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Abstract—Internet Service Providers need to deploy and main-
tain many wireless sites in isolated or inaccessible terrain to
provide Internet connectivity to rural communities. Addressing
failures at such sites can be very expensive, both in identifying
the fault, and also in the repair or rectification. Data monitoring
can be useful, to spot anomalies and predict a fault (and possibly
pre-empt it altogether), or to locate and isolate it quickly once
it causes an issue for the network. There might be hundreds
of variables to be monitored in principle, but only a few of
significance for detecting faults. Here, in a case study involving
a Wireless Internet Service Provider (WISP) in a rural area,
we first illustrate a bottom-up approach to the identification of
variables likely to be of use in an automatic anomaly detector. For
the purpose of this study, the detector consists of an autoencoder
neural network with weights optimized by machine learning
(ML). We then show how the cause of an anomaly can be
derived from indirect measurements, and use the model to learn
relationships between certain variables.

Index Terms—Machine Learning, Anomaly Detection, Feature
Identification

I. INTRODUCTION

Sparsely populated remote and rural communities make it
tough to justify expensive – often financially unviable – fiber
deployments, should they be installed overhead on shared
power infrastructure, or buried in the ground. In order to
deliver high-speed access services to such communities, many
Internet Service Providers (ISPs) provide Internet connectivity
through wireless means. Wireless deployments that serve such
communities are often situated in difficult to reach locations,
such as highlands, as these locations tend to provide the best
coverage at the lowest cost. Consequently, grid-power is often
unavailable, and renewable energy sources such as solar or
wind must be used.

Regular maintenance of remote sites is expected of any
quality ISP. However, there are occasions where unexpected
failures occur, even when preventative maintenance are reg-
ularly conducted. Failure events, such as those caused by
faulty batteries, defective solar controllers, or electromagnetic
interference, can be difficult to accurately diagnose remotely.
When physical access to sites is restricted, it is within the
network managers best interest to monitor as many potential
fault variables as possible.

Our work proposes a method to minimise the risks faced
by network managers, through understanding the types of
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operational disruptions faced, and identifying what variables
are important to monitor. In addition, we describe the pro-
cedure used to identify appropriate variables to monitor, so
that a machine learning (ML) model can effectively detect
any unexpected behaviour. Building from our approach, we are
able to focus on, and identify, the cause of detected anomalies
using feature identification methods.

Robust power systems are critical to any off-grid site re-
maining online every day of the year. Traditionally, to monitor
the power of a site, a network manager might observe easily
visualised variables, such as the battery bank voltage and
charge current at a site. When the voltage of a battery bank
falls below a recognised threshold, action needs to be taken.
Generally, such monitoring systems are built based on the
professional experience of network managers, rather than a
recognised best practice [1], [2]. Consequently, faults are often
identified reactively, as opposed to proactively, and sometimes
after the window to prevent impending trouble has passed.

We propose monitoring many more variables, and using ML
to gain insights about faults and patterns at the sites. With this
knowledge, a system that allows quick identification of the
causes of faults can be designed. If such a system is unable to
identify a cause, we can also conclude with high confidence
that this is a new cause of fault and eliminate all other possible
reasons. This saves valuable time and effort on the network
manager’s part.

We provide a case study of how to identify those important
variables and build a model. This model helps to find the
unseen relationships between the variables. Using these corre-
lations, we identify the cause of the faults. The contributions
of this work are the following:

(i) A Bottom-Up approach to identify important variables
for ML.

(ii) Using feature identification methods to identify the
causes of anomalies.

(iii) An iterative procedure to update input variables.

The remainder of this paper is organised as follows: Sec-
tion 2 surveys research efforts related to the management
of WISPs, especially those in rural communities, using data
science and ML approaches; Section 3 describes the method-
ology; Section 4 explains the experiment and the results, and
we conclude the paper in Section 5.



II. RELATED WORK

The emergence of wireless mesh networks (around 2000)
ignited interest in providing Internet connectivity to rural
communities [2]. Since then, wireless networking technology
has advanced significantly and prices have also become more
affordable, yet a key obstacle preventing the adoption of
advanced technology and use of better equipment in rural
community networks is the low return on investment (ROI) [3].
Challenges faced by rural community network providers also
include power management, difficulty in accessing network
locations for maintenance and repairs, and unreliable links
due to weak signals or interference, which further add to
the operation costs. Consequently, much of the research in
rural community networks has focused on addressing these
issues [4]–[6].

In the early days of rural wireless mesh networks, dedicated
hardware and software watchdogs were utilized to avoid hav-
ing to make physical visits to remote and difficult access sites
where network equipment were installed [2]. At each network
node, an independent management module tracked the node
and link(s) health and communicated the status information
by Short Message Service (SMS) over a cellular network.
This information was then used to diagnose network faults and
decide whether a visit was necessary. As a large number of
rural community mesh networks do not have cellular coverage,
it is infeasible to implement a cellular-based control channel.
Instead, another system’s network management component
used the backhaul link via the gateway to relay any control
messages [7]. It also logged essential information for network
diagnosis and post-failure analysis.

Networking and distributed computing have long been the
enablers of other technologies, and undoubtedly been provid-
ing efficient computation resources as well as data acquisition
capabilities for ML and big data applications. The increased
complexity of networks and the traffic carried by them also
motivated the application of ML and big data techniques
for both mundane and complex problems encountered in
network operation and management [8]–[10]. Due to their
significantly larger customer base, higher revenue and ROI,
cellular networks [11]–[15] receive much more interest than
community networks [10] in the use of ML and big data.
Another clear orthogonal trend is the application of ML for
network traffic classification [15]–[17] and anomaly detection
to address security issues [10], [18], [19] that can be applied
to all forms of networks.

Boutaba et al. [9] provide a comprehensive survey on ML
for networking, of which the fault management aspect is of
particular interest to us. They stated that fault management
“requires network operators to have a thorough knowledge of
the entire network, its devices and all the applications running
in the network.” Most critical network infrastructures come
with uninterrupted power and operators focus on dealing with
network-related faults. However, power management remains
a key challenge faced by WISPs for rural communities as
the reliance on batteries [4], [20] or off-grid renewable power

sources (e.g. solar or wind) [21] is inevitable. Not only does
loss of power disrupt network operations, low-quality power
damages networking equipment as well as batteries [2]. Power
management is therefore a critical aspect of rural community
WISPs and forms an integral component of the entire network
together with the other network devices. This consideration
has been adopted in the context of green networks [22].

ML has also been applied in the management of power
systems [23], [24] and grids [25], as well as renewable power
systems [26], [27] but, to the best of our knowledge, not in
the context of power management within network operation
and management of rural community networks by WISPs.

III. METHODOLOGY

Each ISP is unique and operates under different require-
ments and scenarios. ISPs may already subscribe to a third
party data monitoring tool such as SolarWinds [28]. An ISP
can also set up a monitoring tool from open source programs
such as Zabbix [29]. In the former, an ISP has an abundant
number of variables that can be monitored, and in the latter,
an ISP would need to build the variables up from scratch.

Even with an abundant number of variables, it is futile to
indiscriminately throw all the variables into a ML algorithm in
hope of learning some patterns. Not only will it be difficult, but
patterns learnt cannot be easily interpreted. In the literature,
there are many feature selection methods that reduce a set
of variables to important ones [30]. We shall refer to this
approach as the Top-Down approach. For this method, we
need real world data that depicts anomalies. Also, it may not
provide enough context or meaning to gain proper insights
into the faults. Thus, it is prudent to build the monitoring
variables from scratch; in other words, from the knowledge
of the network manager or the Bottom-Up approach. The
Bottom-Up approach also allows managers to incorporate
new variables that may be important but are not in the
list of variables provided by third party monitoring solution
providers, for example installing a sensor to monitor moisture
or temperature near the batteries. There is also a fine balance
between attempting to monitor the variables and being able to
measure them accurately.

A. Bottom-Up Approach

Being aware of what variables are fed into the ML model
is an important step which is usually ignored. We input
many variables and expect it to perform. But if we put in
uninformative variables, we will not obtain any useful results.
Informative variables should come from our knowledge of
the system. We must help the ML model so that it can help
us. Here, we introduce the Bottom-Up approach to identify
these variables. To begin, we asked the network manager the
following questions.

1) Describe the nature of the faults or anomalies faced by
the system.

2) To detect each of the above mentioned faults, which
variables are currently monitored?



3) For each of the above mentioned variables, how are the
data collected?

The rationale for the first question is to understand the faults
that occur within the site. This can be battery faults, latency
issues, radio frequency anomalies, etc. Each of these can be
further broken down into sub-categories. For instance, battery
faults can be caused by either low-voltage, battery out of order
or limited solar generation. We can bring it all the way to the
individual battery or each link in the network. The objective
is to make this list as fine-grained and as comprehensive as
possible.

Next, from each of the sub-categories, we can identify
variables which the network manager currently uses to detect
it. For example, high Watt hours and high Current can result in
low voltage situations which affects performance as a whole.
One of the difficulties in identifying these variables for ML
is that network managers tend to understand the faults from a
high level. “A low-voltage situation could be caused by exces-
sive consumption or a lack of control of power generation.”
For ML methods, this cause needs to be further fine-tuned to
specific measurable variables by asking appropriate questions.
Some examples include “How to measure consumption or
power-generation?” It also helps the network manager think
through their current processes and facilitates the building of
a model of the fault that the data can point to when it occurs.

B. Measurement

The next challenge is to accurately measure the identified
variables. If the existing third party provider already measures
and provides all of the required variables, then the task is
simple. Else, one would need to find a way to measure the
variables directly or indirectly depending on the site archi-
tecture and set-up. For example, the ‘ping’ command can be
used to measure round-trip-time (RTT), weather information
can be scraped off the web, and signal-to-noise ratio (SNR)
measurements – as well as other spectrum analysis – can
be performed using existing radios, or by setting up custom
monitoring hardware within the environment.

Another challenge is to determine the appropriate time-
window to make the measurements. This depends on the
persistence of the site operation when a fault is detected. It
also depends on the measuring capabilities. Some variables can
only be measured every hour, while others can be measured
every few seconds. Small intervals capture fine changes which
may not be relevant in the context of site operation. It may also
require more computation to measure, and additional storage
space. Rendering an interval too large might miss pertinent
information. Either way, it is necessary to study different time-
windows during experimentation to gain specific insights.

C. Types of Variables

Certain variables are not numerical. For example the
weather is a categorical variable and certain device information
such as state of the device, flags, or DIP switches which
only take a few numerical values should also be considered
as categorical. Some faults are detectable relative to previous

values. This goes into second order calculation of variables
such as Change in Watt Hours or ‘∆ Watt Hrs’ over two
time-windows.

In a time-window, certain variables can be measured many
times. For instance, Battery Temperature or Charge Cur-
rent may be measured every 10 seconds. In a time-window
of 5 minutes, one obtains 30 values. Statistical attributes
such as mean, maximum, minimum, median, variance, and
interquartile-range of variables can be used to describe the
distribution of the 30 values. This depends on the variable and
the anomaly of interest, i.e., which statistical attribute indicates
the fault most accurately and is based on the knowledge and
understanding of the network.

IV. EXPERIMENT WITH ISP

In this section, we will describe the engagement with an
ISP to utilise ML methods to gain insights.

A. ISP Details

We worked with Venture Networks, a rural ISP located in
the Horowhenua District of New Zealand. The ISP provides
internet connectivity to local farms, and has several sites across
the region. Some of the sites are difficult to access, especially
during the winter months, due to the challenging terrain and
severe weather. In the last year, Venture Networks has been
caught off guard by several unexpected failures at their sites.
In one case, a battery bank failed well before expected, and in
another case, water penetrated a supposedly waterproof power
junction box, causing half of the solar array to fail.

Network managers currently have the ability to monitor
important variables using a variety of free and proprietary
software. Faults are generally found based on conditional
logic, and network managers are typically alerted by email,
and sometimes over mobile push notifications or SMS. Upon
notification of a fault, manual work is typically required to
identify the root cause. When dealing with sites in challenging
areas, often a trip to identify the fault will be required, which
can be expensive, and worse, extremely dangerous especially
during adverse weather conditions.

B. Variables Identified

The ISP subscribes to a monitoring software provider that
provides monitoring of over 100 different variables. Through
engagement and the processes mentioned in Section III-A,
we identified the following variables depicted in TABLE I
which are related to three main types of anomalies that have
occurred frequently. These variables are a natural starting point
to measure and input into ML methods. Through analysis and
identification of faults, more variables can be identified and
added later on as anomalies occur. For example, if a hardware
fault is found to be caused by water damage, that cause could
be incorporated by measuring moisture or water levels in the
vicinity as a variable for future detection.

Not all of the variables are provided by the ISP. Variables
such as the weather were recorded by polling a weather service
Application Programming Interface (API), due to the lack



TABLE I
MEASURED & DERIVED VARIABLES

Variables Description Type Derived Variables Type
Battery Voltage Instantaneous battery bank voltage (internal sensor) Numerical ∆Battery Voltage 2nd Order

Battery SVoltage Instantaneous battery bank voltage (external sensor) Numerical ∆Battery SVoltage 2nd Order
Target Voltage Target battery bank voltage Numerical – –
Charge Current Instantaneous charge controller charge current Numerical – –
Output Power Instantaneous power into the battery bank Numerical ∆Output Power 2nd Order
Input Power Charge controller input power Numerical ∆Input Power 2nd Order

Array Voltage Instantaneous output voltage of solar array Numerical ∆Array Voltage 2nd Order
Array Current Instantaneous output current of solar array Numerical ∆Array Current 2nd Order
Sweep Vmp Maximum power voltage of the array Numerical – –
Sweep Voc Open circuit voltage of the array Numerical – –

Sweep Pmax Maximum power produced by the array Numerical – –
Battery Temp Battery temperature (external sensor) Numerical ∆Battery Temp 2nd Order

Heat sink Charge controller heat sink temp Numerical ∆Heat sink 2nd Order
Amp Hours Daily (moving) amp hours count Numerical – –
Watt Hours Daily (moving) watt hours count Numerical – –

Weather Temp Levin town temperature Numerical – –
Weather Wind Levin town wind speed Numerical – –
Tx Capacity Transmit capacity of the wireless link Numerical – –
Rx Capacity Receive capacity of the wireless link Numerical – –

Signal Received Signal Strength Indicator Numerical – –
Noise Floor Noise floor of the wireless link Numerical – –

SNR Signal-to-Noise Ratio of the wireless link Numerical – –
RTT Site-to-Site Round-trip Time Numerical – –

Tx RTT Radio transmit Round-trip Time Numerical – –
Min Vb daily Daily (moving) min battery voltage Statistical – –
Max Vb daily Daily (moving) max battery voltage Statistical – –
Min Tb daily Daily (moving) min battery temp Statistical – –
Max Tb daily Daily (moving) max battery temp Statistical – –

Weather Weather state (clouds/rain/sun, etc) Categorical – –
Charge State Current stage of the 4-stage charging algorithm Categorical – –
DIP Switches Hardware configuration switch state Categorical – –

CCQ Client Connection Quality Categorical – –

of a local weather station. Most of the variables – except
those related to weather, latency, or radio-specific functions
– were captured using a commercially available solar charge
controller. A time window of 5 minutes was used to capture
each of the variables, and the results were stored on a server
running within Venture Networks’ central office. While we had
access to a charge controller that supported normal TCP/IP
communications, we acknowledge that not all charge con-
trollers have remote monitoring and configuration capabilities,
which is a future limitation that we will need to overcome.

C. Preprocessing

ML models require certain preprocessing to learn effec-
tively. They are as follows.

• Categorical variables need to be converted to binary or
numerical values. We used one-hot encoding to con-
vert the categorical variables to binary and Principal
Component Analysis (PCA) without any dimensionality
reduction to map it to the eigenspace. For more details
on these methods, we refer readers to [31], [32].

• The data should be normalised to a range between [0,1]
or [-1,1]. This is important because the large values in
certain variables would put higher weight and importance
on those variables and reduce the importance of other
variables. We used Min-Max scaling [33] to accomplish
this.

D. Model

Note that chronological ordering of the data is a requirement
for some modelling methods such as time-series. However, it
requires the assumption that the data in future time periods
depend on the past time periods and this is not always true.

For this specific ISP, the data profile significantly varies
during different hours of the day. Training one model over
24 hours would not suffice because if a situation that would
usually occur during the night occurred during the day, that
would be regarded as unexpected. We insert a new categorical
variable to denote the hour interval.

This study is not about showing which is a better ML
method but how to use ML in daily operations. Thus, we
will not be comparing different methods. We choose the
AutoEncoder (AE) because it has been used in many studies
on anomaly detection [34]. An AE consists of an encoder
network, a latent layer and a decoder network as shown in
Figure 1. The encoder maps the input data into the latent
layer of lower dimensionality, and the decoder reconstructs
them again. This is also called an undercomplete AE. The
weights of the maps are determined using the data during the
training phase. Training an undercomplete AE forces the AE to
keep important variations and to find the complex relationships
between the variables that are required to reconstruct the input.
They also provide a Reconstruction Error (RE) which can be



used as an anomaly score [34]. The AE is trained with only
normal data while minimising RE. Thus, the assumption is
that normal data can be reconstructed while anomalous data
will have higher RE.

Fig. 1. AE Model [35]

For the training, we use data that the network administrator
has identified as normal day operations. We use an AE with
five hidden layers with the number of neurons in the middle
layer equalling 1 +

√
d, where d is the number of input

variables [36], [37]. We used batch training with the leaky
Relu activation function at each layer and Sigmoid on the last
layer.

To show the ability of ML to identify anomalies based on
other variables, we removed Battery Voltage, Battery SVolt-
age, ∆Battery Voltage and ∆Battery SVoltage variables from
training and testing.

E. Results

We assessed the model’s performance over a few days
where there were some unexpected battery behaviour. Figure
2 shows how Battery Voltage changes during the course of
the day. During normal operations, the anomaly scores are
low. However, when there is an unexpected behaviour there
are more spikes in anomaly scores. Note that the AE has
determined this solely based on other variables. This suggests
that if Battery Voltage were not observed, the AE would
still be able to detect the unexpected behaviour. Upon further
analysis, the network manager can determine that Battery
Voltage should be measured and be an input variable to the
AE to make it more robust. The bottom graph of Figure 2
shows how one variable moves. The top graph shows how
all of the other variables move in correlation depicted on
to one dimension to show whether it is moving normally or
anomalously. This demonstrates the power of a ML model and
the benefits of using it to uncover hidden relationships.

From the network manager’s method of observing ‘Battery
Voltage’, the problem was detected on the 17th of June
after consecutive days of torrential rain. The model also
detects more anomalies during that period and after. This is

TABLE II
FEATURES THAT DESCRIBE UNEXPECTED BEHAVIOUR IN FIGURE 2

Ranking based on
Rank χ2 Mutual

statistic Information
1 Sweep Voc Sweep Voc
2 Sweep Vmp Min Vb daily
3 Array Voltage Watt hours
4 Target Voltage Amp hours
5 Charge Current Max VB daily
6 Output Power Max TB daily
7 Input Power Weather Temp

determined by comparing the anomaly scores during normal
operations on left top of Figure 2. The threshold in blue is
also determined in this manner. A few data points being above
the threshold during normal operations is not surprising and
could reflect measurement error. However, when many points
are above the threshold, we can conclude that there is some
unexpected behaviour.

To determine the cause of the unexpected behaviour, we
took the data during the anomalous period and performed
feature identification. We ranked the features based on χ2

statistic [38] and Mutual Information (MI) [39] in TABLE II.
Both these methods make different assumptions about the
data but regardless, it helps us to identify that the unexpected
behaviour is due to the battery. Note that in the literature, these
methods are used for feature identification before training a
ML model [30]. We do this after identifying the anomaly to
understand what type it is. This also helps us identify other
important variables to monitor and the hidden relationships
between them in describing the fault. For instance, we should
also monitor ‘Sweep Voc’ instead of only ‘Battery Voltage’.
We also learn about the other related variables to this battery
anomaly. The more variables we can measure and input into
the AE, the more powerful and effective this analysis will be.

We also artificially injected latency anomalies by using
the Linux utility traffic control (tc), which ran on the server
collecting anomaly data, so as to not degrade live customer
connections. The results are shown in Figure 3. The results
are shown in logarithmic scale since the anomaly scores
were huge. The respective features are ranked in TABLE III.
However, by looking at the contribution of each feature to
the anomaly score based on the values of the χ2 statistic
and Mutual Information (MI), only RTT stood out. This is
because the latency anomaly was injected artificially instead
of it having occurred in real-time. Despite that, we learn
that unexpected values in ‘Input Power’, ‘Array Voltage’ and
‘Sweep Voc’ can also be related to latency anomalies.

V. CONCLUSION

Hence from the above results, the ML model is able to
detect unexpected behaviour. We must be careful in providing
it with the right variables. A hunch that certain variables
can help to detect anomalies can be a good starting point.
This is the bottom-up approach described in section III-A.
Subsequently, as anomalies are detected, feature identification



Fig. 2. Left Bottom: Observed Battery Voltage variable during normal operations. Left Top: Anomaly scores from AE based on other variables during
normal operations. Right Bottom: Observed Battery Voltage during some unexpected behaviour. Right Top: Anomaly scores based on other variables during
unexpected behaviour.The threshold in blue is defined based on Left Top graph.

Fig. 3. Top: Log anomaly scores from AE based on other variables during normal operations and during injected latency after 1930. Bottom: RTT. The
threshold in blue is the same value as in Figure 2. All log anomaly scores are translated to above 0.



Start: Bottom-up approach to 
identify variables/metrics

Measure and collect data

Build and deploy model
Model fails to detect 

unexpected behaviour

Understand unexpected 
behaviour

Model detects 
unexpected behaviour
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characterise unexpected 

behaviour

Identify potential new 
variables

Fig. 4. An iterative procedure to identify variables and build the model. After a couple of iterations, we will reach the green loop where the model detects
all related anomalies for the network manager.

TABLE III
FEATURES THAT DESCRIBE LATENCY IN FIGURE 3

Ranking based on
Rank χ2 Mutual

statistic Information
1 RTT RTT
2 Target Voltage Sweep Voc
3 Sweep Vmp ∆Input Power
4 Array Voltage Array Voltage
5 Sweep Voc Input Power
6 Output Power Weather Temp
7 Input Power Sweep Pmax

can be done to categorise the fault and to find important
relationships between the variables that describe the fault.
The network manager can identify potential new variables
to measure for fine grained results in future for this specific
unexpected behaviour. If an anomalous behaviour is missed,
which the network manager has been made aware of from
other sources such as customer complaints, it means that the
ML model has not been provided with the right variables to
detect that particular anomaly. The next time that particular
anomaly occurs, it can be easily detected and mitigated. Hence,
this is an iterative process depicted in Figure 4 to identify
variables over time and continually build a robust model.

This process also helps the network manager understand
exactly how the network operates, identify the specific cause(s)
of a fault and address it instead of using ‘patchwork’ methods
such as boosting the signal or increasing power. After a robust
model is built, this also allows for automation of network
operations which will be addressed as future work of this
research.
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