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Abstract—Named Data Networking (NDN) is an information-
centric internet architecture that delivers packets based on the
name of the content in the packet. A key component of NDN is
the caching strategy designed to reduce total network latency and
load on content producers. To improve the speed and reliability
of web content delivery, existing caching strategies typically
cache content on a large number of intermediate nodes, which
incur significant energy consumption and memory overhead.
However, in Internet of Things (IoT) scenarios, memory and
energy of nodes are scarce resources. Therefore, in NDN-based
IoT applications, traditional caching strategies can cause node
failures due to energy depletion, which can significantly reduce
the network operational lifetime as well as create problems that
caching is supposed to solve. In this paper, a caching strategy
based on node centrality and energy availability, called Energy-
aware Approximate Betweenness Centrality (EABC) is proposed
for NDN-based IoT. EABC uses a topology-based heuristic to
cache data content on nodes with high centrality and makes
caching decisions based on the remaining energy of the nodes.
We evaluate EABC using simulations based on ndnSIM in
different topologies and compare it with several existing NDN
caching strategies. The results show that EABC performs better
in different types of network topologies, reduces the average
transmission delay of data and balances the energy consumption
of highly central nodes, thus extending the network lifetime.

Index Terms—Cache Decision Strategy, NDN, IoT, Between-
ness Centrality, Energy

I. INTRODUCTION

In the current era of digitization, the exchange of infor-
mation and the flow of data have become pivotal driving
forces for social and economic development. The Internet of
Things (IoT), through connecting various physical devices
to the internet, has triggered an unprecedented surge in
data. Information-Centric Networking (ICN), with its content-
centric characteristics, emerges as an ideal choice for the
Internet of Things (IoT), facilitating the effective manage-
ment and distribution of large-scale IoT data. In this net-
work paradigm, data revolves around content, completely
abandoning dependence on specific address identifiers. It is
against this backdrop that our attention is directed towards
a specific ICN implementation—Named Data Networking
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(NDN). Given that IoT data are typically identified by content
rather than addresses, NDN, as a concrete manifestation of
information-centric networking, demonstrates unique advan-
tages in addressing this challenge.

The NDN architecture adopts a content-centric paradigm,
and caching is an important mechanism in NDN. The cache
in an NDN node holds the requested data for faster response
in subsequent requests, thus reducing network latency and
congestion. It has also been proven that caching reduces the
energy consumption of the entire network [1]. In the IoT,
problems such as network latency and congestion are more
prominent due to the huge number of devices and limited
network bandwidth, and by applying NDN to the IoT, these
problems can be effectively addressed and network efficiency
can be improved. Therefore, NDN caching mechanism plays
an important role in IoT and is expected to improve the
performance and reliability of IoT applications.

Most studies on caching in NDN only consider features
such as content or topology, and the proposed caching strate-
gies are not applicable in the IoT because IoT devices are
usually resource-constrained and have limitations in terms
of processing power, memory, and energy compared to the
traditional Internet. In IoT, node energy consumption is an
important factor that cannot be ignored, and once a node is in
a low or depleted energy state, its usability value is low as its
remaining operational lifetime is limited [2]. Once its energy
supply is depleted, data that were cached on the expired node
will be lost and subsequent requests for the same data will
have to be satisfied by other nodes that may have cached those
data, or in the worst case, by the producers themselves. Be-
sides link instability and even potential network failure if the
node’s expiration lead to the network becoming partitioned,
interest packets will have to travel further in order for the
requests to be fulfilled and likewise, data packets will traverse
long distances to the consumers. Instead of achieving its key
objectives of reducing network traffic and latency to fulfill
requests, caching without nodes’ energy consideration leads
to opposite adverse consequences.

At the same time, topology and caching are closely linked,



and the IoT has multiple possible topologies, which leads
to the possibility that a certain caching policy may be very
effective in one type of topology and not work at all in
another. In addition, if the network topology is dynamic,
the ideal cache location may change over time. Therefore,
the optimal caching policy should be able to be applied
to all types of topologies. Considering the characteristics
of IoT, e.g., constrained devices, limited energy, and vari-
able topology, we propose a new caching policy, Energy-
aware Approximate Betweenness Centrality (EABC), which
aims to achieve a balance of content delivery latency and
energy. From our performance evaluations, we demonstrate
that EABC reduces content delivery latency, improves cache
hit rate, balances network energy consumption, and extends
network lifetime. At the same time, in order to cope with the
changing topologies of IoT, EABC is also topology-agnostic,
such that it can perform well in many different topologies.

The rest of this paper is organized as follows. Section II dis-
cusses related work on NDN caching strategies. In Section III,
we describe our proposed NDN-IoT caching strategy, EABC,
and provide a specific example. Section IV then presents
simulation results for the energy consumption, cache hit rate,
and delay of the EABC caching strategy in IoT topologies.
To show the topology-agnostic feature of EABC, we evaluate
its performance in both edge and core topologies, before we
conclude in Section V.

II. RELATED WORK

Caching, which is an integral part of the NDN architec-
ture, determines which objects are placed on which cache
nodes [3]. Whenever an NDN node receives a content block
that is not yet available in its Content Store (CS), it needs
to make a decision on whether to keep a copy, i.e. cache the
content.

Cache Everything Everywhere (CEE) [3] is the simplest
caching decision strategy, which is the default strategy used in
traditional NDN. Whenever a piece of content passes through
a node that does not already have a copy of it in its CS, that
content will be cached by placing a copy in the CS. Leave
Copy Down (LCD) [4], proposed by Laoutaris et al., always
caches the content in the next hop node where the cache hit
occurs. However, in densely connected networks, CEE and
LCD can lead to high redundancy, which is unsuitable for
networks with severely limited caching capabilities.

Based on the need to increase caching diversity and reduce
caching redundancy, Zhang et al. proposed Prob [5], which
uses probability to determine whether to cache content. Hail
et al. proposed pCASTING [6], which dynamically calculates
the caching probability of each node and even each content
block based on available node information such as content
block freshness, node battery power, and cache occupancy.
However, probability-based caching strategies have a degree
of randomness as well as implementation constraints.

To address the challenges posed by large-scale IoT, such
as real-time video, streaming video, and high-traffic data
services, Hasan et al. [7] proposed an efficient cluster-based
caching mechanism and content popularity method to improve
content availability and reduce distribution time. Gupta et
al. [8] designed a hierarchical network architecture based
on ICN-IoT, which determines the content to cache on net-
work nodes by comprehensively considering node centrality
and implements near-path caching to reduce overall network
traffic. Naeem et al. [9] proposed a hybrid caching strategy
that selects content based on request frequency and efficiently
caches it at the edge and leader nodes to improve the
delivery efficiency of multimedia content. Additionally,in [10]
introduced a caching strategy to make decisions based on the
popularity and lifetime of IoT content, ensuring the delivery
of fresh IoT data. However, while these caching methods have
made significant progress in improving efficiency, it is worth
noting that they have not yet fully accounted for the energy
constraints of IoT devices.

Energy efficiency plays a pivotal role in the realm of
the IoT [11]. In [12], authors proposed an energy-efficient
approach based on the information-centric networking (ICN)
paradigm using distributed caching of IoT content. Hahm et
al. [13] exploited content names, utilizing smart interplay be-
tween cooperative caching and power-saving sleep capabilities
on IoT devices. This enabled each device to automatically set
names and adjust parameters to reduce energy consumption.
Gupta et al. proposed an energy-efficient placement method
for content chunks suitable for the vehicular environment [14].
The strategy considered the residual power of the current
carrier, the local popularity of the content, and the cache
gain to determine the placement of content chunks, which
reduced content duplication. Caching content also expends
the energy of an IoT node. Hence, Serhane et al. [15]
proposed an Energy-aware caching placement scheme (EaCP)
that aims to maximize the energy-saving by balancing content
transmission energy and content caching energy. Similarly, co-
operation between content caching and transmission has been
proposed and validated using an experimental testbed [16].

As expected, various machine learning approaches have
been proposed for energy-efficient caching in IoT networks.
Deep Reinforcement Learning (DRL) approaches have been
proposed for use in cache-enabled device-to-device (D2D)
networks with considerations on device mobility and content
popularity [17]. Similarly, a DRL-based caching scheme has
been shown to improve the cache hit rate and reduces energy
consumption of the IoT networks while taking data freshness
and limited lifetime of IoT data into account [18]. It is un-
clear how such approaches can be implemented on resource-
constrained IoT devices. Hence, DRL and other learning
approaches are typically applied to caching of IoT services
and data on edge servers [19] and not the IoT devices within
the networks.

There is a class of NDN caching strategies that use be-



tweenness centrality to determine where to cache content.
Betweenness centrality has been found to be a measure of
the importance of nodes in a network [20]. Caching on more
“important” nodes will benefit the caching performance and
thus can be applied to NDN caching. In NDN, it can be
assumed without loss of generality, that the shortest path
between i and j is used as the transmission path of the content.
Therefore, the betweenness centrality of an arbitrary node v
can then be defined as follows:

CB(v) =
∑

i ̸=v ̸=j ̸=V

σ
′

i,j(v) (1)

σ
′

i,j(v) =

{
1, if v on path (i, j)
0, otherwise

(2)

where V is the set of all nodes in the network, and σ
′

i,j(v)
indicates whether the shortest path from i to j passing through
node v.

Chai et al. [21] proposed two methods to determine where
to cache content based on the centrality of a node: Betw and
EgoBetw. Betw is the most straightforward implementation
of betweenness centrality. Before the nodes start exchanging
interest and data packets, the network uses Eqn. (1) to assign
the centrality values to all nodes. Due to the high complexity
of Betw, a more lightweight alternative called EgoBetw was
proposed that does not require global network information;
instead, nodes only exchange information with their neighbor
nodes in one adjacent hop to compute an approximation of
their centrality value. However, if Betw and EgoBetw are
applied to real scenarios, both need to repeatedly calculate the
node centrality values when the topology changes, thus incur-
ring additional communication and computational overheads,
and changes in the topology can be very frequent depending
on the deployment scenario.

In view of the difficulties in practical deployment of
Betw/EgoBetw and resource contraints of IoT devices,
Pfender et al. [22] proposed the Approximate Betweenness
Centrality (ABC) caching strategy, which can approximate
the node’s centrality value based on network traffic with-
out additional overhead and can easily adapt to dynamic
topologies when calculating the centrality value. ABC embeds
unique identifiers for producers and consumers in the interest
packet, allowing each node processing the interest packet to
determine its location on the path between the consumer and
the producer. This enhances the node’s knowledge about the
delivery path it is on. Over time, by tracking the pairs of nodes
it serves, each node can approximate its own numerical value,
eventually converging to the value computed by Betw during
the setup phase. The ABC caching strategy can easily adapt to
the dynamic topology by processing the information stored on
the record path. However, in IoT, nodes with higher centrality
values will experience high load levels and have more traffic
passing through them leading to greater battery consumption.
When a node’s energy is depleted, the node as well as the
connectivity it provides fail. Dealing with nodes failures and

providing energy-awareness when caching are key concerns
of recent research [23].

As the centrality-based caching policy picks nodes with
higher centrality values to cache, these “more important”
nodes in the network incur higher energy consumption, while
other nodes have a surplus of energy. With energy-depleted
nodes in key locations, the network becomes disconnected
and the consumers at the edge cannot get data from the
producers resulting in performance degradation. Therefore, a
caching policy needs to make energy-aware caching decisions
to achieve a balance and optimization of content delivery
latency and energy in order to extend the operational lifetime
of the network.

III. EABC CACHING PLACEMENT STRATEGY

The Energy-aware Approximate Betweenness Centrality
(EABC) caching policy aims to address the node energy
consumption imbalance problem in ABC [21]. The policy
achieves energy consumption optimization by offloading the
content of nodes with high centrality values to nodes closer to
the consumers, so that the energy of nodes with high centrality
values is not easily and quickly depleted.

A. Main Idea

EABC uses energy as a metric for high centrality value
nodes to influence caching decisions before energy depletion,
and cache content in other nearby nodes. Initially, a consumer
publishes interest packets into the network, which are for-
warded to producers with content by using the corresponding
forwarding policies. When the interest packet arrives at an
intermediate node, it queries its CS table, the Pending Interest
Table (PIT) and the Forwarding Information Base (FIB, or
forwarding table). Where necessary, the node updates the
centrality value in the packet so that the interest packet carries
the largest centrality value in the path. When the interest
packet is satisfied at the producer or an intermediate node with
a copy of the content in its CS, a data packet is generated and
sent back to the consumer along the reverse path of the interest
packet. As the data packet travels back to the consumer, the
decision to cache the content is made based on centrality as
well as the node’s remaining energy.

B. Packet Structure Design

In order to utilize centrality and energy metrics in the
caching decision, it is necessary to extend the Interest and
Data packets of NDN, as shown in Fig. 1. Firstly, a between-
ness centrality field Betw is added to the Interest packet,
which records the maximum node betweenness centrality
value of the path to the producer. At the same time, the Data
packet also adds a betweenness centrality field Betw, which is
used to compare with the node’s betweenness centrality value
to determine whether the Data packet should be cached. In
addition, the Data packet also includes an EnergyFlag field
that records the remaining energy of the node, enabling load



Fig. 1: Packet formats of EABC

balancing caching decisions to be made when the remaining
energy is insufficient.

C. EABC Caching Placement Strategy Design

The EABC caching decision policy is based on a combina-
tion of a node’s centrality value and its remaining energy,
as well as the packet’s content. When the interest packet
passes through a node, the node compares the centrality value
in the packet’s Betw field against its centrality value. If the
node’s centrality is higher, then it updates the packet’s Betw
field with its centrality value. When an interest packet hits
a cache, an EnergyFlag is added to the resulting data packet
and its initial value is set to 0. The significance of the flag
is to determine whether the packet is a “new” packet or an
“old” packet that was forwarded by due to low energy. When
a node receives a data packet, it first reads the flag bit to
determine if the packet is a “new” packet. When the remaining
energy of the node is higher than a predefined threshold, m, it
means that the current node satisfies the energy requirement
for caching; then the node’s centrality value is compared with
the centrality value contained in the packet to decide whether
to cache the data. When the energy of the node is lower than
this threshold, the packet is forwarded to the next hop node
closer to the consumer.

When a data packet is not cached at a node due to
insufficient energy, the EnergyFlag in the packet will be set
to 1, indicating that the packet is “old” and, subsequently,
centrality will not be used as a caching criterion when
passing through a node with sufficient energy. Additionally,
the strategy considers a scenario where the entire path that
the packet passes through is low on energy. According to the
caching decision strategy, data packets cannot be cached in
this situation, which is detrimental to network performance.
To address this issue, the strategy increases the EnergyFlag
by 1 each time a packet cannot be cached due to insufficient
energy at a node. When the EnergyFlag value exceeds 2, the
data will be cached unconditionally. This caching decision
strategy, without increasing cache redundancy, not only allows
the node with the highest centrality to have a lower load,
which balances the load of relay nodes and prolongs the net-

Fig. 2: Topological example of EABC approach

work lifetime; it also caches the content to the edge location
closer to the consumers, and therefore reduces the average
content access latency. The pseudocode for the strategy is
shown in Algorithm 1.

Algorithm 1 Energy-aware Approximate Betweenness Centrality

1: function HANDLE-DATA(Data)
2: if Data.Energyflag = 0 then
3: if myCentrality > Data.Centrality then
4: if myRemainingEnergy > m then
5: cache(Data)
6: else
7: Data.EnergyF lag ← 1
8: end if
9: forward(Data)

10: end if
11: else
12: if myRemainingEnergy > m then
13: cache(Data)
14: Data.EnergyF lag ← 0
15: else
16: Data.EnergyF lag ← Data.EnergyF lag + 1
17: if Data.Energyflag > 2 then
18: cache(Data)
19: Data.EnergyF lag ← 0
20: end if
21: end if
22: end if
23: end function

Since the betweenness caching strategy has a high cor-
relation with the topology, a topology example is used to
demonstrate the EABC approach. As shown in Fig. 2, there is
one producer S and four consumers A, B, C, and D. v1-v5 are
all relay nodes, and the node subscripts are their respective
centrality values. When the network is running for a period of
time, the ABC policy can approximate the centrality values
of each node. As time passes, v1 becomes the node with the
highest centrality value among the three paths S-A, S-B/C,
and S-D. Accordingly, the content will be cached in v1, so
the load on v1 will be high and its energy will be depleted
quickly. When the energy of node v1 drops below the cache
energy threshold, m, v1 stops caching new content; instead,
its next hops v2 and v5 nearer the consumers will cache the



Fig. 3: Smart agricultural topology

content. Subsequent interest packets sent by consumers will
be satisfied at v2 and v5, so that the caching decision not only
balances the load of the high centrality node v1, extending its
lifetime, but also caches the content closer to the consumers,
thus reducing content delivery latency.

IV. PERFORMANCE EVALUATION

This section discusses validation of the EABC strategy and
performance evaluation using simulation. The study assumes
an IoT application in smart agriculture, and the performance
based on energy, cache hit rate, and latency are analyzed and
evaluated. Finally, the performance of the strategy in edge and
core topologies is compared to validate the topology-agnostic
property of the strategy.

A. Simulation Setup

This study used the ndnSIM network simulation platform to
verify the performance of EABC. The ndnSIM version is 2.7,
and the operating system is Ubuntu 16.04 LTS 64bit. The
simulation experiment mainly targets the smart agriculture
topology, with a total of 175 nodes, including 161 relay nodes,
randomly distributed uniformly in a 240x240m rectangular
pasture, as shown in Fig. 3. Among them, seven producers are
sensor nodes, shown as squares in the figure, used to detect
environmental data around the pasture. Seven consumers,
shown as triangles in the figure, request data from producers
in the data receiving area at a rate of one interest packet
per second. Different producers and different consumers have
five matching prefixes, enabling different consumers to collect
environment data packets sent by corresponding producers.

The forwarding strategy of the network uses the Content
Connectivity and Location Aware Forwarding (CCLF) for-
warding strategy [24], which can easily adapt to wireless
multihop networks while better addressing the adverse effects
of network storms in communication. The cache replacement
policy uses the default Least Recently Used (LRU) [3]. In
the IoT, there are numerous ways in which a node consumes

TABLE I: Simulation Parameters

Parameter Value
Content catalog size 1000 contents
Content size 1200*8 bytes
Consumer request rate 1 content/s
Node cache size 5
Simulation time 500s
Network topology 240m×240m random (Uniform)
Transmission Technology IEEE802.11g
Transmission rate 6 Mbps
Delay model Constant Speed Propagation Delay Model
Loss model Log Distance Propagation Loss Model
Transmission range 15m
Number of node 175
Number of producers 7
Number of consumers 7
Link energy density 1.5*10−9 J/bit
Router energy density 2*10−8 J/bit
Cache energy consumption 1*10−9 W/bit

energy, including the energy consumed in standby, the energy
consumed by transmitting packets, the energy consumed by
caching and replacing packets, etc. The energy consumption
is mainly attributed to content caching and data transmis-
sion [25]. We use the energy model in ns-3 to simulate the
energy consumption of wireless devices in a real scenario. The
model allows to specify the initial energy of each device and
during the simulation it decreases this value according to the
activity of the nodes. The simulation time is 500 seconds. The
settings of the simulation parameters are shown in Table. I.

We also implemented four commonly used cache place-
ment algorithms in NDN as comparative algorithms, namely,
CEE [3], Prob [5], pCASTING [6], and ABC [22].

B. Establishing the Energy Threshold m

When making caching decisions, the policy determines
whether the percentage of energy remaining in the node is
above the energy threshold m, and if so, the node caches new
data (cf: Step 4 in Algorithm 1.) When m is low, the node
with the highest centrality value will experience high load for
longer periods and run out of energy quickly. When the value
of m is high, the nodes with high centrality values will be
passed over prematurely, thus increasing the content delivery
delay. Hence, through simulation experiments, we assessed
the impact of various m values on content delivery delay and
node energy consumption, ultimately identifying 0.5 as the
optimal m value, as depicted in Table. II.

When the energy threshold is set to 0.5, it means that
EABC will make cache decisions when the node’s energy
level drops to 50% of its initial energy. This threshold value
provides the optimal network lifetime and latency. When the
energy threshold is set below 0.5, the network lifetime will
decrease significantly because the high load of nodes with
high betweenness centrality will not be balanced until later.
EABC caches content closer to consumers, thus reducing la-
tency. When the energy threshold is set above 0.5, the strategy
will abandon nodes with high betweenness centrality earlier,
forcing content retrieval from farther producers, resulting in



Fig. 4: Cache Hit Ratio Fig. 5: Delay

TABLE II: Energy threshold evaluation

Energy Threshold m 0.3 0.4 0.5 0.6 0.7
Network Lifetime (s) 413 428 438 426 410
Average Delay (s) 0.1703 0.1662 0.1643 0.1668 0.1709

decreased network lifetime and increased average latency.
The experiments in this paper are conducted with an energy
threshold of 0.5.

C. Simulation Results

1) Cache Hit Ratio: Fig. 4 shows the cache hit ratio of
each strategy. Due to the small cache space set for each
node, which is in line with IoT scenarios, CEE, Prob, and
pCASTING may have difficulty obtaining content from nodes
other than producers and have lower cache hit rates as a
result. On the other hand, both ABC and EABC cache content
in the nodes with the highest betweenness centrality, and
data packets frequently pass through these nodes, resulting
in higher cache hit rates. Since EABC caches content closer
to the consumer location after the node’s energy falls below
the energy threshold, it increases the diversity of network
content and improves cache hit rates. Compared with the ABC
strategy, EABC’s cache hit rate is improved by about 6.44%.

2) Delay: The delay performance of the different caching
strategies is shown in Fig. 5. The low cache hit rate of CEE,
Prob, and pCASTING also means that they are not obtaining
cached content from intermediate nodes and have to obtain
content from producers, resulting in a higher delay. On the
other hand, ABC and EABC cache content at centrally located
nodes, making it easier for consumers to obtain the required
content, thus data packets travel shorter distances and have
lower delays. As EABC caches content closer to the consumer
when the node energy is below the energy threshold, the delay
is further reduced. Compared to ABC, EABC improves the
delay performance by about 12.6%.

3) Node Energy: In the simulation scenario, the energy
model in ndnSIM is used to calculate the energy consumption
of wireless devices. The model allows to specify the initial

Fig. 6: Remaining energy of high-centrality nodes

Fig. 7: CDF of energy over time

energy of each device and during the simulation it decreases
this value according to the activity of the nodes [6].

Fig. 6 illustrates the remaining energy of high-centrality
nodes under the EABC and ABC caching strategies at the
same time before the simulation ends. Nodes with high-
centrality are crucial in the network, and when these nodes’
energy is depleted, the network’s lifetime comes to an end.



Therefore, monitoring the remaining energy of these high-
centrality nodes can gauge the network’s lifetime.

The nodes are sorted in descending order based on their
betweenness centrality values. Since betweenness centrality
is calculated by counting the number of data packets passing
through a node, higher values indicate greater data traffic
through that node, providing an approximate measure of the
node’s load. From the graph, it is evident that the betweenness
centrality values of nodes are roughly inversely proportional
to their remaining energy.

Nodes using the EABC strategy have higher remaining
energy than those using the ABC strategy. EABC balances the
energy of high-centrality nodes closer to the consumers, re-
ducing their load. As a result, these nodes have more remain-
ing energy over the same working time, and the remaining
energy values among nodes are more balanced. Meanwhile,
the ABC strategy shows a large variance in remaining energy,
indicating that nodes with high-centrality experience high
loads, while other relay nodes’ energy remains underutilized,
leading to resource wastage. Under the EABC strategy, the
remaining energy variance of high-centrality nodes is smaller,
demonstrating that the strategy reduces the energy consump-
tion of these nodes, balances the load of relay nodes, and
prolongs the network’s lifetime.

When a high-centrality node lacks sufficient energy, the
EABC caches data at the next-hop node meeting the en-
ergy requirement, bringing the data closer to the consumer.
This reduces the burden on high-centrality nodes without
increasing the number of network caches, allowing them to
retain more energy after the same work period. As a result, a
more balanced level of residual energy is achieved for each
node. In contrast, the ABC exhibits significant variance in
residual energy, signifying that high-centrality nodes bear a
heavy load, while other relay nodes’ energy remains unused,
resulting in resource wastage. Conversely, the EABC reduces
energy consumption for high-centrality nodes and balances
the load of relay nodes, thereby extending the network’s
lifetime.

By plotting the cumulative distribution function (CDF)
of energy and time, it is possible to visualize the network
lifetime of each algorithm under the same conditions. It is
also possible to determine the remaining energy of each router
with different algorithms and, at the same time, to derive the
energy consumption distribution of the whole network. The
CDF curves for energy discharge time of the five caching
strategies are shown in Fig. 7. The closer the value on the
y-axis is to 1, the closer the node is to running out of
energy, while the x-axis represents the network’s lifespan.
It can be observed that the energy consumption rate of the
EABC algorithm is initially similar to that of ABC, but when
a node’s energy drops to the energy threshold, the energy
consumption rate slows down, and the network’s lifetime is
greatly improved compared to the ABC caching strategy, with
an average improvement of about 25.1%.

TABLE III: Additional Simulation Parameters for Topology-
Agnostic Validation

Parameter Value
Node cache size 5/10/15/20/25
Transmission range 25m
Number of node 52/59
Number of producers 1
Number of consumers 18/30

Compared to the dynamic probability caching of pCAST-
ING, since EABC uses the nodes’ remaining energy for
caching decisions from the beginning of the network oper-
ation, EABC’s performance is not as good as pCASTING at
the beginning of the experiment. However, as time progresses,
the remaining energy of nodes decreases, and the remaining
space of nodes becomes smaller, resulting in a decrease in
the dynamic caching probability of pCASTING, making it
difficult to cache content closer to the consumers, and the
need to obtain content from farther nodes.

D. Topology-agnostic Verification

In NDN, caching policies are generally affected by topol-
ogy, and different caching policies will have different per-
formance in different topologies. The types of topologies are
divided into two types when considering extreme cases: edge
topologies and core/centre topologies, which are at the two
extreme variants of all topologies. IoT topology typically falls
between core and edge topologies. If the EABC strategy
demonstrates good performance under both core and edge
topologies, it can be inferred that it is also suitable for other
topological structures. To verify the topology-agnostic prop-
erty of the EABC caching policy, this experiment evaluates the
cache hit rate, average content retrieval delay, and node energy
in these two types of topologies, respectively. The specific
experimental parameters are configured as shown in Table. III.
Simulation results are averaged over 10 independent runs and
reported with the 95% confidence intervals.

1) Cache Hit Ratio: The five different caching strategies
with varying cache capacities were evaluated in both core
and edge topologies, and results are shown in Fig. 8. Due
to the limitations of IoT scenarios, the node cache space is
set to a very small size. This makes it more challenging for
the CEE to fetch content from the intermediate router and,
instead, fetches it directly from the producer, resulting in a
low cache hit ratio. However, Prob and pCASTING cache
different content on various nodes, representing a certain im-
provement in cache hit ratio compared to CEE. Nonetheless,
this improvement is still constrained by cache capacity. On the
other hand, both ABC and EABC cache content at the node
with the highest betweenness centrality, and interest packets
and packets frequently pass through this node, so they have
a high cache hit rate. When the cache capacity is 10 content
blocks, the cache hit ratio of EABC in the core topology
improves by 5.43% compared to ABC. The cache hit ratio of
EABC in the edge topology improves by 3.13% compared to



(a) core

(b) edge

Fig. 8: Cache Hit Ratio

ABC. Therefore, it can be seen that EABC performs better
than other algorithms in both edge and core topologies in
improving the network-wide cache hit ratio, proving that it is
topology-agnostic.

2) Delay: The trend of the average transmission delay of
five caching algorithms with the change of cache capacity is
shown in Fig. 9. It can be seen that the average latency of
EABC and ABC in both topologies is close to each other, but
the latency advantage is greater than that of CEE, Prob and
pCASTING. When the cache capacity is 10 content blocks,
the latency of EABC in the core topology improves by 0.96%
compared to ABC, and the latency of EABC in the edge
topology improves by 1.04% compared to ABC. Therefore,
it can be seen that EABC has better performance in reducing
the average transmission delay in both edge topology and core
topology compared to other algorithms.

3) Node Energy: Since the other caching strategies do
not consider the IoT application scenarios, this experiment
only analyzes the two caching strategies EABC and ABC.
Nodes with lower residual energy represent higher load and
are colored darker in the figure, while nodes with higher
residual energy represent lower load and are colored lighter.
Fig. 10(a) and Fig. 10(b) show the energy hotspot distribution

(a) core

(b) edge

Fig. 9: Delay

of ABC and EABC in the core topology, the ABC strategy
results in high-centrality nodes experiencing a high level
of load, causing their remaining energy to deplete rapidly
compared to edge routers and consumers. As a consequence,
before high-centrality nodes exhaust their energy, edge nodes
still have a surplus of energy. By this stage, the network
ceases to function, resulting in the unused energy of nodes
with abundant power being wasted. On the other hand,
EABC unloads the content cached by high-centrality nodes
to locations closer to consumers. This prevents the rapid
depletion of energy in high-load nodes, thus avoiding the
scenario where the exhaustion of energy in crucial nodes
leads to network paralysis. Fig. 11(a) and Fig. 11(b) show
the energy hotspot distribution of ABC and EABC in the
edge topology, from which we can see that the nodes with
high energy consumption across the network are almost all
concentrated in the centre, but EABC offloads the content
closer to the consumers to improve the cache utilization and
balance the load. Therefore, it can be seen that EABC can
play a role in balancing the network energy in both edge
topology and core topology compared to ABC, which makes
the energy consumption of the nodes with high load in the
network slower and thus prolongs the network lifetime.



(a) ABC

(b) EABC

Fig. 10: Distribution of energy hotspots in core topology

V. CONCLUSIONS

This paper investigates caching decision strategies in NDN
networks, taking into account the constrained resources in
IoT scenarios. To address the uneven energy consumption
of high-load nodes in energy-limited networks, an NDN-
IoT caching strategy based on node centrality and energy is
proposed. During the interest request process, a field is added
to the interest packet to record the betweenness centrality of
all nodes in the network. By considering the betweenness
centrality and the remaining energy of nodes, content is
cached in important nodes in the network to balance energy
consumption of high-load nodes, reduce content retrieval
latency, and improve caching hit rates. Finally, simulation
experiments are conducted using core and edge topologies,
and the performance is evaluated in terms of caching hit rates,
average transmission delay, network lifetime, etc., demonstrat-
ing the topology independence of the proposed strategy.

(a) ABC

(b) EABC

Fig. 11: Distribution of energy hotspots in edge topology
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