Inferred TCP Protocol State Machine Processed Log . . . . . . . . . . . . . . . 41
8.8 Infered SMTP Protocol State Machine Processed Log . . . . . . . . . . . . . . . 43
8.9 Execution time data sets for ktail-PSM tool . . . . . . . . . . . . . . . . . . . . 43

iv



Figures

2.1 Automata without k-Tail being applied to it . . . . . . . . . . . . . . . . . . . . 11
2.2 Minimized automata in Figure 2.1 after k-Tail was applied with k = 2 . . . . . 11

3.1 Shows Netzob Architecture[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Utility tool showing Network traces being prepared to imported from a PCAP

into Netzob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Imported traces in Netzob after applying sequence alignment . . . . . . . . . 16
3.4 Using a Lua Plugin script to create a column of TCP flag codes in Wireshark. 17
3.5 Overview of kTail-PSM tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 A sample directed graph as a state machine generated from Listing 4.1 . . . . 20

5.1 Shows customized export functionality integrated into Netzob . . . . . . . . . 27
5.2 kTail-PSM average execution time . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Inferred TCP client protocol state machine generated using kTail-PSM tool . . 32
6.2 Inferred SMTP client protocol state machine generated using kTail-PSM tool . 34

v



vi



Chapter 1

Introduction

A protocol is an agreement for exchanging message in a distributed system. It dictates
the communication process by defining the syntax and semantics of the messages and mes-
sage ordering [2]. It is estimated that approximately over 2000 networked applications and
about 600 network protocols are in use over the Internet [3][4]. The communication be-
tween network applications must conform to agreed protocols in order to exchange mes-
sages. However, as many applications use proprietary protocols with no public specifica-
tion, they may be utilized to carry out malicious activities in the network. For instance
some applications such as worms or malicious code may be injected into the network to
infect machines on the internet. Consequently understanding of all protocols is increasingly
important for network security. Analysing and identifying the details of the proprietary
protocols provides insight into their behaviour which can be helpful for traffic monitoring
and management purposes. In general, the proprietary protocols contain both a language
and a state machine [5]. This information can be captured from both network traces and/or
program executions traces. The protocols can then be formally modelled to represent their
behaviour and how they are used in communication processes.

Currently, there are existing tools that are aimed at extracting protocol specifications1 in
an automated way. However, most of these tools implement solutions aimed at obtaining
message format and vocabulary without their protocol state machines (PSM). Most have
also been developed as a proof-of-concept tools and have not been made available to the
public to evaluate. To the best of our knowledge, Netzob[1] is the only open-source protocol
reverse engineering tool that has been available to the public for evaluation and extension.
We evaluated the tool with a number of different network protocol traces and established
that the tool works well for extracting protocol specifications for application layer protocols.
However, there is no automated way to generate protocol state machine from the extracted
symbols. It is a time consuming manual process to generate the protocol state machines
(PSM).

Our solution is to develop a tool that will automatically generate PSM from an ordered
sequence of protocol symbols. We utilise the Netzob tool to do the necessary processing
of the network traces to extract protocol specifications. These specifications are then taken
as input into our tool to automatically generate a PSM of using an equivalent state merg-
ing algorithm called k-Tail algorithm[6]. At this moment, we focused on application-level
clear-text PSM such as Simple Mail Transfer Protocol (SMTP RFC2 821) as described Inter-
net Engineering Task Force (IETF). It can be applied to both open and closed protocols to
infer their PSMs. In fact, closed protocols are a very interesting target for security purposes

1In the context of this project, protocol specifications refers to an ordered sequence of protocol vocabu-
lary/symbols which help in inferring protocol state machines.

2https://tools.ietf.org/html/rfc821
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because, as opposed to open protocols, they are not subject to the public scrutiny and testing.
We evaluated our tool with the current specification of the SMTP protocol . We also eval-

uated the tool with the well known binary protocol, Transmission Control Protocol hand-
shake flags (TCP RFC3 793) to infer its PSM. We compared the precision of the PSMs against
the reference PSMs manually derived from the RFC specifications. The inferred PSMs gen-
erated from our tool, captured more detailed state transitions than the reference PSMs. This
more detailed PSM is much closer to the real utilisation of the protocol than the original
document-based PSM. It can provide valuable information as an unifying state and transi-
tion information, which we intend to use in the future for testing and security purposes.

This report continues as follows: Chapter 2 contains the background survey on Proto-
col Reverse Engineering (PRE) prerequisites, approaches and exploration of automatic PRE
tools. Chapter 3 covers the design approaches used for the proposed kTail-PSM tool. Chap-
ter 4 covers how the tool was implemented, based on the design choices provided in chap-
ters 2. Chapter 5 presents the evaluation of the implemented tool called kTail-PSM. Chapter
6 presents the case study conducted using the kTail-PSM tool. Chapter 7 presents the con-
clusions, contributions and future work. Following these chapters are the appendices.

3https://tools.ietf.org/html/rfc793
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Chapter 2

Background and Literature Review

This chapter explores concepts relevant to the project, conducting a background survey
on the PRE approach and PRE tools that are available.

2.1 Protocol Reverse Engineering (PRE) Prerequisites

PRE is defined by UC Berkley’s BitBlaze1 project as the process of extracting the structures,
attributes, and data from a network protocol implementation without access to its specification. Usu-
ally, it is a manual task which is time-consuming and error-prone. PRE can be classified in
terms of the two data input sources from which protocol specifications can be extracted. The
network trace and the program trace from an executable program. The input requirements
for PRE are discussed next.

2.1.1 Network Trace-based Input

When using the network trace-based input, network traffic of a specific application such
as SMTP, HTTP, DNS, BitTorrent, etc. is collected using packet capture tools such as wire-
shark2 or tcpdump3[7]. For instance, Zhang et al.[8], uses wireshark to capture the commu-
nication traffics between target protocol implementation and a client. The session data is
logged into a pcap file. The pcap is a packet interchange file format that allows captured
network packets to be stored for analysis with other packet analysing tools.This logged net-
work trace is then analysed to extract the protocol specifications.

2.1.2 Program-based Input

Another input source used in the process of analysing and identifying undocumented
protocols is executable programs. As the target is a proprietary program, there is no way to
get access to the protocol specification in any form. Hence, in this method it deals with the
binary code extracted from executable program using other program-debugging tools such
as OllyDbg4. For instance, Medegan [9] applied OllyDbg debugging tool and other plugins
to debug Skype executable in order to reverse engineer its protocol.

1http://bitblaze.cs.berkeley.edu/protocol.html
2https://www.wireshark.org/
3http://www.tcpdump.org/tcpdump man.html
4http://www.ollydbg.de/
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2.1.3 Target Protocol Encoding

One of the focuses of the protocol PRE is mining the protocol communication data from
the two data input sources described in sections 2.1.1 and 2.1.2. The communication proto-
cols are categorized based their nature of encoding.

• Text-based Protocol — A text-based protocol refers protocol messages that may be
human readable. In other words, the protocol content is presented in plain text format.
For example, protocols such as IRC, SMTP or HTTP etc. are text-based protocols.

• Binary Protocol — A binary protocol is a protocol whose content presentation is for
machine readable format as opposed to a text-based protocol. For example, protocols
such as DNS, SMB, TCP, IP etc. are binary protocols.

2.2 Protocol Specification

Protocol specifications consist of three dependent components [10]: (1) protocol syntax,
(2) protocol semantics including which data values are valid in defined protocol fields , and
(3) the protocol Finite State Machine (FSM)5 which will be discussed in Section 2.2.3. In the
context of this project, we focus on the on (3) — i.e. inferring FSMs. In order to infer an
FSM, it requires the extraction of vocabulary (symbols) and grammar (valid sequences of
messages) from protocol traces.

2.2.1 Protocol Vocabulary

Protocol vocabulary [7] comprises a set of symbols where each symbol represents an ab-
straction of similar messages. This similarity property refers to messages having the same
role from a protocol perspective. For instance, the set of TCP ACK messages can be ab-
stracted to the same symbol.

2.2.2 Protocol Grammar

From the perspective of network protocols, protocol grammar describes the sequence of
messages that are exchanged in a valid communication between two actors. For instance,
in the ICMP protocol, its grammar includes a rule which states that an ICMP ECHO REPLY
TYPE 8 always follow an ICMP ECHO REQUEST TYPE 8 [7]. Another example is the or-
dered messages sent between two actors in a TCP sessions. In this example, the ordered set
{SYN,SYN+ACK,ACK} is valid while {SYN+ACK,SYN,ACK} is invalid as SYN should be
the first message sent from the initiating actor and not SYN+ACK. By inferring the protocol
grammar from the network trace, we are able to infer the protocol state machine.

2.2.3 Finite State Machines (FSM)

An FSM is also known as deterministic finite state automaton (DFA) or finite state au-
tomata (FSA). From the perspective of network protocol, it is referred to as protocol state
machine (PSM). These terms will be used interchangably in the following sections of this
report— FSM is defined by a set of states, exactly one of which is the initial state, some sub-
set of which are the accepting states, a set of input tokens called the alphabet, and a transition
function that, given the next input token and the current state, determines the next state [11].

5In the context of this project, protocol PSM and protocol FSM mean the same thing
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The protocol FSM defines the order, and state in which messages are exchanged. The
process of inferring protocol FSM from a trace requires as input the protocol grammar de-
scribed in Section 2.2.2. There are various modelling techniques that are used to create
protocol FSMs. A commonly used technique is Mealy machine. For example, in a Mealy
machine, the output is decided from the current state and the outgoing transition. This can
be illustrated as: {state, input}→ output.

2.3 Protocol Specification Extraction Methods

Extracting protocol specifications from network traces or binary executables is a chal-
lenging task as these sources provide incomplete information. To utilise such limited infor-
mation, a number of different PRE approaches have been introduced. This section discusses
the automatic PRE techniques proposed by various studies undertaken to reverse engineer
proprietary protocols. These techniques utilise a number of automatic PRE tools which will
be discussed in section 2.4.

2.3.1 Grammatical Inference

Grammatical inference (GI) (also known as grammar induction, or grammar learning)
deals with idealized learning procedures for acquiring grammars on the basis of exposure
to evidence about languages [12]. This technique has been introduced in the context of PRE
to extract protocol specifications automatically. GI approach has been applied to extracting
protocol specifications from both network-based traces and program-based inputs. More-
over, GI approaches have been applied to both text-based and binary protocols.

Ming-Ming and Shun-Zheng (2011), introduced a grammatical inference algorithm to
model protocol state from which they derive regular grammar i.e, the FSM and further ap-
plied equivalent state merging algorithm to generate a generalized and minimal automata
[2].

Xiao and Yu (2010) and Zhang et al. (2012) , introduce grammatical inference to model
protocol specification as FSM from the extracted network trace. Their work involves mining
protocol state machines by interactive grammar inference technique. That is using gram-
matical induction as a learning process to generate queries to the protocol implementation
which could help infer the automata [13][8].

2.3.2 Statistical Analysis

Statistical analysis involves the application of statistical models to extract protocol speci-
fications. Statistical analysis methods have been applied to the PRE context to automatically
extract proprietary protocol specifications for both binary and text-based protocols. To the
best of our knowledge, this approach has only been applied to network-based traces.

Meng, Liu, Zhang, Li and Yue (2014), proposed a statistical analysis approach to infer
protocol state machine from binary protocols solely based on real-world network traffic of a
specific application [14]. In this study, the authors presented a methodology to align corre-
sponding fields and extract state fields from binary protocol communication traces. Based
on these state fields, the system can construct the protocol state model.

Wang,Y., et al. (2011), proposed a system that can automatically infer protocol state
machine from real-world network traces [15]. Based on the statistical analysis on the proto-
col message formats, the system infers protocol state machines without prior knowledge of
protocol specifications. The output of the system is a state transition model called a proba-
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bilistic protocol state machine (P-PSM). This representation is a probabilistic generalization
of a protocol state machine.

In another study by Wang,Li, Meng, Zhao, Zhang and Guo (2011), they proposed a sys-
tem that automatically extracted the binary protocol message format of an application from
real-world network trace [16]. The core concept of the system is to find the same format
information in a specific protocol. The out put of the system is a a transition probability
model built based on the statistical nature of protocol format.

2.3.3 Keyword Identification

Keywords are predefined constants in protocol messages. Keywords can appear in bi-
nary, text, and mixed protocols and can be strings or numbers. For example, the GET, HTTP,
User-Agent, and Host strings are all keywords[17].

Cui, W., et al (2007), achieve keyword identification by tokenization and initially clus-
tering the messages in the network traces [18]. This process is applied on raw packets and
helps in identifying field boundaries in a message and giving the first order structure to
unlabelled messages. The packets are first re-assembled into messages and then breakup a
message into a sequence of tokens which is an approximation to a sequence of fields.

Wang, Zhang, Wu and Su (2013), proposed a framework which can infer unknown pro-
tocol specifications and the FSM based on keyword identification [5]. In this framework,
network traces of a specific protocols are collected and the packets in the traces are assem-
bled into messages. These messages are then tokenized and a threshold is adopted to to
filter out tokens. The threshold determines that the keywords with low frequencies are use-
less. By varying the threshold, the framework was able to get the optimal tokens set. These
optimal tokens are the keywords for the text protocol. From these keywords, the framework
creates a finite state machine for protocol language inference (L-FSM). A similar study was
conducted by Luo and Yu (2013) to infer protocol state machines from network traces [19].
In their study, the traces (tcp dump files) are parsed and application layer sessions are re-
constructed based on five-tuple analysis which they define. From this, protocol keywords
are extracted. That is, the frequent strings are extracted and variance analysis is applied to
mine protocol keywords. Next, message format is extracted based on the keyword series set
and infers fields of message format based on keywords series. Messages in each session is
labelled according to their formats. Then protocol state machines are inferred by searching
for frequent subsequence of labels.

2.3.4 Static and Dynamic Analysis

These approaches always take an executable program to determine information about
the program with respect to its protocol specifications. Program analyses can be divided
into two categories according to when they are analysed[20]: (1) Static Analysis — This
approach involves analysing a programs source code or machine code without running it.
(2) Dynamic Analysis — This approach involves analysing a client program as it executes. In
other words, it has the ability to monitor code as it executes. One of the attractive features
of Dynamic analysis is that it allows us to reason about actual executions, and thus can
perform precise analysis based upon run-time information. Dynamic analysis has been a
widely used approach in the extraction of protocol specifications[21][22][23][24][25][26][27].

Wang,Y., et al. (2013), combines both static binary analysis and dynamic binary analysis
approaches to effectively infer the message format of a protocol of a target program [28].
Since a single protocol message contains a large number of fields (such as non-static fields
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with variable sizes and inter-dependency of fields etc), combining the two approaches pro-
vides the capability of identifying field attributes more effectively than only one approach.

On top of dynamic analysis, Wang, Z. (2009), introduced an approach called Dynamic
Taint Analysis [29]. This approach was first proposed by Newsome, J., and Song, D., (2005)
but in different problem domain [30]. However, since then it has been adopted to the context
of protocol reverse engineering domain. He, Y., et al. (2009), adopt both dynamic analysis and
dynamic tainted analysis approaches to extract protocol format from data flow information
revealed by application while processing the protocol data [31].

2.3.5 Other Approaches

There are three other approaches that have been introduced to extract protocol specifica-
tions. Wang, Y., et al. (2012), proposed a semantics-aware approach to discover the latent rela-
tionship among n-grams by first grouping protocol messages with the same semantics and
then inferring message formats by keyword based clustering and cluster sequence align-
ment [32]. In this approach, it takes a network trace as an input and outputs the inferred
protocol message format. It is applicable to both binary and text-based protocols.

Caballero, J., et al. (2007), introduces an approach called dynamic data flow analysis to
reverse engineer network message formats [27].

Whalen, S., et al. (2010), introduces a HMM-based (Hidden Markov Model) approach for
inferring the state machine [33]. The Markov property states that the conditional probability
distribution of a system at the next time period depends only on the current state of the
system, i.e., not depending on the state of the system at previous time periods.

2.4 Classification of Automatic PRE Tools

To explore the existing automatic PRE tools, we categorize them into two categories: (1)
tools that focus on extracting protocol symbols and message format (protocol syntax), and
(2) tools that focus on determining the protocol FSM. Many FSM PRE tools require protocol
symbols and the syntax information. However, vice-versa is also true since Syntax/Message
Format PRE tools require protocol FSM information. In this project, we choose to present
message format PRE tools first based on the observation that historical research targeted
message format PRE methods prior to FSM PRE methods. These two categories are dis-
cussed next

2.4.1 Protocol Message Format/Syntax Extraction Tools

Discoverer[18] — Cui, W., et al. (2007), proposed a tool called Discoverer which imple-
mented the keyword identification and common protocol idiom approaches to automati-
cally reverse engineer the protocol message format of an application from its network trace.

PolyGlot[27] — Caballero, J., et al. (2007), introduced an automatic method of extract-
ing protocol message formats by applying dynamic binary analysis approach. They imple-
mented a tool called Polyglot, which extracts protocol information by observing the exe-
cution of a program while it processes execution traces to detect the fields which compose
a message. It can infer some field semantics, such as detecting keyword fields and direc-
tion fields (which can be either length or pointer fields). Polyglot takes both input types,
network-based traces and program-based.

AutoFormat[34] — Lin, Z., Jiang, X., et al. (2008), proposed another tool call AutoFor-
mat, improved from Polyglot by revealing the inherently non-flat, hierarchical structures
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of protocol messages using dynamic analysis approach. It takes both network-based and
program-based traces.

Tupni[23] — Cui, W., et al. (2008), proposed a tool called Tupni. Given one or more in-
puts of the unknown format and a program that can access these inputs, Tupni can reverse
engineer an protocol with rich set of information. Tupni can identify arbitrary record se-
quences by analysing loops in a program, using the fact that a program usually processes an
unbounded record sequence in a loop. This automatic protocol reverse-engineering tool
uses dynamic analysis approach to analyse data from both input types, network-based
traces and program-based.

Prospex[25] — Comparetti, P.M., et al.(2009), proposed a tool called Prospex to extract
message format specifications. The system analyzes both binary execution traces combined
with network traffic. The tool uses dynamic taint binary analysis approach to discover how
an application processes its incoming data. During the session analysis phase, it applies
message format inference technique to extract protocol message format for a single message.

Dispatcher[24] — Caballero, J., and Song, D. (2009), proposed an automatic protocol
reverse engineering tool called Dispatcher based on dynamic program analysis approach
which leverages the ability of program that implements the protocol to extract the protocol
message format. It is purposely to reverse engineer undocumented command and control
(C&C) protocol of MegaD spam botnet.

DynamoRIO[31] — He, Y., et al. (2009), proposed an PRE approach to determine un-
known protocols based on data flow analysis using a framework called DynamoRIO, which
is a fully implemented run-time code manipulation system supporting dynamic taint analy-
sis and allows code transformation on any part of a program while it is executing. Dynamic
taint analysis approach is applied to the data flow analysis process to reverse engineer the
protocol extraction. This is a program-based approach to extract protocol message format
which is not applicable to network traces.

ReFormat[29] — Wang, Z., et al. (2009), proposed a program-based tool called ReFormat
that reveals how a program parses and processes a message. ReFormat handles encrypted
messages by providing an effective scheme to discern the protocol processing phase from the
message decryption phase and then pinpoint the run-time memory buffers that contain the
decrypted message. It achieves this by applying dynamic taint analysis approach and fur-
ther relies on another general technique, i.e., data lifetime analysis, to locate the decrypted
memory buffers.

Biprominer[16] and ProDecoder[35] — Yipeng, W., et al. (2011), proposed Biprominer
and ProDecoder, that used statistical methods to find keywords and probable keyword se-
quences. Biprominer was intended for automatically extracting binary protocol message
formats of an application from its real-world network trace. It operates in three phases: (1)
uses statistical analysis to identify relevant patterns for specific pattern lengths and iden-
tified them as keywords, (2) messages are defined with distinguishing keywords, and (3)
transitions between keywords are calculated to find probable message sequences of key-
words. Biprominer uses variable length pattern recognition to find distinguishing protocol
keywords. ProDecoder uses the same first and second phase, but then differs by using a
clustering algorithm followed by the Needleman-Wunsch[36] algorithm for text alignment.
To learn distinguishing keywords in phase 1, Biprominer and ProDecoder find binary pat-
terns of arbitrary length, called n-grams, where n denotes the number of bytes in the pattern.
ProDecoder targets text-based as well as binary protocols.

NetProtocolFinder [37] — Ying, W, et al. (2013), proposed an automatic protocol mes-
sage format extraction tool called NetProtocolFinder, which is designed and implemented
to analyse documented and undocumented protocol message format automatically. It is
a program-based tool that combines dynamic binary analysis and static binary analysis ap-
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proaches to identify the field attributes more effectively. In the paper, a number of text-based
protocols were tested with the application and the results showed that the combination of
two analysis techniques showed its effectiveness in inferring the message format.

2.4.2 Protocol State Machine Modelling Tools

In this section, we discuss PRE tools that infer the protocol state machine model. A pro-
tocol state machine characterizes all possible legitimate sequence of messages. This builds
up from sub-section 2.4.1 because it captures the relationship between the protocol mes-
sage format and the protocol state machine. A number of automatic PRE tools have been
proposed recently for generating an output representation in the form of state machines.

ScriptGen[38] — Leita, C., et al. (2005), proposed a tool called ScriptGen, to alleviate
problems existing in Honeyd[39]. It was designed to generate honeypot scripts. It includes
features that both address the problem of vocabulary and the grammatical inference. The
tool extracts messages exchanged between a client and server(honeyd) from tcpdump file,
by adding all observed messages one by one to build a state machine. It uses the proto-
col automaton to identify similar messages and passively builds a finite state machine by
replaying the various sessions provided in the traces.

PEXT[21] — Shevertalov, M., et al. (2007), proposed a dynamic analysis tool called PEXT
to utilise network traces to infer an approximate state machine by analysing a collection of
packets captured from an application at run-time. An approximate state machine is inferred
by clustering messages of the same type, based on distance metric and by analysing the sim-
ilarities between different sequences of types present observed the traces. This approach is
useful to evidence patterns of sequences of messages that arise from using specific protocol
features. However, it cannot derive the message formats, creating a semantic gap between
the final automaton and the observed data.

ReverX [40] — Antunes, J., et al. (2011), proposed a tool called ReverX for automatically
inferring the language and state machine of a given protocol by applying the GI approach. It
constructs two automata, one for language and the other for the protocol state machine from
the sequences of messages and protocol sessions that were observed in the network traces,
then generalizes and reduces them in order to create a concise specification. The methodol-
ogy was implemented in a tool called ReverX which takes only text-based protocols.

Veritas[15] — Yipeng, W., et al. (2011), proposed Veritas, a system that automatically
infers protocol state machine from real-world network traces. It is based on the statistical
analysis on the protocol formats and relies on technique to cluster equivalent messages.

Netzob[1] — Bossert, G., et al. (2012), introduced Netzob, a tool that allows dynamic
analysis of proprietary protocols. It leverages passive and active algorithms on observed
communications to build a model. This model can afterwards be used to measure the con-
formity of an implementation against its provided specification. It learns message formats
and state machines of protocols, and thus can identify deviations with the documentation.
Netzob handles both text-based and binary protocols as well as other protocols such as vari-
able fields protocols (like ASN.1 based formats). There are a few limitations found in the
tool. One of the is that the state machine creation requires the states are created manually.
For a novice user, this feature may be puzzling as the user might expect the system to gener-
ate the protocol state machine automatically. In other words, the state machine is generated
based on specifying the states and transitions using a manual constructor. To the best of our
knowledge, Netzob is the only tool that is open-source and available to the public on git6

repository.

6Netzob source code: https://github.com/netzob/netzob
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AutoReEngine[19] — Luo, J. Z., and Yu, S. (2013), proposed a novel approach for position-
based reverse engineering for network protocols. It is purposely to extract protocol key-
words from network traces based on their support rates and variance of positions, recon-
struct message formats and infer a protocol state machine. The approach was implemented
by modifying the Apriori algorithm to exchange frequent strings from application layer pay-
load. Then, position-based features are considered to select protocol keywords from fre-
quent string set via variance analysis. Based on the protocol keywords, keyword series set
is found and fields of message formats are inferred. Finally, the most frequent communica-
tion patterns are inferred as the protocol state machine. The approach was implemented by
developing a tool called AutoReEngine which was evaluated with real-world traffic, cover-
ing both text-based and binary protocols.

2.4.3 Availability of automatic PRE Tools

Protocol Reverse Engineering research is quite active in academia. Most of the proposed
automatic PRE tools discussed earlier are not available to the industry domain. Most of the
tools have been developed as a proof-of-concept tools. There are also other packet analysing
tools which are available such as wireshark and tcpdump. However, such tools are only
useful for manual analysis approaches. Currently, Netzob is the only active project in the
open-source community. Also, since it comes with a framework of APIs, it is easy to work
with and allows to integrate customized functionality easily to it.

In this project, we employed Netzob as our primary tool to extract protocol specifica-
tions. In particular, we used the tool to extract protocol symbols from network traces and
then we process them in our proposed kTail-PSM tool to infer the protocol state machine.

2.5 k-Tail Algorithm Overview

The intuition behind k-tail[6] algorithm is that if two states have identical, k-long se-
quences of observed events following them, then those states are assumed to represent the
same state. Therefore, to infer a concise model, k-Tail algorithm merges states that it con-
siders to represent the same state. The process stops once all points deemed equivalent
are merged. The parameter k determines the size and generality of the inferred model—a
smaller k leads to more merges and produces more compact (and more general) models,
while a greater k restricts state equivalence[41]. Listing 2.1 shows the k-tail algorithm.

1 Input : Log L , i n t k
2 l e t M = i n i t i a l FSM model of t r a c e s in L
3 l e t merged = true
4 while ( merged ) :
5 merged = f a l s e
6 foreach ( S t a t e s s1 , s2 in M) :
7 i f ( s1 , s2 are k−equiva lent ) :
8 M. merge ( s1 , s2 )
9 merged = true

10
11 Output : M

Listing 2.1: The k-Tail algorithm[41]

Let’s consider the following sequence of symbols: Σ = 〈a, b, c, d, a, b, c〉 and its canonical
automata is represented as shown in Figure 2.1. We discuss the generation of states and
transitions shortly in Section 3.3.5.

In order to determine how the algorithm works, let’s take k = 2. The breakup of the
canonical automata is given in Table 2.5.
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Figure 2.1: Automata without k-Tail being applied to it

state k-tail (k = 2)
0 a,b
1 b,c
2 c,d
3 d,a
4 a,b
5 b,c

Table 2.1: Breakup of canonical automata in Figure 2.1 given k = 2

When we apply the k-Tail algorithm to this sequence with k = 2, it can be seen that
states 0 and 4 have 2−long sequences of symbols {a, b} and also states 1 and 5 have 2−long
sequences symbols {b, c} following them respectively. Therefore, those states are assumed
to represent the same state. At this stage, the last k-long tail of the initial FSM is dropped
based on the value of k. In this case the states 6 and 7 are dropped from the FSM given in
Figure 2.1 since k = 2. Hence, after merging the equivalent states, we obtain a minimized
automata as given in Figure 2.2.

Figure 2.2: Minimized automata in Figure 2.1 after k-Tail was applied with k = 2

The detailed explanation of merging two equivalent states is discussed in the implemen-
tation chapter in Section 4.1.2.

2.6 Using FSM for validation and Parsing Tokens

FSMs are useful for testing input tokens for determining acceptable behaviour of an im-
plemented protocol. This requires a deterministic FSM that recognises the language of all
valid messages in that protocol. For instance, a security policy might be concerned with
access control, and restrict what operations can perform on objects. The access to the re-
stricted objects can be validated through acceptance testing based the reference security
policy model. This means the access to the restricted object can be only accepted if an only
if the access right to the object is in an accepting state when the validation reaches the end
and passes all validation tests. Any access right that is not accepted is rejected. An example
of the application of this technique in the security context is given by Schneider[42]. In his
work, he introduces an automata-based formalism for specifying security policies that are
enforceable with mechanisms that work by monitoring system execution. Another example
of the application of this technique is given by Graham D.,W et al. [11]. In their work, they
applied this technique by implementing an FSM-based parsers for parsing protocol specific
files.
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In this project, we implemented the feature to check for the acceptance or rejection of
input symbols given a reference FSM. The implementation of this functionality is discussed
in Section 4.2
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Chapter 3

Design

This chapter explores the engineering constraints and challenges of integrating addi-
tional functionality with Netzob to automatically generate state machine from a set of ex-
tracted protocol specifications (symbols) from network traces.

3.1 Engineering Constraints

After a thorough revision of techniques and available tools, we chose to use Netzob to
analyse protocol specifications and to extract protocol vocabulary. Netzob[1] is discussed in
Section 2.4.2 and is an open-source tool is developed in Python and is distributed under the
GPLv3 license.

It comes with a graphical user interface that allows users to analyse and infer protocol
state machines in a semi-automated way for communication protocol data imported from
network traces. Netzob version1 0.4.1 (stable) was used for this project. In the process of
evaluating the tool with different protocols, it was observed that the tool has two limitations:

1. The export functionality was not working. Hence, we had to add export functionality
in order to export the extracted symbols into a comma-delimited file format.

2. Consequently, it seems to filter out some information fields from the input traces. For
instance, when importing TCP packet streams, none of the information about the TCP
flags were identified in Netzob. We will discuss this in more detail in section 6.2.
Netzob is suitable mostly for reverse engineering application-layer protocol payloads.

3. After identifying the limitations in Netzob, we looked at Wireshark2 tool as an alter-
native choice. Wireshark is a packet sniffing tool that can be used to analyse traffic.
The tool allows the analysis of network traffic in detail. For instance, we used the
Wireshark tool to extract the contextual information we needed to identify the TCP
handshake process, in particular to extract TCP handshake flags. However, wireshark
is not able to infer protocol state machines.

3.2 Design Goals

In this section, we identify the design goals for protocol specification extraction and in-
ferring a state machine from the extracted protocol specifications. The goals were identified

1https://www.netzob.org/
2http://www.wireshark.com
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as a result of the engineering contrants identified in Section 3.1.

1. Extract the protocol symbols from nettwork traces and export the specifications into a
comma-delimited file while preserving the order.

2. Introduce a tool to automatically generate FSM for protocol symbols extracted in goal
1

3. Parsing protocol symbols against reference FSM to determine its behavior.

4. Expand the GUI-based user interface enable users to be able to import a sequence of
extracted protocol symbols and generate an automata automatically.

3.3 Design Approach

In order to achieve these design goals, we proposed a simple FSM generation tool which
can be integrated into Netzob. Utilising Netzob APIs, we are able to extract protocol sym-
bols which are then fed as input to the proposed tool. The k-Tail[6] inference algorithm
is selected for modelling the finite state machine for the sequence of input symbols. The
algorithm is discussed in section 2.5. Wireshark compliments Netzob by analysing and ex-
tracting specific fields that are related to protocol state machines (PSM) especially for binary
protocols. It was also used to cross-check Hex codes for symbols extracted in Netzob.

In the next two sub-subsections, we take a detailed look at the Netzob and Wireshark
tools and the additional functionalities that are integrated into them respectively.

3.3.1 Using Netzob

• Netzob Features and Functionality
Netzob implements clustering and sequence alignment algorithms to process the raw
data from the network traces. There are two approaches used that result in extracting
protocol symbols:

1. GUI-based functionality

2. Netzob APIs.

For the purpose of this project and to get some sense of user experience with the Net-
zob tool, we utilized the GUI-based approach to extract protocol symbols. Figure 3.1
shows an overview of the process involved in extracting the protocol symbols.

The Netzob[1] architecture, comprises of four core components connected through
well documented APIs.These are:

– Import Module: This module provides functionality to import data into Netzob.
It provides the capability of capturing data in a variety of context such as from
inter-process communications (IPC) as well as capturing from wired network
traffic. Additionally, it support input formats such as network flows, PCAP files,
structured files and IPC (pipes, socket, shared memory).

– Protocol Interface Module: This module provides the vocabulary and grammer
extraction functionality of Netzob. That is, the vocabulary and grammar infer-
ence methods constitute the core of Netzob.
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Figure 3.1: Shows Netzob Architecture[1]

– Simulation Module: As one of the main goals of Netzob is to generate realistic
network traffic from undocumented protocols, this module provides the simula-
tion functionality.

– Export Module: This module permits to export an inferred model of a protocol in
formats that are understandable by third party software or by a human. Current
work focuses on export format compatible with main traffic dissectors (Wireshark
and Scapy) and fuzzers (Peach and Sulley).

In this project, we utilised only the Import Module and Protocol Interface Module to ex-
tract the protocol symbols and developed a new module to accept the protocol symbols
and generate FSM. The new module is called kTail-PSM. The input source we chose
for this project is basically a PCAP file format containing a set of network traces for a
given protocol.

Figure 3.2: Utility tool showing Network traces being
prepared to imported from a PCAP into Netzob

Figure 3.2 shows PCAP file import details of a sample of SMTP protocol in Netzob.
For the convenience of our project, we chose to work with PCAP files as they are easily
imported and processed in Netzob. Once the set of traces are imported into Netzob,
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we then apply the clustering and sequence alignment algorithms to exract the proto-
col symbols. To discover a symbol, Netzob supports different partition approaches.
One of them is the Needleman-Wunsh algorithm[36] that leverages sequence align-
ment processes. The alignment process applied on the messages using the Sequence
Alignment functionality as shown in Figure 3.3. The objective is to identify common
messages, to regroup them in dedicated symbols, and to obtain a field partitioning of
each identified symbol. This gives a relevant first approximation of the overall mes-
sage format.

Figure 3.3: Imported traces in Netzob after applying sequence alignment

The next step is to export the extracted protocol symbols from Netzob to a file as an
ordered sequence of protocol symbols ready for importing into the kTail-PSM tool
to infer the state machine. Since, Netzob’s export functionalities do not allow us to
customize processed data to suit our requirement, we integrated an additional func-
tionality to extract only the required data as discussed next.

• Customised Features integrated into Netzob
The proposed kTail-PSM tool takes as input an ordered set of comma-delimited pro-
tocol symbols. To meet this requirement, we modified only the Export Module. More
specifically, the following module was modified:

– Module name: src.netzob.UI.Export.Controllers.RawExportController
– File name: RawExportController.py

The code fragment is attached in Appendix 8.1. The modified version of the Netzob
tool is available on git3.

3.3.2 Using Wireshark

Wireshark compliments Netzob in analysing network traces, as Netzob is not able to
handle specific information about binary procotols. For instance, we experimented with
Netzob to extract TCP flags from a set of network traces imported into Netzob. However,
such information was not easily identifiable in Netzob. Thus, we resort to Wireshark to
extract the TCP flags. On the other hand, the tool worked well with the application level
protocol payloads such as SMTP payload.

• Wireshark Features

Wireshark4 is an open-source network packet analyzer tool to capture network packets
3https://github.com/lnerit/Netzob-0.4.1
4http://wireshark.com/wireshark-network-packet-analyzer/
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and tries to display the packet data as detailed as possible. It comes with a number of
features. In this project we made use of the following features:

– Import/Export reports to plain text, CSV, PostScript,PCAP and XML.

– Packet Filtering system.

– Plugin Support feature

Wirehark captures live network traffic which can then be exported into a file format
supported in Netzob. Another, interesting feature about Wireshark is that it comes
with plugin support. In our case, there is no straight-forward way to extract TCP flags
in Wireshark while maintaining the order in which they are transmitted. As a result,
we utilised the plugin capability of Wireshark, which is discussed next.

• Utilising Wireshark Plugin Feature

Wireshark allows creating a plugin to extract details of specific fields in a protocol. In
this project, we used Lua script as a plugin to Wireshark to create a field/column for
TCP flag codes in the trace display window as shown in Figure 3.4. In order to execute
the Lua script, the script must be placed into the plugin file in Wireshark. For instance,
in this project, the script named tcp-flags-dissector.lua was placed in the following di-
rectory: ∼/.wireshark/plugins/. On restarting Wireshark, the script automatically takes
effect.

Figure 3.4: Using a Lua Plugin script to create a column of TCP flag codes in Wire-
shark.

The customized Lua script to extract the TCP flag codes is appended in appendix 8.2.
Thanks to Didier Stevens for the Lua scripting tutorial5 in Wireshark.

3.3.3 k-Tail Protocol State Machine(PSM) Tool

This section covers the main design for the proposed kTail-PSM tool. As discussed ear-
lier, the tool takes a set of ordered protocol symbols as input and applies the k-Tail[6] algo-
rithm to merge equivalent states in the sequence. The k-Tail algorithm is discussed earlier
in Section 2.5. After the merging of equivalent states, the tool generates a PSM. Figure 3.5
presents a high level overview of the kTail-PSM tool.

5http://blog.didierstevens.com/2014/04/28/tcp-flags-for-wireshark/
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Figure 3.5: Overview of kTail-PSM tool

The input to the tool is an ordered sequence of comma-delimited protocol symbols which
are extracted from Netzob. In Figure 3.5, the dotted line from Wireshark indicates that spe-
cific PSM related fields in a protocol such as TCP flag codes, can be extracted and fed into
kTail-PSM tool to generate an inferred protocol state machine.

3.3.4 Finite State Automata (FSA) Representation of Protocol Symbols

By describing systems in a formal, mathematical way, it allows us to reason about sys-
tems both in general as well as specific instances. Formal notations also help to eliminate
ambiguity in the implementation of the system design. To make the concept clear, we pro-
vide a brief introduction to the formal notations of FSAs.

• Definition: An FSA is defined as a five-tuple A = 〈Σ,Q, q0, δ,F〉 where:

– Σ is the finite input alphabet
– Q is the finite, non-empty set of states
– q0 is the initial state q0 ∈ Q
– δ is the transition relation such that δ : Q X Σ→ Q

Note that here for simplicity, we assume that the automaton is deterministic, but the
definition can be generalised to non-deterministic and probabilistic automata.

• F is accepting states: F ∈ Q
In this context, the alphabet of the automaton is the set of symbols extracted from Netzob.
The application of this definition will be discussed in Section 4.2

3.3.5 Defining States and Transitions from a given Sequence of Symbols

In this project, the input of kTail-PSM tool is a log — an ordered sequence of protocol
symbols. For a given set of protocol symbols, we use the following notation to define the
states and the transitions from one state to another:

Given a sequence of symbols: Σ = 〈I0, I1, I2, ..., In〉,
we derive the states and their transitions as: S0

I0−→ S1, S1
I1−→ S2, ... , Sn

In−→ Sn+1
The symbols represent the transition labels from their respective associated state to an-

other state. We will use this notation to derive states and transitions from an ordered se-
quence of protocol symbols in Chapters 4 and 6
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Chapter 4

Implementation

4.1 kTail-PSM Tool Implementation

In this Section, we describe the implementation of the kTail-PSM tool.

4.1.1 Development Environment and Dependency Framework

The kTail-PSM tool was developed in Python on a 64-bit version of Ubuntu 14.04. Below
is the list of tools and libraries that were used in the implementation process.

• Tools: Eclipse v4.3.2 with PyDev IDE plugin

• Graphviz library for creating directed graphs to represent state machines. Below is a
sample directed graph produced from Graphviz library. Listing 4.1 shows the DOT
code fragment and Figure 4.1 shows the directed graph output.

1 digraph {
2 graph [ a c c e p t i n g s t a t e s =1 ,
3 rankdir=LR ,
4 r a t i o =auto ,
5 s i z e =10 ,
6 ] ;
7 node [ f i l l c o l o r =white ,
8 f o n t s i z e =10 ,
9 height =0 .05 ,

10 l a b e l =”\N” ,
11 shape= c i r c l e
12 ] ;
13 n u l l [ l a b e l =” ” ,
14 shape= p l a i n t e x t ] ;
15 n u l l −> 0 ;
16 0 −> 1 [ l a b e l =a ] ;
17 1 −> 2 [ l a b e l =b ] ;
18 2 −> 0 [ l a b e l =c ] ;
19 }

Listing 4.1: Code segment to generate a directed graph using DOT language in Graphviz
library

The implementation of the k-Tail[6] algorithm included an open-source publicly available
Python-FSM1 modules. The Python modules are available to the public on git repository
under BSD license. They were included in our implementation to provide the framework

1fsm python modules: https://github.com/oozie/python-fsm
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Figure 4.1: A sample directed graph as a state machine generated from Listing 4.1

to generate the inferred state machines after the ordered set of protocol symbols have been
processed.

4.1.2 k-Tail Algorithm Implementation

In the implementation of the k-Tail algorithm, we assumed that an input is a single line
of comma-delimited protocol symbols for a particular protocol under analysis. Basically the
k-Tail algorithm involves two main steps. It looks for equivalent state relations and then
merges those equivalent states to get an inferred FSM.

Equivalent States

Given an ordered sequence of protocol symbols, we create an FSM that describes the
states and transitions between these states. Based on this, we define an equivalent FSM
based on the value of k.

The function in Listing 4.1 determines relations between states in a constructed automata
of a given set of protocol symbols. It takes in two states as parameters: s1 and s2 and com-
pares them based on their k-Tail equivalence. If k-long sequences of observed transitions
following them have identical sequences, then those states likely represent the same state.
Hence the function returns value True or False otherwise.

1 def check equivalence ( s1 , s2 ) :
2 f l a g =None
3 i f s1==s2 :
4 f l a g =True
5 e l s e :
6 f l a g =Fa l se
7 re turn f l a g

Listing 4.2: Function to check for equivalent relations between states

Referring to the example in Figure 2.1, when passing states as parameter to s1 = 1, and
s2 = 4 will return True, as will states 1 and 5 since they have k-Tail equivalence given k = 2.
The calling function is given in Appendix 8.3.

Merging Equivalent States

Once the equivalent relations are defined, the algorithm then uses this relation to reduce
the FSM, meaning the equivalent states are merged. It keeps finding equivalent states and
reduce the FSM as necessary until there are no more equivalent relations and the algorithm
terminates.

We utilized List data structures in Python to implement the merging of equivalent states.
Let’s refer to the example in Section 3.3.4. Given the sequence of symbols Σ = 〈a, b, c, d, a, b, c〉
and k = 2. Firstly, we define a list data structure to hold the symbols:

1 sequence =[ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ a ’ , ’ b ’ , ’ c ’ ]
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Next, we derive the states associated with each symbol respectively by taking the index of
each symbol. We based on our denition in Section 3.3.5 to define the states and the transi-
tions. In our implementation in Python, we used the range() function. This function gener-
ates numbers up to but not including the uppper bound number. Hence, we added one to it
to maintain the accuracy of the calculation when total length of sequence is substracted by
k.

1 k T a i l s . s t a t e = [ ]
2 f o r x in range ( 0 , len ( sequence)+1−k ) :
3 k T a i l s . s t a t e . append ( x )

Now, the list variable kTails.state holds a set of states corresponding to the symbols. i.e
[0, 1, 2, 3, 4, 5, 6, 7]. For this particular example, we have seen earlier that states 0 and 4 are
equivalent and so does states 1 and 5. So, the merging is done as follows: For each state in
the list, we keep track of their equivalent relations and then replace the respective equivalent
states with the state that has the lowest value. Other implementations might use strings to
represent states such as s0, s1, ... etc. Hence, in our example, we replace state 4 with 0 and
5 with 1. The list then becomes [0, 1, 2, 3, 0, 1, 6, 7]. Since k = 2, we cut off the tail which
includes states 6 and 7. Now, the final merged list becomes [0, 1, 2, 3, 0, 1]. From this list,

we define the state transitions as follows: {0 a−→ 1, 1 b−→ 2, 2 c−→ 3, 3 d−→ 0}. The automata
representation of this set of transitions is given in Figure 2.2. The Python implementation of
equivalent state checking and merging is given in Appendix 8.3. For the purpose of brevity,
some statements in the code fragment have not been included.

4.2 Implementation of FSM Testing

We implemented test functionality in the tool which parses input protocol symbols based
on a reference specification from which it learns the automata of the reference specification.
When a set of input protocol symbols are processed against the reference FSM, it either
rejects or accepts the input protocol symbols.

• Accept—A DFA is said to accept a particular input if and only if, starting in the start
state and repeatedly applying the transition function to each input token in sequence,
one winds up in a accepting state when one reaches the end of the input.

• Reject— Any input that is not accepted is rejected.

The language of a DFA is the set of all inputs it accepts; equivalently, the DFA is said to
recognize that language. Our tool automatically rejects any non-deterministic automata.
We implemented a DFA python module (dfa.py) in the kTail-PSM tool to capture the model
of a set of reference protocol symbols. The module requires five parameters to be passed.
These are: (1) an initial state (2) accepting states (3) alphabet—a list of symbols (4) a set of states
(5) a set of transitions

To explore further, let take a look at the example discussed earlier in Section 4.1.2. By
convention, we set initial state as 0.
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1 s t a r t s t a t e =0
2 a c c e p t s t a t e ={0}
3 alphabet ={ ’a ’ , ’ b ’ , ’ c ’ , ’ d ’}
4 s t a t e s ={0 ,1 ,2 ,3}
5 t f = d i c t ( )
6 t f [ ( 0 , ’ a ’ ) ] = 1
7 t f [ ( 1 , ’ b ’ ) ] = 2
8 t f [ ( 2 , ’ c ’ ) ] = 3
9 t f [ ( 3 , ’ d ’ ) ] = 0

10
11 d=DFA( s t a t e s , alphabet , t f , s t a r t s t a t e , a c c e p t s t a t e )
12 i n p u t s t r i n g =[ ’ a ’ , ’ b ’ , ’ c ’ , ’ x ’ , ’ d ’ ]
13 p r i n t d . r u n w i t h i n p u t l i s t ( i n p u t s t r i n g )

Listing 4.3: FSM Testing implementation in Python

The variable inputstring holds the list of symbols to parse. If they are accepted against the
reference specifications, the function returns True or False otherwise. In this case inputstring
will not be accepted since there is an undefined symbol ’x’. However, the reference state
machine will accept the following strings: [’a’,’b’,’c’,’d’] and an empty [] string since the
accepting state is 0 which is also the inital state so it does not require an input symbol.

4.3 User Interface

To make it easier for users to interact with the kTail-PSM tool, we implemented graphical
user interface (GUI). The GUI is implemented using Tkinter2, which is Python’s de-facto
standard GUI package. A number of features are included in the GUI. This includes:

• loading protocol symbols from a text file

• a text area for the user to manually type or edit the protocol symbols

• a process log display screen that shows the necessary steps involved

• a canvas area that displays the protocol state machine

The GUI allows the user to interact with the tool and generate protocol state machines easily
from the set of input symbols. Appendix 8.4 shows the GUI for the kTail-PSM tool.

4.4 Visualizing Automata

The protocol state automata is automatically generated once the input symbols are pro-
cessed. To generate high-quality diagrams of the automata, we utilized the DOT3 program,
a plain text graph description language that comes with the Graphviz4 package. When
generating the FSM from the kTail-PSM tool, the data is rendered onto a image file called
../graph/ktail.png in the package. The image is then loaded onto the canvas on the GUI us-
ing another function called loadFSMImage(). The code fragment below does the magic. It is
implemented in the ktail module (ktail.py). Once graph is drawn to file, it is then loaded on
the display canvas on the GUI.

2https://wiki.python.org/moin/TkInter
3http://www.graphviz.org/content/dot-language
4http://www.graphviz.org/
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1 ktailFSM = Fini teS ta teMachine ( ’K−TAIL ’ )
2 . . .
3 t r y :
4 graph=get graph ( ktailFSM )
5 i f graph !=None : # Check i f there i s e x i s t i n g graph data
6 graph . draw ( ’ . . / graph/ k t a i l . png ’ , prog = ’ dot ’ )
7 e l s e :
8 pass
9 except GraphvizError :

10 tkMessageBox .ERROR
11
12 def loadFSMImage ( ) :
13 t r y :
14 img = PhotoImage ( f i l e = ” . . / graph/ k t a i l . png ”)
15 l a b e l . image = img # keep a r e f e r e n c e !
16 imgWidth1 = canvas . winfo width ( )
17 imgHeight1 =canvas . winfo height ( )
18 x = ( imgWidth1 ) / 2 . 0
19 y = ( imgHeight1 ) / 2 . 0
20 re turn canvas . create image ( x , y , anchor=tk .CENTER, image=img , tags =”bg img ”)

Note that some statements in the code fragment are omitted for brevity. The kTail-PSM5 and
Netzob v0.4.1 source6 codes are accessible from Github.com.

5kTail-PSM source code: https://github.com/lnerit/ktailFSM
6https://github.com/lnerit/Netzob-0.4.1
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Chapter 5

Evaluation

This chapter presents the functional evaluation of the kTail-PSM tool. To ensure the
correct operation of the implementation, the evaluation of the tool involved a number of
different aspects.

5.1 Test Cases

One aspect of the evaluation of this project was focused on test cases to determine the
correctness of functions in the source code. This involed writing unit tests and evaluating
the code coverage.

5.1.1 Unit Testing

Unit testing refers to the practice of testing certain functions and areas – or units – of
the code. This gives us the ability to verify that our functions work as expected. In other
words, given a set of inputs, we can determine if the function is returning the proper values
and will gracefully handle failures during the course of execution should invalid input be
provided. To evaluate the the functions implemented in kTail-PSM tool, we used Python
unit testing framework referred to as PyUnit1. The unittest module provides a rich set of
tools for constructing and running tests.

A testcase is created by subclassing unittest.TestCase. Each test is defined with methods
whose names start with the letters test. This naming convention informs the test runner
about which methods represent tests.

In this project, we implemented 16 test cases. Each of the test cases were evaluated based
on the following metrics: input, expected output and result. The result metric gives the status
of the test case as a successful or unsuccessful when the test cases is executed. When the
result of a test case is unsuccessful, the test case is reported as Error of a Failure.

The test cases are run in Eclipse using PyUnit. The test will execute some code and then
use assert statements to check if the code executed correctly.

5.1.2 Code Coverage

To determine how much code was tested, we used Code Coverage2 Python module.
There are different types of code coverage metrics such as Statement coverage and Block
coverage, Function coverage, Function call coverage and Branch coverage. It can be calcu-
lated using the formula:

1https://docs.python.org/2/library/unittest.html
2https://coverage.readthedocs.org/en/coverage-4.0.3/
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Let l i n e s o f t e s t e d c o d e = Number of l i n e s of code e x e r c i s e d
Let t o t a l l i n e s =Tota l Number of l i n e s of code
Then the code coverage i s given by :
Code Coverage =( l i n e s o f t e s t e d c o d e ) / ( t o t a l l i n e s ) ∗ 100%

The code coverage for the kTail-PSM implementation is given Table 5.1.2

Module Name Statements Missed Cover
dfa.py 53 36 32.1%
fsm.py 145 105 27.6%
gui.py 610 396 35.1%
State.py 48 48 0%
ktail.py 284 169 40.5%
resizeimage.py 17 9 47.1%
TOTAL 1157 763 30.1%

Table 5.1: Code Coverage for kTail-PSM tool implementation

Based on the coverage results, we only covered a less then 50% of overall coverage. The
reason was that we only tested the important functions. Most of the helper functions were
not covered in the test. Due to time contraint around this project, we were not able to cover
test for all modules.

5.2 Existing Tools Evaluation

Before embarking on the task of extracting protocol symbols, firstly we evaluated the
stable version of Netzob 0.4.1. This helped us to find the limitations in the tool as discussed
next.

5.2.1 Tools Used

In this project, we used Netzob 0.4.1 to infer and extract protocol symbols. Since, it is an
open-source project, there were a number of bugs that were not fixed. As a result, when im-
porting network traces into the program, it was throwing exceptions. Hence, we debugged
the buggy modules to correctly process the traces. The bugs were mostly associated with
conversion errors of int and float data types. At first, we thought the tool was designed to
cater for all types of protocols. So we spent a number of hours trying out different types of
network protocol traces such as TCP, SMTP and POP3 protocols. This was simply to under-
stand the features and functionalities of the tool. We also tried out the tool based on its demo
presentations3 and its tutorials4. After trying out different types of protocols, we figured out
the tool was mostly suitable for processing application-layer protocol payloads. We tried us-
ing the tool to extract TCP flags and then to infer its protocol state machine. However, the
tool did not capture the required information. This indicated that the tool was not capable
of extracting all protocol symbols from some binary protocols such as TCP.

Since Netzob has some limitations, we also used Wireshark 1.10.6 as a compliment. It is
also an open-source, packet analysing tool that comes with allot of features as discussed in
Section 3.3.2. We used Wireshark to extract PSM-related fields in the protocol specifications.
In particular, we used a Lua plugin script for Wireshark, to extract PSM-related fields. The

3https://www.youtube.com/watch?v=VYWFgKriaI0
4https://dev.netzob.org/projects/netzob/wiki/Tutorial getstarted
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plugin script can be modified to extract specific fields to ones own requirements. In our
case, we specified the script to extract the TCP flags while preserving the order and then
we exported them to a comma-delimited text file which would later be imported into our
kTail-PSM tool.

5.2.2 Symbol Extraction Format

For the application-layer protocol network traces, we used Netzob to extract the protocol
symbols. We then utilized our customized export feature that we integrated into Netzob
(refer to Section 3.3.1) to export the symbols to a text file format while preserving their order.
The accessible path is: File–>Export Project–>Human readable.

Figure 5.1: Shows customized export functionality integrated into Netzob

By clicking the Export Vocab button, we are able to save the symbols on the left to a text
file in an ordered sequence. Figure 5.1 shows an ordered sequence of inferred SMTP protocol
extracted using Netzob.

Similarly, for our specific case of extracting TCP flag codes in Wireshark, we used our
customized Lua script to create a column in the trace display screen in Wireshark while
maintaining the order of messages transmitted as shown in Figure 3.4. The symbols are
then exported to a text file format. To achieve this, firstly, we exported the trace into a PCAP
file. Then we used tshark5 (a packet capture tool that also has powerful reading and parsing
features for PCAP analysis) to extract only the specific information. In this case, we extracted
the TCP flag codes by executing the following script from a command line:

t shark −r SMTP. pcap −T f i e l d s −e t c p f l a g s . f l a g s > t c p f l a g s . t x t

Listing 5.1: tshark script to extract TCP flags in an SMTP pcap file.

5.3 Trade-off between Precision and Generalisation based on k

After experimenting our tool with a number of different sequences of protocol sym-
bols, it was observed that the k-Tail algorithm generalizes the behaviour from the observed
sequences and it presents a promising technique for inferring behavioural models. To be
specific, the k-Tail algorithm merges those states in the trace two next k invocations are

5https://www.wireshark.org/docs/man-pages/tshark.html
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identical[43]. In other words, those states having equivalent k-Tails are merged as illus-
trated in Section 4.1.2. When selecting different values for k, it involves an intrinsic trade off
between precision and generalization: — i.e when selecting smaller k implies more spurious
merges with respect to precision and selecting larger k implies fewer merges with respect
to generalization. Due to time limitations around this project, we only describe what we
observed in executing the algorithm on a given sequence of protocol symbols with respect
to precision and generalization of protocol state machines. More evaluation criteria should
have been defined in this section to capture a minimized protocol state machine.

5.4 kTail-PSM average execution time

To evaluate the performance of the kTail-PSM tool, we selected different values of k and
processed the sequence of symbols we extracted for the SMTP case study in Section 6.2.2.
To minimize the validity of threats to the experiment, we made sure that there were no any
other applications running except the system services on the testing computer. We recorded
30 execution readings for a given number of symbols in a sequence for a given k value. We
then took the average value as the execution time and also calculated the standard deviation
to determine the spread of the execution times. In the experiment, we selected k from 1 to 3.
For each k, we started off with seven protocol symbols. We then incremented the sequence
of symbols by a factor of seven and recorded the average time taken to process the automata
(i.e ranging from 7 to 203 symbols). The average times that the tool takes to infer protocol
state machine is presented in Figure 5.2.

Figure 5.2: kTail-PSM average execution time

The kTail-PSM tool is able to process sequence having 200 protocol symbols in less than
2 seconds. We also note that time grows exponentially as the number of symbols increases,
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k-value No.of Symbols mean median
k=1 203 0.6312868225 0.0266295414
k=2 203 0.6171386998 0.0196360343
k=3 203 0.6078924618 0.0171054559
Combined 609 0.6188 0.0235

Table 5.2: Table showing the combined mean and distribution of execution times

which is due to merging steps of the methodology. The function of the execution time grows
exponentially which can be expressed as O(Cn) where C is a constant and n represents the
number of symbols.

However, applying advance automata minimization algorithms could be utilized to fur-
ther reduce the execution time for larger data sets. Furthermore, we also observe that when
increasing k on a given sequence of symbols, average execution time drops. This is also due
to merging steps of the methodology, since larger k means less number of merging steps and
smaller k means more steps of merging. Figure 5.2 clearly shows this relationship. In any
case, we were able to generate automata having less than 200 protocol symbols in a very
short time.

Furthermore, to determine the degree of variation of time for different values of k, we
measured the performance of our tool by determining the standard deviation of the execu-
tion times. That is to find out how far the individual execution times vary from the mean
for different k values. We captured three execution time data sets as provided in Appendix
8.9. For each of the data sets we took, we combined them and calculated the overall average
means and standard deviations as given in Table 8.9. From the result table, it can be seen
that the standard deviation is very small with respect to the overall mean value. Hence,
this means that in an ideal test environment, when different values of k is selected for the
k-Tail algorithm execution on a sequence of symbols, there is a lower variation between the
execution times. Again this is also captured in the average execution time graph in Figure
5.2 where the average execution times for three different k values are clustered together for
a given number of protocol symbols.
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Chapter 6

Case Study

In this chapter, we derive the protocol state machines from the kTail-PSM tool. Generally,
the k-Tail algorithm works well for generating automata for simple sequences. This implies
that it would not be suitable for inferring state machines for complex protocols. To put the
tool to test, the protocol symbols of two different protocols were extracted and then fed
into kTail-PSM tool. The sequence of symbols were then processed by applying the k-Tail
algorithm and finally the protocol state machines were generated.

6.1 Experimenting kTail-PSM Tool

In this case study, we looked at two different protocols: – one binary protocol (TCP) and
one text-based protocol (SMTP).

6.1.1 Data Sets

In the case study, we used normal publicly available SMTP and POP3 traces1. The data
sets contained messages exchanged between a single client and a single server. The sizes
of both traces were less than 10 kilobytes. The network traces were obtained from a public
repository in the Web, to facilitate the reproducibility of results, that is to preclude any bias
to assist the reverse engineering task. To reverse engineer the the protocols from the traces,
we assumed that traces were not encrypted. Hence, by extracting the protocol symbols with
Netzob tool, the symbols were exported to the input format required by the kTail-PSM tool.

6.1.2 Testbed

The experiments with the kTail-PSM tool were carried out in a AMD E1-1500 APU
1480MHz with 4GB of memory running Ubuntu 14.04.3 LTS. The kTail-PSM tool is pro-
grammed in Python which takes in a comma-delimited sequence of protocol symbols. The
tool uses the dot2 program to generate high-quality diagrams of the automata.

6.2 Inferred Protocol State Machines (TCP/SMTP)

Since TCP and SMTP protocols are documented in RFC, the protocol state machines
generated from our kTail-PSM tool are compared against the reference automata (manually
produced from text description).

1http://asecuritysite.com/forensics
2http://www.graphviz.org/

31



6.2.1 TCP Protocol State Machine (PSM)

To infer the state machine for TCP protocol, we extracted the PSM-related field, which
are the TCP flag codes: — SYN, ACK, PSH, RST and FIN flags. These codes are used in the
session initialization process called 3-WAY HANDSHAKE between two hosts. The complete
specification of the TCP protocol is defined in RFC 7933. To make it easier for the experi-
ment, we focused on deriving client side of TCP protocol ( an equivalent approach could be
utilized for the server side ), and therefore only the TCP flags sent from the client were used
in the experiment. The TCP flags were extracted from the POP3 network trace file which
contains 72 messages. However, since we filtered out the packets based on the client side,
we were left with 24 messages. We observed that there were five different sessions estab-
lished and each session was identified by the SYN flag in the sequence of flags extracted.
The flags SYN and ACKFIN signify the start and end of a TCP session respectively. Since,
the kTail-PSM tool only takes a single line of sequence, we combined all the flag codes ex-
tracted for each session in the order of their transmission as a single line of sequence with
each symbol delimited by a comma. The combined TCP session flags list is given in Listing
6.1.

The PSMs were generated by selecting different values of k, and we chose the optimal
value that generated an acceptable protocol state machine. We then compared our inferred
PSM against the one defined in the RFC documentation.

SYN, ACK, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, SYN, ACK, ACKPSH, ACKPSH, ACKPSH,
ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH,
ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH, ACKPSH, ACKPSH,
ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACK, ACK, ACKPSH, ACK, ACK, ACK, ACKPSH,
ACK, ACK, ACKPSH, ACK, ACKFIN

Listing 6.1: Sequence of TCP flags extracted.

The sequences of TCP flags in listing 6.1 was then imported into the kTail-PSM tool.
By setting k = 1 , we generated the inferred TCP protocol state machine as illustrated in
Figure 6.1. Note that the TCP flags shown in the Figure 6.1 indicates what was sent for
the transitions given upon receiving segments from the server. Note also in Listing 6.1, we
combined response flags as a single word (such as ACKPSH and ACKFIN). The process log
file is given in Appendix 8.7.

Figure 6.1: Inferred TCP client protocol state machine generated using kTail-PSM tool

In Figure 6.1, it can be seen that by applying the k-Tail algorithm, it identified four main
states {0,1,2,5} and the rest of the other states have been identified as equivalent states to
these four states respectively and hence were merged. We compared this inferred state ma-
chine with the reference TCP client protocol state machine in Appendix 8.5. There are a few
noticeable differences observed from the inferred one to that of the reference protocol state
machine. For the inferred one, we derive the state machine based on the finite sequence of

3https://tools.ietf.org/html/rfc793
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flags captured for each TCP session. Obviously, transitions triggered by symbols other than
the flags were not captured. For instance, state transition based on timeout symbol was not
taken into account as indicated in the reference protocol state machine.

However, it does capture the logic of the TCP protocol. At the initial State 0, the client
initiated a connection by sending SYN symbol. There is also a transition to itself at State 0.
This is acceptable since at States 6 and 7, the two transition symbols (SYN) sent are same
and that these two states are equivalent to State 0 which have been merged with State 0. The
reason being that there was a TCP retransmission due to time-out or transmission failure.
When a SYN is acknowledged, the connection enters the Connection established state. State 1
in Figure 6.1, shows the connection established state. When the handshake is complete and
until the closing begins at State 5, the connection is in Data Transfer state. This is captured
at State 2 in the inferred protocol state machine. At State 2 the actual data was being ex-
changed. Based on the reference TCP client PSM, it does not indicate the data transmission
state. Hence, it was captured in the inferred protocol state machine. At State 5, the client
receives a FIN from the server and then sends ACKFIN transition and reverts to the initial
state.

6.2.2 Inferred SMTP Protocol State Machine

Simple Mail Transfer Protocol (SMTP) is a protocol for sending e-mail messages between
servers. Most e-mail systems that send mail over the Internet use SMTP to send messages
from one server to another; the messages can then be retrieved with an e-mail client using
either POP or IMAP server and the SMTP server when the e-mail application is configured.

For the inference of SMTP protocol state machine, we extracted the protocol symbols
using Netzob. Then by using the customized export functionality that we integrated into
Netzob, the symbols were exported into a comma-delimited text file format. Since SMTP
is documented in the IETF RFC 53214, this facilitates the comparision between the inferred
automata and the reference automata (manually produced from the textual description).
To make it easier for the experiment, we focussed on extracting protocol symbols from the
client side. Here the client refers to the initiating server (the server originating the mail).
In the SMTP data set, there were total of 62 messages. After filtering packets based on
the client side, we obtained only 30 messages. However, we noted that these 30 messages
also contained TCP session initialisation packets. So, we further filtered them out before
importing them into Netzob. Hence, only the payload data was imported into Netzob. This
was done using the Netzob trace import manager. This left us with 14 messages which were
actually processed in Netzob. Listing 6.2 shows the extracted SMTP protocol symbols. Note
that ordering has been preserved for the sequence of symbols given.

EHLO,MAIL FROM, RCPT TO ,DATA,CONTENT, CRLF . CRLF , QUIT ,EHLO,MAIL FROM, RCPT TO ,DATA,
CONTENT, CRLF . CRLF , QUIT

Listing 6.2: Sequence of SMTP protocol symbols extracted from Netzob.

While analysing the set of messages, we observed that hex code 0D0A2E0D0A, appeared
after the symbol DATA. This code translates to ASCII as: 0x0D = CR, 0x0A = LF and
0x2E = . (dot) . The symbols were grouped into a single cluster when the clustering algo-
rithm was applied in Netzob. Therefore, we represented them as one symbol, CRLF.CRLF
as given in the sequence of symbols in Listing 6.2.

Similar to the approach taken in Section 6.2.1, we generated inferred protocol state ma-
chine by selecting different values of k, and then we chose an appropriate value of k that
generated an acceptable automata compared to the reference automata. Again by setting

4http://tools.ietf.org/html/rfc5321

33



k = 1, we generate an acceptable inferred automata as given in Figure 6.2. The step-by-step
processing log file is appended to Appendix 8.8.

Figure 6.2: Inferred SMTP client protocol state machine generated using kTail-PSM tool

After executing k-Tail algorithm on the set of symbols, the final inferred SMTP PSM is
shown in Figure 6.2. It is important to note that the PSM of SMTP protocol contains two
parts, one is the state transition of client to server and the other is the state transition of
server to client. In this experiment, we only focused on inferring state transition on the
client to server state transition model.

From the inferred state machine, State 4 to State 5 only carry on the actual SMTP data.
Hence, the SMTP data transmission does not contain any state information. This is followed
by state transition information <CRLF>.<CRLF> as the end of mail data indication, which
is defined in the RFC 5321. There are also instances that a mail is sent to multiple recipients.
For such case, at State 2, it would have a state transition to itself. Such a scenario was was not
captured in the inferred state machine in Figure 6.2. The reason being that data set we used
in this experiment only contained a single mail recipient. Furthermore, the self identification
command captured in our inferred PSM is EHLO, which is extended HELO stated in the
reference state machine. This is same as HELO but tells the server that the client may want to
use the Extended SMTP (ESMTP) protocol instead. In comparison with the reference SMTP
protocol state machine in Appendix 8.6, our inferred protocol state machine is equivalent to
the reference automata.

Furthermore, we also compared our inferred SMTP state machine with a study done by
Y.Wang, Z.Zhang, D.Yao et al.[15]. Our inferred state machine share similar state transitions
except that theirs was based on probabilistic approach. Moreover, since the data set we used
did not contain other SMTP commands such as RSET, it looks slightly different to the one
inferred by Y.Wang, Z.Zhang, D.Yao et al. However, the logic captured in our inferred SMTP
protocol state machine is equivalent to the probabilistic state machine that they produced.
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Chapter 7

Conclusions

This chapter outlines the conclusions drawn and contributions made from the project
as a whole, followed by future work. This project was set out with the aim of developing
an automatic protocol state machine inference tool to complement the open-source protocol
reverse engineering tool called Netzob to reverse engineer unknown network protocols.

7.1 Conclusions

A significant amount of research has been carried out in the area of communication pro-
tocol reverse engineering and various techniques to automatically extract protocol specifi-
cations. These includes grammatical inference, statistical analysis, keyword identification,
static and dynamic analysis and other various approaches.

While most implementations of the approaches discussed have been focused on extract-
ing protocol specifications, not much attention has been given to deriving protocol state
machines. Of the protocol state machine implementation tools reviewed, none of them have
been made available to industry domain. Most of the tools have been developed as a proof-
of-concept tools in the academia. To help with protocol reverse engineering, an open-source
tool called Netzob has been developed to reverse engineer communication protocols. The
tool provides the functionality to extract protocol specifications from network traces. Fur-
thermore, it provides the functionality to infer protocol grammar and simulate traffic flows.

However, after evaluating the tool, we discovered a number of limitations in the tool.
So we implemented an open-source automatic PSM inference tool called ktail-PSM, that can
be easily integrated into Netzob. We implemented the k-tail algorithm to achieve this. The
tool takes an ordered sequence of protocol symbols extracted from Netzob and executes the
k-tail algorithm on the sequence of symbols to identify equivalent relations among the given
set of states. Those equivalents states identified are then merged. Finally, the merged states
are transformed into an inferred protocol state machine.

We demonstrated our tools using protocol symbols extracted from real-world network
traces for SMTP and TCP protocols. Based on the results produced from our case study anal-
ysis, the tool can infer PSMs to certain degree of precision depending on the value of k —
smaller k means more spurious merges which tend to achieve higher precision and bigger k
means less merges which tend to achieve higher generalization. There is a trade-off between
them. In our case study, by choosing k = 1, the tool produced detailed PSMs for the two
protocols when compared to the reference PSMs derived manually from their RFC speci-
fications respectively. In terms of performance, ktail-PSM tool is able to process sequence
having 200 protocol symbols in less than two seconds. We also found that time increases ex-
ponentially for longer sequences of input symbols. However, applying advanced automata
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minimization algorithms could be utilized to further reduce the execution time for longer
input sequences.

7.2 Contributions

In this report, we present the following contributions within the area of communica-
tion protocol reverse engineering, particularly in terms of reverse engineering communi-
cation protocols from network traces: (1) extended functionality in available open-source
PRE tool (Netzob) to extract protocol specifications (symbols) from network traces and then
export them into a comma-delimited text file format while preserving the ordering of the
symbols (2) developed a tool (ktail-PSM) that automatically infers protocol state machines
from an ordered set of given protocol symbols. Not only does the tool supports protocol
symbols extracted from network-based traces but it can also be applied to sequence of sym-
bols extracted from program-based traces. To achieve this, we implemented an equivalent
state checking algorithm called the k-tail algorithm to identify equivalent state relations and
merging them where necessary (3) we implemented FSM-based testing for an ordered input
sequence of protocol symbols (4) showed its correctness by testing known protocols. (5) we
conducted performance analysis on the implementation of the algorithm.

7.3 Future Work

The ktail-PSM tool takes in a sequence of protocol symbols extracted from Netzob as
input and executes the k-Tail algorithm, automatically generating an inferred protocol state
machine. However, the algorithm is not suited for handling complex protocols. Addition-
ally, the tool is not fully optimized to handle multiple sequences of protocol symbols and
it needs improvement. Taking these considerations into account, the following areas have
been identified for future work:

• Merging Multiple Sequence of Traces. At the moment, the tool can handle a single
sequence of protocol symbols. When there are multiple sequences, the tool simply
concatenates them and forms a single sequence and infer the automata. Hence, for our
future work, we will implement functionality to merge multiple canonical automata
from different sequences of traces into a single minimized automata.

• Optimization on Precision and Generalization of PSMs. Another area that is left for
future work is determining the precision of the inferred protocol state machine. This
area obviously requires some techniques such as reduction and minimization to be
applied to generate a PSM that can accept or reject any input protocol symbols.

• Converting Non-Deterministic to Deterministic (NDFA) PSMs. At this stage, the tool
can infer both DFA and NDFA protocol state machines. An improvement to be added
to it is to convert NDFA to a DFA protocol state machine.
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Chapter 8

Appendix

8.1 Customized Export Functionality integrated into Netzob

1 def update ( s e l f ) :
2 global traceLog
3 s e l f . view . symbolTreeview . get model ( ) . c l e a r ( )
4 s e l f . traceLog = [ ]
5 for symbol in s e l f . netzob . g e t C u r r e n t P r o j e c t ( ) . getVocabulary ( ) . getSymbols ( ) :
6 i t e r = s e l f . view . symbolTreeview . get model ( ) . append ( None ,
7 [ ”{0}” . format ( symbol . getID ( ) ) , ” {0} [{1} ] ” . format ( symbol . getName ( ) ,
8 s t r ( len ( symbol . getMessages ( ) ) ) ) , ’ #000000 ’ , ’ #DEEEF0 ’ ] )
9 s e l f . traceLog . append ( s t r ( symbol ) )

10
11 def exportVocabToTextFi le ( s e l f , fileName , vocabSymbol ) :
12 with open ( s t r ( fileName ) + ” . t x t ” , ”w” ) as t race sequence :
13 t race sequence . w r i t e l i n e s ( ”%s , ” % item for item in vocabSymbol )
14
15 def l o c a t i o n T o S a v e F i l e ( s e l f , b u t t o n c l i c k ) :
16 t r y :
17 dia log = Gtk . Fi leChooserDialog ( ”Save Log” , None ,
18 Gtk . Fi leChooserAct ion . SAVE,
19 ( Gtk .STOCK CANCEL, Gtk . ResponseType .CANCEL,
20 Gtk . STOCK SAVE, Gtk . ResponseType .ACCEPT) )
21 response = dia log . run ( )
22 Gtk . Fi leChooser . s e t d o o v e r w r i t e c o n f i r m a t i o n ( dialog , True )
23 i f response == Gtk . ResponseType .ACCEPT:
24 path = dia log . g e t f i l e n a m e ( )
25 s e l f . exportVocabToTextFi le ( path , s e l f . traceLog )
26 dia log . destroy ( )
27 s e l f . view . dia log . destroy ( )
28 e l i f response == Gtk . ResponseType .CANCEL:
29 dia log . destroy ( )
30 except IOError :
31 s e l f . log=logging . getLogger ( IOError )

8.2 Lua Script to extract TCP Flag codes

1 l o c a l funct ion DecodeFlag ( f l a g s , mask , c h a r a c t e r )
2 i f b i t . band ( f l a g s , mask ) == 0 then
3 return ’ ’
4 e lse
5 return c h a r a c t e r
6 end
7 end
8
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9 l o c a l funct ion DefineAndRegisterTCPFlagsPostdissector ( )
10 l o c a l oProtoTCPFlags = Proto ( ’ t c p f l a g s ’ , ’TCP Flags P o s t d i s s e c t o r ’ )
11 l o c a l oProtoFieldTCPFlags = ProtoF ie ld . s t r i n g ( ’ t c p f l a g s . f l a g s ’ ,
12 ’TCP Flags ’ , ’ The TCP Flags ’ )
13 oProtoTCPFlags . f i e l d s = {oProtoFieldTCPFlags}
14 l o c a l o F i e l d t c p f l a g s = F i e l d . new( ’ tcp . f l a g s ’ )
15 funct ion oProtoTCPFlags . d i s s e c t o r ( buffer , pinfo , t r e e )
16 l o c a l i t c p f l a g s = o F i e l d t c p f l a g s ( )
17 l o c a l s t c p f l a g s = ’ ’
18 i f i t c p f l a g s ˜= n i l then
19 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x80 , ’C ’ )
20 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x40 , ’E ’ )
21 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x20 , ’URG’ )
22 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x10 , ’ACK’ )
23 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x08 , ’PSH ’ )
24 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x04 , ’RST ’ )
25 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x02 , ’SYN ’ )
26 s t c p f l a g s = s t c p f l a g s . . DecodeFlag ( i t c p f l a g s . value , 0x01 , ’ FIN ’ )
27 l o c a l oSubtree = t r e e : add ( oProtoTCPFlags , ’TCP Flags ’ )
28 oSubtree : add ( oProtoFieldTCPFlags , s t c p f l a g s )
29 end
30 end
31 r e g i s t e r p o s t d i s s e c t o r ( oProtoTCPFlags )
32
33 end
34 l o c a l funct ion Main ( )
35 DefineAndRegisterTCPFlagsPostdissector ( )
36 end
37
38 Main ( )

8.3 Implementation of k-Tail Equivalent State checking and Merg-
ing them

1 def do kTailEquivCheck ( s e l f , k , seq ) :
2 a s s e r t ( k>0)
3 sequence = [ ]
4 k T a i l s . s t a t e = [ ]
5 k T a i l s . mergedl is t = [ ]
6 sequence=seq
7
8 for x in range ( 0 , len ( sequence)+1−k ) :
9 k T a i l s . s t a t e . append ( x )

10
11 for i in range ( 0 , len ( k T a i l s . s t a t e ) ) :
12 for ind in k T a i l s . s t a t e :
13 # c h e c k t h a t t h e nex t s e q u e n c e o f k−l e n g t h s t r i n g s i s not empty
14 # Here assume t h a t t h e o r d e r o f t h e s e q u e n c e i s i m p o r t a n t
15 i f ( len ( sequence [ ind+1+ i : ind+k+1+ i ])<k ) :
16 pass
17 e l i f ind==None :
18 pass
19 e lse :
20 i f check equivalence ( sequence [ i : k+ i ] , sequence [ ind+1+ i : ind+k+1+ i ] ) :
21 i f i in k T a i l s . mergedl is t :
22 k T a i l s . mergedl is t [ ind+ i +1]= i
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8.4 kTail-PSM tool Graphical User Interface
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8.5 TCP Reference Protocol State Machine1

8.6 Simplified SMTP Reference Protocol State Machine2

1https://en.wikipedia.org/wiki/Transmission Control Protocol
2http://denis.papathanasiou.org/posts/2011.11.11.post.html
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8.7 Inferred TCP Protocol State Machine Processed Log

Symbol Sequence : [SYN, ACK, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, SYN, ACK, ACKPSH, ACKPSH, ACKPSH,
ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH,
ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACK, ACKFIN, SYN, ACK, ACKPSH, ACKPSH, ACKPSH,
ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACKPSH, ACK, ACK, ACKPSH, ACK, ACK, ACK, ACKPSH,
ACK, ACK, ACKPSH, ACK, ACKFIN]

I d e n t i f y i n g Equivalent k−t a i l s ( k=1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0[ ’SYN ’]<−−>S t a t e 6 [ ’SYN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 6 )
0 [ ’SYN ’]<−−>S t a t e 7 [ ’SYN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 7 )
0 [ ’SYN ’]<−−>S t a t e 15[ ’SYN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 1 5 )
0 [ ’SYN ’]<−−>S t a t e 21[ ’SYN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 2 1 )
0 [ ’SYN ’]<−−>S t a t e 30[ ’SYN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 3 0 )
1 [ ’ACK’]<−−>S t a t e 4 [ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 )
1 [ ’ACK’]<−−>S t a t e 8 [ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 8 )
1 [ ’ACK’]<−−>S t a t e 13[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 1 3 )
1 [ ’ACK’]<−−>S t a t e 16[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 1 6 )
1 [ ’ACK’]<−−>S t a t e 19[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 1 9 )
1 [ ’ACK’]<−−>S t a t e 22[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 2 2 )
1 [ ’ACK’]<−−>S t a t e 28[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 2 8 )
1 [ ’ACK’]<−−>S t a t e 31[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 3 1 )
1 [ ’ACK’]<−−>S t a t e 40[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 0 )
1 [ ’ACK’]<−−>S t a t e 41[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 1 )
1 [ ’ACK’]<−−>S t a t e 43[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 3 )
1 [ ’ACK’]<−−>S t a t e 44[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 4 )
1 [ ’ACK’]<−−>S t a t e 45[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 5 )
1 [ ’ACK’]<−−>S t a t e 47[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 7 )
1 [ ’ACK’]<−−>S t a t e 48[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 4 8 )
1 [ ’ACK’]<−−>S t a t e 50[ ’ACK’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 5 0 )
2 [ ’ACKPSH ’]<−−>S t a t e 3 [ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 )
2 [ ’ACKPSH ’]<−−>S t a t e 9 [ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 9 )
2 [ ’ACKPSH ’]<−−>S t a t e 10[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 1 0 )
2 [ ’ACKPSH ’]<−−>S t a t e 11[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 1 1 )
2 [ ’ACKPSH ’]<−−>S t a t e 12[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 1 2 )
2 [ ’ACKPSH ’]<−−>S t a t e 17[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 1 7 )
2 [ ’ACKPSH ’]<−−>S t a t e 18[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 1 8 )
2 [ ’ACKPSH ’]<−−>S t a t e 23[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 2 3 )
2 [ ’ACKPSH ’]<−−>S t a t e 24[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 2 4 )
2 [ ’ACKPSH ’]<−−>S t a t e 25[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 2 5 )
2 [ ’ACKPSH ’]<−−>S t a t e 26[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 2 6 )
2 [ ’ACKPSH ’]<−−>S t a t e 27[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 2 7 )
2 [ ’ACKPSH ’]<−−>S t a t e 32[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 2 )
2 [ ’ACKPSH ’]<−−>S t a t e 33[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 3 )
2 [ ’ACKPSH ’]<−−>S t a t e 34[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 4 )
2 [ ’ACKPSH ’]<−−>S t a t e 35[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 5 )
2 [ ’ACKPSH ’]<−−>S t a t e 36[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 6 )
2 [ ’ACKPSH ’]<−−>S t a t e 37[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 7 )
2 [ ’ACKPSH ’]<−−>S t a t e 38[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 8 )
2 [ ’ACKPSH ’]<−−>S t a t e 39[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 3 9 )
2 [ ’ACKPSH ’]<−−>S t a t e 42[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 4 2 )
2 [ ’ACKPSH ’]<−−>S t a t e 46[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 4 6 )
2 [ ’ACKPSH ’]<−−>S t a t e 49[ ’ACKPSH ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 4 9 )
5 [ ’ACKFIN ’]<−−>S t a t e 14[ ’ACKFIN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 5 , 1 4 )
5 [ ’ACKFIN ’]<−−>S t a t e 20[ ’ACKFIN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 5 , 2 0 )
5 [ ’ACKFIN ’]<−−>S t a t e 29[ ’ACKFIN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 5 , 2 9 )
5 [ ’ACKFIN ’]<−−>S t a t e 51[ ’ACKFIN ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 5 , 5 1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l S t a t e s in Trace : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,
16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 ,
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37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51]

Merged S t a t e s in Trace : [ 0 , 1 , 2 , 2 , 1 , 5 , 0 , 0 , 1 , 2 , 2 , 2 , 2 , 1 , 5 , 0 , 1 , 2 , 2 ,
1 , 5 , 0 , 1 , 2 , 2 , 2 , 2 , 2 , 1 , 5 , 0 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 2 , 1 , 1 , 1 , 2 ,
1 , 1 , 2 , 1 , 5 ]

S t a t e Map Dict ionary in Trace 1 : {0 : {0 : ’SYN ’ , 7 : ’SYN ’ } , 8 : {8 : ’ACKPSH ’ , 7 :
’ACKPSH ’ } , 1 1 : {0 : ’ACKFIN ’ } , 7 : {8 : ’ACK’ , 1 1 : ’ACK’ , 7 : ’ACK’ }}
F i n a l i s e d S t a t e s in Trace 1 : s e t ( [ 0 , 1 , 2 , 5 ] )
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Sta te−Label in Trace 1 : {0 : ’SYN ’ , 1 : ’ACK’ , 2 : ’ACKPSH ’ , 5 : ’ACKFIN ’}
S t a t e T r a n s i t i o n s:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0−−>0[ l a b e l =SYN]
0−−>1[ l a b e l =SYN]
1−−>1[ l a b e l =ACK]
1−−>2[ l a b e l =ACK]
1−−>5[ l a b e l =ACK]
2−−>1[ l a b e l =ACKPSH]
2−−>2[ l a b e l =ACKPSH]
5−−>0[ l a b e l =ACKFIN]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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8.8 Infered SMTP Protocol State Machine Processed Log

Symbol Sequence : [EHLO,MAIL FROM, RCPT TO ,DATA,CONTENT, CRLF . CRLF , QUIT ,EHLO,MAIL FROM, RCPT TO ,DATA,
CONTENT, CRLF . CRLF , QUIT]

I d e n t i f y i n g Equivalent k−t a i l s ( k=1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0[ ’EHLO ’]<−−>S t a t e 7 [ ’EHLO ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 0 , 7 )
1 [ ’MAIL FROM ’]<−−>S t a t e 8 [ ’MAIL FROM ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 1 , 8 )
2 [ ’RCPT TO ’]<−−>S t a t e 9 [ ’RCPT TO ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 2 , 9 )
3 [ ’DATA’]<−−>S t a t e 10[ ’DATA’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 3 , 1 0 )
4 [ ’CONTENT’]<−−>S t a t e 11[ ’CONTENT’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 4 , 1 1 )
5 [ ’CRLF . CRLF ’]<−−>S t a t e 12[ ’CRLF . CRLF ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 5 , 1 2 )
6 [ ’QUIT ’]<−−>S t a t e 13[ ’QUIT ’]−−>equiva lent s t r i n g s i d e n t i f i e d for s t a t e s : ( 6 , 1 3 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l S t a t e s in Trace : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13]
Equivalent S t a t e s in Trace : [ [ ] , s e t ( [ 0 , 7 ] ) , s e t ( [ 8 , 1 ] ) , s e t ( [ 9 , 2 ] ) , s e t ( [ 1 0 ,

3 ] ) , s e t ( [ 1 1 , 4 ] ) , s e t ( [ 1 2 , 5 ] ) , s e t ( [ 1 3 , 6 ] ) ]
Merged S t a t e s in Trace : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 0 , 1 , 2 , 3 , 4 , 5 , 6 ]
Mapping in Trace 1 : [ ’0−−>1 ’ , ’1−−>2 ’ , ’2−−>3 ’ , ’3−−>4 ’ , ’4−−>5 ’ , ’5−−>6 ’ , ’6−−>0 ’ ,
’0−−>1 ’ , ’1−−>2 ’ , ’2−−>3 ’ , ’3−−>4 ’ , ’4−−>5 ’ , ’5−−>6 ’ ]
S t a t e Map Dict ionary in Trace : {0 : {1 : ’EHLO ’ } , 1 : {2 : ’MAIL FROM ’ } , 2 : {3 :
’RCPT TO ’ } , 3 : {4 : ’DATA’ } , 4 : {5 : ’CONTENT’ } , 5 : {6 : ’CRLF . CRLF ’ } , 6 : {0 : ’QUIT ’ }}
F i n a l i s e d S t a t e s in Trace : s e t ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Sta te−Label in Trace : {0 : ’EHLO ’ , 1 : ’MAIL FROM ’ , 2 : ’RCPT TO ’ , 3 : ’DATA’ , 4 :
’CONTENT’ , 5 : ’CRLF . CRLF ’ , 6 : ’QUIT ’}
S t a t e T r a n s i t i o n s:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0−−>1[ l a b e l =EHLO]
1−−>2[ l a b e l =MAIL FROM]
2−−>3[ l a b e l =RCPT TO]
3−−>4[ l a b e l =DATA]
4−−>5[ l a b e l =CONTENT]
5−−>6[ l a b e l =CRLF . CRLF]
6−−>0[ l a b e l =QUIT]

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

8.9 Execution time data sets for ktail-PSM tool

43



k-value No.Of Symbols mean median
1 7 0.170305275917 0.0766093897365
1 14 0.165733591715 0.0250547104895
1 21 0.165936279297 0.0193765955892
1 28 0.185439817111 0.0342942193741
1 35 0.168108622233 0.0202403146662
1 42 0.168099514643 0.013277894782
1 56 0.17844089667 0.00880253951171
1 49 0.185798374812 0.0314015313365
1 63 0.195016781489 0.0229220970447
1 70 0.204019077619 0.0149879020834
1 77 0.223977255821 0.0148997617271
1 84 0.24873667558 0.0272690664674
1 91 0.270370618502 0.00980755272035
1 98 0.304340195656 0.0225289744164
1 105 0.362445958455 0.118474921274
1 119 0.42706849575 0.0142487980826
1 112 0.382620127996 0.0175744876151
1 133 0.585056130091 0.0809484640039
1 140 0.635286903381 0.0134015498699
1 126 0.488477055232 0.0107600898287
1 147 0.733863647779 0.0132811507015
1 154 0.838589088122 0.00987970492867
1 161 0.97818924586 0.0176338522227
1 168 1.12445046107 0.017658052563
1 175 1.30035101573 0.0269539111483
1 182 1.51391485532 0.0221093479558
1 189 1.74465762774 0.0210587057845
1 196 2.02399130662 0.0230960074552
1 203 2.33403295676 0.0237051077397

Table 8.1: Data set 1 for k = 1
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k-value No.Of Symbols mean median
2 7 0.158611369133 0.0336188402759
2 14 0.155111996333 0.0108064201206
2 21 0.159634868304 0.0135385392822
2 28 0.159431918462 0.0121031978083
2 35 0.160711097717 0.00936100152164
2 42 0.17304623127 0.019418705553
2 49 0.172278952599 0.0150207859594
2 56 0.182353027662 0.0147811016568
2 63 0.191815201441 0.017991946285
2 70 0.20451742808 0.012632717902
2 77 0.216569892565 0.0118841202075
2 84 0.243025970459 0.0123340900345
2 91 0.297150158882 0.104006554199
2 98 0.299482425054 0.0271416596276
2 105 0.330850601196 0.0144353390817
2 112 0.372930622101 0.0158886030086
2 119 0.424441512426 0.0133603587245
2 126 0.480536897977 0.0142375061442
2 133 0.546192709605 0.0114398504989
2 140 0.625015266736 0.0146539751593
2 147 0.719621984164 0.0146008423735
2 154 0.818739899 0.0117643422667
2 161 0.960800361633 0.0141455758316
2 168 1.10440553029 0.0205973251558
2 175 1.28172816435 0.030259980873
2 182 1.48002635638 0.0241718422309
2 189 1.71826092402 0.0164496100933
2 196 1.97648781935 0.0173127124357
2 203 2.2832431078 0.021487451748

Table 8.2: Data set 2 for k = 2
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k-value No.Of Symbols mean median
3 7 0.145054626465 0.0154363363395
3 14 0.16574280262 0.0223905246324
3 21 0.157617791494 0.00884266219517
3 28 0.15617860953 0.00998829017736
3 35 0.156658864021 0.00606182231144
3 42 0.170666201909 0.0243893654738
3 49 0.176795450846 0.0175591073877
3 56 0.17878613472 0.0115497967542
3 63 0.190685629845 0.0109987660047
3 70 0.211542574565 0.0257091739797
3 77 0.219898509979 0.0109690054913
3 84 0.239225522677 0.0183752721525
3 91 0.263620495796 0.0132567331783
3 98 0.297256032626 0.019203016819
3 105 0.329963199298 0.0154315186468
3 112 0.365391755104 0.0110427999707
3 119 0.414150746663 0.0122175198031
3 126 0.477417151133 0.0177525007413
3 133 0.541635028521 0.0107335964917
3 140 0.615150149663 0.012331360349
3 147 0.704394586881 0.0117758920167
3 154 0.823501650492 0.0193841043156
3 161 0.952754100164 0.0166473840231
3 168 1.09466435909 0.0415337716205
3 175 1.25593523184 0.0228552500434
3 182 1.45092353026 0.0211433200663
3 189 1.67766602834 0.0212738055831
3 196 1.94322921435 0.0185145362915
3 203 2.25237541199 0.028690988024

Table 8.3: Data set 3 for k = 3
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