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Abstract—The performance of in-network caches has tradi-
tionally been evaluated using well-understood metrics such as the
cache hit rate. This extends to the field of Information-Centric
Networking (ICN), where caching strategies are evaluated in the
same way. In this paper, we argue that in the subdomain of
information-centric Internet of Things (IoT), these traditional
metrics are not sufficient to describe caching performance. Using
a series of experiments on real hardware as a demonstration, we
show the shortcomings of the cache hit rate metric and introduce
the two new metrics cache access factor and cache latency factor
that provide deeper insights into the effectiveness of in-network
caching strategies.

Index Terms—Information-Centric Networking, Named Data
Networking, Internet of Things, In-Network Caching, Network
Topology.

I. INTRODUCTION

There is a growing mismatch between the original Internet
design and its current use. The Internet and its underlying
TCP/IP protocol suite was originally designed for host-to-
host communications whereas modern applications use it for
retrieving and disseminating content without regard to the
physical source of the information. This mismatch is posing
significant difficulties on the underlying Internet architec-
ture [1]. The content-centric nature of modern applications
and application domains such as the Internet of Things (IoT)
is leading to the emergence of new messaging paradigms.

One such promising paradigm is Information-Centric Net-
working (ICN). Its content-centric nature and slim network
stack make it an ideal candidate for a future network archi-
tecture for IoT applications [2]–[5]. One of the core tenets of
ICN is in-network caching, whereby nodes maintain caches
for storing transit content. This ensures that relevant content
is readily available across the network, even if the original
producer is not reachable.

The question of where in the network should content be
cached is one of the most defining problems of in-network
caching research in ICN [6]–[10]. This question is especially
relevant in the domain of information-centric IoT, where
hardware is typically limited, which places more importance
on the effective use of available memory. While caching
approaches for information-centric IoT have been studied,
much of the existing research still approaches the domain
with preconceptions carried over from the fields of mainstream
ICN or even traditional networking, without fully taking the
idiosyncrasies of IoT into account. As such, many proposed
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strategies are overly complex, where preliminary research has
indicated that simpler, low-overhead strategies may be prefer-
able [11], [12]. Furthermore, even if strategies are developed
specifically with deployment in the IoT in mind, they are
often still evaluated using metrics from traditional networking,
without first investigating whether these metrics are useful for
analysis in the IoT space [13]–[21].

One such metric is the cache hit rate. A ubiquitous metric
in any domain where caches are prevalent, the cache hit
rate describes the percentage of requests that are satisfied by
a cached copy of the requested content rather than by the
original producer of the content [22], [23]. In ICN, this metric
is generally very useful in evaluating the performance of a
given caching strategy, as the goal of in-network caching is
to allow content to be retrieved rapidly and reliably. A high
cache hit rate indicates that the caching strategy is effective
at distributing relevant content across the network, because a
cache hit indicates that the request in question was able to
be satisfied by a node closer to the consumer rather than the
original producer. This implies both a lower content delivery
latency as well as reduced load on producers, both desirable
qualities in any network.

However, care must be taken when using the cache hit rate
as the primary indicator of caching effectiveness. The cache
hit rate metric has its origins in traditional computing, where
there are typically several levels of Central Processing Unit
(CPU) caches that differ tremendously in access latency [24].
In this context, cache misses for a single request incur latency
penalties that increase by orders of magnitude with each cache
miss on subsequent cache levels. Increasing the cache hit rate
is thus synonymous with a clear increase in performance. This
mentality has carried over into the evaluation of in-network
caching strategies in traditional networking, and subsequently
into ICN.

This paper will therefore challenge the well-entrenched use
of traditional ICN metrics particularly cache hit rate in the
context of IoT. Using an experiment study on physical IoT
hardware, this paper will demonstrate that cache hit rate alone
is not a sufficient metric to characterise caching performance,
and subsequently introduce two new metrics, the cache access
factor and the cache latency factor, that take into account
both cache hits and the reduction in hits/latency to provide
a more nuanced understanding. The rest of the paper is
organised as follows: Section II provides a concise overview
of ICN and caching, followed by Section III that motivates and
proposes the new metrics. Section IV and Section V discuss
the experimental validation to support the proposed metrics
before concluding in Section VI.
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II. INFORMATION-CENTRIC NETWORKING AND CACHING
PERFORMANCE

Content-Centric Networking (CCN), was first proposed by
Jacobson et al. in 2009 [25]. CCN and its successors are
often grouped together with similar approaches under the
umbrella term Information-Centric Networking (ICN). Their
main contribution constitutes a complete overhaul of the
existing approach to networking, replacing the host-based
addressing system of IP with a new system that treats named
content objects as first class network entities. CCN decouples
location from identity by basing its routing logic entirely on
the unique names of the routed content objects instead of
unique addresses of hosts. This allows network participants
to be agnostic about where their requested content actually
resides in the network, as well as enabling transparent systems
for in-network caching and replication of data, thus increasing
availability and performance.

A. Named Data Networking

Named Data Networking (NDN) [26], which has emerged
as one of the most popular ICN solutions in recent years, is
a comprehensive implementation and extension of the ideas
brought forward by CCN. While it is not the only ICN imple-
mentation under active development, research suggests that it
is the most suited for IoT applications thanks to its scalable
naming technique and flexible approach to caching [27].

NDN defines two fundamental types of packets used for
communication: Interest and Data. When a consumer wants
to request content, it puts the unique name of that content
into an Interest packet and sends it to the network. Routers
in the network then forward the Interest towards the named
data’s producer based on the route entries in the Forwarding
Information Base (FIB). For an Interest that a router has
forwarded but not fulfilled yet, it will add an entry in the
Pending Interest Table (PIT) and note the requesting node;
subsequent requests (Interest packets) for the same content
from other nodes will not be forwarded but updated in the
PIT. Once the Interest reaches a network node that has the
named data, a Data packet carrying the data is returned to the
consumer(s). Every router that forwards a Data packet will
keep a copy in its Content Store (CS) so that it can respond
to future Interest packets requesting for the same content.

Research on how to apply ICN paradigms to Wireless
Sensor Networks (WSNs) and the IoT is still a comparatively
young field. However, researchers are laying the foundations of
what is sometimes called the Named Data Network of Things
(NDNoT) [28] — in particular, current research is focused on
how to adapt and optimise existing ICN strategies to the unique
environment of IoT, with its unreliable links and devices that
are constrained in both memory and processing power.

B. Performance Metrics

In the existing literature, there is a wide range of metrics
that have been used to evaluate the performance of caching
strategies. In this section, we present two of the most widely
used metrics, viz., cache hit rate and content delivery latency.

1) Cache Hit Rate: Cache hit rate is the performance
metric that is often used to characterise the performance of
in-networking caching1. It is essentially the ratio of content
objects that are retrieved as a cached copy from another node
in the network as opposed to being retrieved from the original
producer. The cache hit ratio RCH is defined as:

RCH =
Ccache

C
, (1)

where C is the total number of content objects retrieved and
Ccache is the number of content objects retrieved from the
cache of an intermediate node that is not the content producer.

In general, a higher cache hit rate is desirable, as it means
that (i) content delivery times are reduced as content requests
are being fulfilled without having to traverse the full path to
the producer and (ii) strain on individual producers is reduced
as the number of requests routed to them goes down, thus
increasing battery life and reducing the probability of dropped
packets due to saturated buffers.

2) Content Delivery Latency: The content delivery latency
measures the time elapsed from the instant an Interest is
generated (interest generation) by a consumer node up till the
time it is satisfied (interest satisfaction) by the receipt of the
requested content, including possible retransmissions [29]. De-
livery latency may be affected by several caching-independent
factors, such as network congestion and density, but it is
also affected by cache diversity — the better the average
availability of content chunks across the network, the lower
the delivery latency. If we assume that congestion and density
stay roughly the same, we can use the delivery latency to
evaluate a caching strategy’s effectiveness in making content
quickly available.

C. Related Work ↙

Related work discussion
moved here from previous
place near end of paper.

There have been a number of studies on the performance
of ICN caching strategies, both in traditional networking as
well as in the IoT space. Few, if any, proposed metrics that
can better model performance in the IoT domain.

Caching in traditional ICN has been studied extensively,
both in terms of performance in general [13]–[17] and content
delivery latency in particular [18]–[21]. While these contribu-
tions are extremely valuable, it is not a given that the results
can be applied directly to IoT environments since they do
not take that domain’s idiosyncrasies into account. The most
comprehensive surveys of caching schemes specifically for
information-centric IoT were presented by Arshad et al. [27],
[30] and Gupta et al. [31]. These papers, however, are pure
surveys, with no experimental evaluation or comparison of the
presented strategies.

The first comparative studies on ICN caching strategies
specifically in the IoT were carried out by Hail et al. [22]
and Meddeb et al. [23], both of whom use simulated environ-
ments for their evaluations. Hail et al. compared the Cache
Everything Everywhere (CEE) and probabilistic (with p = 0.5)
caching decision strategies. Their results only considered the

1A cache hit occurs whenever an Interest is served by a cache in the network
instead of the requested content’s original producer.
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basic performance metrics of cache hit ratio, data retrieval
delay, and Interest retransmissions. Meddeb et al. compared
CEE, Leave Copy Down (LCD), ProbCache, Betw [7], Edge
Caching [32], and their own Consumer-Cache strategy and
evaluated them in regard to cache hit ratio, number of evic-
tions, hop reduction ratio, and data retrieval delay.

The first studies using physical IoT hardware operating in
realistic conditions were presented in our previous work [11],
[33], where the strategies presented in this paper were evalu-
ated using the same basic metrics as existing literature.

III. NEW PERFORMANCE METRICS FOR CACHING

The use of cache hit rate for characterising the performance
of caching strategies may be justifiable in the Internet but in
the context of IoT which relies on wireless sensor networks,
its suitability needs to be examined. In this section, we
will put forth arguments on why cache hit rate is not an
appropriate metric for information-centric IoT and introduce
new performance metrics that take into account the unique
characteristics of information-centric IoT.

A. Pitfalls of Cache Hit Rate in IoT

Delivery paths in the Internet are long, with many hops
along the way. The distance between two adjacent hops is
theoretically unbounded. Thus, a cache miss can similarly
be interpreted as incurring a potentially significant latency
penalty. However, these conditions are not true in the wireless
deployments found in the IoT. The distance between two
adjacent hops in a wireless network has a clear upper bound
defined by the device’s transmission range. A typical IoT
deployment features relatively evenly-spaced nodes in order
to minimise costs while ensuring reliable transmissions. This
means that the latency penalty incurred by cache misses
scales linearly instead of exponentially, reducing their
negative impact. Therefore, instead of aiming to simply
maximise the number of cache hits regardless of where on
the delivery path the hit occurs, we argue that in IoT, it is
more important to maximise cache access, i.e. to make sure
that caches are optimally placed in the network in order to
minimise content delivery latency.

B. Hop Count and Latency Reduction

As a precursor to latency reduction, we introduce the hop
count reduction metric. For each Interest, the number of hops
between its origin and the owner of the prefix it is requesting
is denoted as the distance to source. In other words, this is the
number of hops the Interest/Data packet would always have
to travel if there were no caches in the network. This distance
can then be compared to the actual number of hops taken by
the Data packet on the way back. This measure is called hops
to hit as it denotes the number of hops it actually took for
the Interest to reach a cache hit. The more efficient a caching
strategy, the more content will be available in a cache closer to
the consumer, leading to a lower average hops to hit value. The
difference between the distance to source and the hops to hit
is denoted as the hop count reduction, and the hop reduction

ratio is the ratio between the hop count reduction and the
distance to source. For a single content delivery operation c,
the hop reduction ratio is thus defined as:

HRRc =
to_sourcec − to_hitc

to_sourcec
, (2)

where to_sourcec is the distance to source between the prefix
owner of c and the consumer that requested it and to_hitc is
the hops to hit the content chunk c in a cache. Thus, the more
hops a delivery path is reduced by (i.e. the lower to_hitc), the
higher HRRc for that content delivery operation.

Analogous to the hop reduction ratio HRRc, we can mea-
sure the latency reduction ratio LRRc. It is defined as:

LRRc =
expected_latencyc − actual_latencyc

expected_latencyc

, (3)

where expected_latencyc is the content delivery latency that
would be expected for an operation c if there were no
intermediate caches (i.e. if the content had to be retrieved from
the original producer.

C. Cache Access Factor and Cache Latency Factor

Cache hit rate only paints a partial picture of content
accessibility in the network. Its main drawback is that it
contains no information about how accessible for consumers
the caches actually are. For example, a caching strategy that
keeps contents close to the core might in theory have a very
high cache hit ratio while not significantly reducing path
lengths. The hop and latency reduction ratio provide more
detailed understanding of this behaviour, but can be quite
complex if the caching strategy behaves differently depending
on path length. A more comprehensive approach to quantifying
performance is required. To that end, we will now introduce
two new metrics — cache access factor and cache latency
factor — that aim to better model caching performance.

1) Cache Access Factor: The cache access factor FCA

takes both cache hit and hop reduction ratio into account to
produce a single metric that weights pure content accessibility
with the average reduction of delivery paths. The cache access
factor is defined as:

FCA = RCH ·
∑n

i=0 HRRi

n
, (4)

where RCH is the cache hit rate, n is the number of content
objects delivered, and HRRi is the hop reduction ratio for a
content object i as defined in Equation (2).

2) Cache Latency Factor: Analogous to the cache access
factor FCA, which combines cache hit rate and hop reduction
ratio, we can also examine the cache hit rate in conjunction
with the reduction in content delivery latency. This lets us
derive the cache latency factor FCL, which is defined as
follows:

FCL = RCH ·
∑n

i=0 LRRi

n
, (5)

where RCH is the cache hit rate, n is the number of content
objects delivered, and LRRi is the latency reduction ratio for
a content object i as defined in Equation (3).
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In effect, FCA and FCL condense the expected gains in
cache utilisation of a given caching strategy into more acces-
sible terms. In a deployment without caching, FCA and FCL

are 0 because RCH is 0. Maximising FCA and FCL requires
both maximising RCH as well as minimising the hops to hit
and the latency (or rather, maximising the latency reduction).
A high cache hit rate alone does not suffice if path lengths
and therefore latency are not significantly reduced.

IV. EXPERIMENT DESCRIPTION

This section presents an experiment designed to demonstrate
the latency effects of different caching strategies and the
metrics that can be used to characterise them. We start by
describing the results using common metrics, then show why
these metrics are insufficient for a complete analysis, and then
introduce advanced metrics to address these shortcomings.

A. Experiment Setup

The experiments for this study were run on the FIT
IoT-LAB [34] open testbed. The IoT hardware used is
IoT-LAB’s specially developed M3 node2, which has an
STM32 (ARM Cortex M3) microcontroller with 512 kB ROM
and 64 kB RAM and an Atmel AT86RF231 [35] 2.4 GHz
transceiver operating on IEEE 802.15.4 [36]. The firmware for
the nodes is a simple RIOT-OS [37], [38] application using
CCN-lite3 as the ICN implementation, modified to support the
different caching strategies.

The experiments were conducted on the Grenoble site4 of
the IoT-LAB testbed. The site features more than 380 M3
nodes, which are distributed across the rooms and corridors
of one floor of an office building (see Fig. 1). This means
that nodes are subject to realistic conditions found in indoor
IoT deployments, such as multipath effects, reflection, and
absorption caused by walls, doors, and windows made of
various materials, as well as unpredictable interference by
other wireless signals and people moving around the building.
These conditions mean that the behaviour of the network
is very close to what might be expected in a real-world
deployment.

Of the 380 available nodes, each experiment run is con-
ducted on an arbitrary subset of 50 nodes (chosen randomly
each time), each of which act as producers, consumers, and
relays at the same time. This ensures that the logical topology
is different in each experiment run and also that the nodes
will not be too strongly connected due to having a large
number of one-hop neighbours. This is desirable as it allows
us to study the effects of unreliable connections more closely.
The transmission range of individual nodes is not enough to
reach all other nodes in the building, so communication will
be predominantly multihop. In a typical topology generated
by this random selection of nodes, the mean path length is
between 3 and 4 hops and the maximum is 11 hops. This
kind of multihop setup is commonly found in the industrial
monitoring domain. Real-world deployments tend to have

2https://github.com/iot-lab/iot-lab/wiki/Hardware_M3-node
3https://github.com/cn-uofbasel/ccn-lite
4https://www.iot-lab.info/deployment/grenoble/

slightly longer average paths, but this scale is infeasible to
achieve within the constraints of physical testbeds such as IoT-
LAB.

For this study, cache sizes are kept intentionally small. Each
node’s cache can store up to 5 unique content chunks (all
content chunks have the same size). This small cache size
was chosen for two reasons. For one, RAM is extremely
limited in IoT devices. The M3 nodes used in this study
have 64 kB of RAM. A constant fraction of this RAM is
occupied by the operating system (4.4 kB) and the CCN-lite
network stack (8.7 kB) [39], leaving about 50 kB that have to
be shared between the CCN-lite heap (comprising CS, FIB,
and PIT), and the actual application running on top of the
network stack. However, these numbers are at the upper end
of typical RAM sizes for class 2 devices. Class 1 devices with
RAM on the order of 10 kB [40] also need to be considered.
In these devices, the OS and network stack already need to
be pruned for features, and the remaining CCN-lite heap size
will be at most 1 kB [41]. Depending on the nature of the data
transmitted by the application, available cache space may thus
be severely limited. This motivates the decision to limit the
number of CS entries in this way in order to be able to assess
expected performance under these conditions.

The secondary motivation for limiting the number of CS
items to 5 is that many adverse effects of ICN content
availability could simply be countered by over-provisioning,
i.e. providing more cache space (if the available RAM al-
lows), thus ensuring content distribution. This means that
performance differences between caching strategies become
less pronounced as cache size increases. Therefore, it is more
interesting to look at performance under limited cache sizes,
since this is where differences will be most noticeable. The
Least Recently Used (LRU) cache replacement policy is used
in all experiments. As noted in previous work [11], the choice
of cache replacement policy has little to no impact on the
performance of in-network caching.

The experiments are managed by a control script using the
IoT-LAB API, which provides full control over all node serial
interfaces. All nodes will periodically request contents with
random IDs in {0, . . . , 49} from each of the prefixes in its
FIB. Interest and Data packets are handled as specified by
the NDN standard. The first time a node receives an Interest
for a content chunk it owns, it produces that content chunk
(the actual payload is irrelevant for this study) and sends it
back towards the consumer. Caching of content chunks at
intermediate nodes is dictated by the caching strategy selected
for the study.

B. Caching Strategies

The caching decision strategies examined in this study are
CEE [25], LCD [42], Prob(p) [29], ProbCache/ProbCache-
Inv [9], Approximate Betweenness Centrality (ABC) [43],
Labels [44], and Intervals [45].

CEE, also known as Leave Copy Everywhere (LCE), is the
most straightforward caching decision strategy that is used in
traditional ICN [25], [26]. Nodes will attempt to cache every
incoming content chunk that is not already in their CS. If

https://github.com/iot-lab/iot-lab/wiki/Hardware_M3-node
https://github.com/cn-uofbasel/ccn-lite
https://www.iot-lab.info/deployment/grenoble/
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(a) Deployment of nodes in the IoT-LAB Grenoble site (b) IoT-LAB nodes in the Grenoble Senslab space

Fig. 1. The Grenoble site of the IoT-LAB testbed was used for experimental evaluation

caching everything at every node is not an option, but the
caching process is to remain simple, LCD [42] is a viable
option. In LCD, content is always cached only at the next
hop from the node where the cache hit occurred, i.e. initially
one hop downstream from the producer, and one hop further
downstream with each subsequent request.

To increase cache diversity and decrease redundancy, the
easiest solution is to simply introduce a certain probability
that any given content chunk will not be cached, as proposed
by Prob(p) [29]. It simply sets an a priori probability p that
a given node will store a given content chunk. Upon receipt
of a new content chunk, the node generates a random number
between 0 and 1. If the generated number is smaller than p,
the content is stored in the cache; otherwise, it is forwarded
without being cached.

Instead of defining an a priori caching probability that is
the same for every node and also to take into consideration
the network topology, ProbCache [9] computes the caching
probability of a given content chunk based on the distance
between producer and consumer as well as the location of
the caching node on the path, essentially caching content
further away from the producer. ProbCache-Inv is identical to
ProbCache in every way except the final caching probability
is inverted to cache closer to the producer.

Centrality-based caching strategies are a sub-family of the
topology-based approaches. Betweenness centrality describes
the number of times a given node lies on one of the paths
between all pairs of nodes in the network and has been found
to be a useful indicator of node importance in a network [46].
Unfortunately, in terms of implementation, centrality-based
approaches require a costly setup phase before they can
begin operation, and if the topology is dynamic — e.g. with
mobile participants — these network-wide calculations have
to be repeated periodically, leading to significant overhead.
ABC [43] overcomes this by estimating a node’s betweenness
centrality value based on the number of Interest/Data packets
that pass through the node.

When caching decisions take take more than local informa-
tion into account, they are deemed to be cooperative. We se-
lected implicit cooperation schemes in our study as they incur
lower communication overheads, without the need for nodes

to exchange information among themselves. In Labels [44],
each node is assigned a fixed label l < k (at setup time) and
only caches content chunks whose IDs modulo k are equal to
l. This ensures that cached content is automatically stratified
into equal subsets and evenly distributed across the network
without the overhead of explicit coordination between nodes.
Another implicitly coordinated caching strategy, Intervals [45],
uses hop distance to determine the caching decision. Data
packets are extended by a pre-determined data interval value
i. Each node along the path decrements this value by 1 when
forwarding the packet. If a node decrements its value to 0, the
packet is cached at that node and the interval is reset to i.

C. Experiment Topology

In ICN, the logical topology is a direct result of the
forwarding paths stored in the nodes’ FIBs. The FIBs codify
how Interests are forwarded and thus how content is distributed
across the network. Therefore, getting a sense of a network’s
logical topology requires knowledge about how its FIBs are
constructed. There is no universal answer to this, because ICN
enforces no standards for how FIBs are populated. However,
in most cases, the contents of the FIBs are the direct result of
the routing algorithm that is used by the producers to advertise
their content. The way in which nodes learn about their
neighbours’ contents and in turn inform their own neighbours
will dictate what their FIBs will look like. Ultimately, this
means that the routing algorithm dictates the entire network’s
logical topology.

In this paper, we introduce some nomenclature useful
for discussing topology types. In general, any IoT network
topology can be placed somewhere on a scale between two
extremes: the core and edge topologies. A core topology
(Fig. 2) is defined by the paths between the producer and the
consumers intersecting nearer to the producer (the “core”);
each path has only one consumer attached to it at the edge.
In such a topology, the ideal caching location would be close
to the producer (what Wang et al. [47] call a Type III caching
strategy), as this would allow us to alleviate strain on the
producer while serving the maximum number of consumers
with cached copies of the data. Conversely, an edge topology
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Fig. 2. Core topology Fig. 3. Edge topology
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Fig. 5. Relation between hop count and latency for different caching decision strategies

(Fig. 3) is defined as having multiple individual paths from
the producer out towards the consumers (the “edge”), which
intersect further from the core. In this topology, it would be
more beneficial to cache closer to the edge nodes where paths
intersect (a Type II caching strategy [47]), as this would reduce
the need for requests to be routed all the way to the core. They
differ in whether content delivery paths are more likely to
intersect, near the core or near the edge, and caching strategies
that take this effect into account can perform more consistently
across all topology types, while others may perform strongly
in one topology but fall behind in others.

As the pure core and edge topologies are idealised examples
unlikely to be encountered in this form in real deployment
scenarios, we also utilise a more realistic topology as shown
in Fig. 4, which features elements of both core and edge
topologies (although paths tend to intersect closer to the core,
placing it more in the former category.) Such hybrid heteroge-
neous network topologies are increasing common in edge/fog
computing scenarios where IoT devices with routing/storage
capabilities (orange circles) relay data between the IoT end
devices (purple squares) and a gateway/server (large green
circle in the middle) [48], [49].

In comparison, CEE [25] and LCD [42] used linear network
topologies where nodes are either directly connected or have

one to two intermediate routers. Intervals [45] simulated a
random mesh network where nodes route via a shortest path
to a destination giving a topology that tends towards the edge
topology. Prob(p) [29] also used a random wireless mesh
network with controlled flooding that would tend towards
the hybrid topology. Similarly, Labels [44] validated their
approach using a hybrid topology based on the European
backbone network. Lastly, ProbCache/ProbCache-Inv [9] used
a binary tree topology and ABC [43] used both core and edge
topologies.

The experiments presented in this study were conducted on
all three topology types, viz. core, edge and hybrid, and for
most metrics discussed here, results are shown separately for
all types. Each experiment for a specific network topology
and set of parameters was executed multiple times, results
averaged and checked to ensure that we achieved a stable
representation of the performance [50]. For metrics where
there is no discernible difference between topology types, the
results from the integrated topology are shown.

V. EVALUATION

A. Relation Between Hop Count and Latency
Fig. 5 shows how the latency (specifically, the content

delivery latency, which is the time between Interest generation
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Fig. 6. Cache hit rate, cache access factor, and cache latency factor for different caching decision strategies

and satisfaction; cf: Section II-B2) is affected by the number of
hops taken to retrieve the content. This does not differentiate
between cached content and content produced by the prefix
owner, i.e. the hop count shown here is the number of hops
traversed by the Data packet to the requester from either
its original producer or from a caching node. This figure
essentially shows only the correlation between hop count and
latency for individual transfers. As expected, this relation is
indeed linear because nodes are evenly spaced in the network.
The choice of caching strategy does not have a significant
impact on this metric because, as will be shown below,
the caching strategy affects the reduction in hop count over
multiple hops and not the actual per-hop latency.

The fact that the relation between hop count and latency
is linear underlines our claim that the impact of cache misses
is reduced in IoT, as each additional hop only incurs a linear
latency penalty. To show why this is an important observation,
we will examine the cache hit rate next.

B. Cache Hit Rate

Fig. 6 shows the cache hit rates for the different strategies,
along with two more metrics that will be discussed later. Based

Some text
moved to
motivation
in Sec-
tion II-B.

on the cache hit rates, we could place the strategies into
a tentative ordering that implies their relative performances.
However, since the actual goal in most cases is to reduce
content delivery latency, we should first examine how closely
these two metrics are correlated.

C. Hop Count Reduction

The top row of Fig. 7 shows the average hop count reduction
for the different caching strategies at different distances. The

Some text
moved to
motivation
in Sec-
tion II-B.

first obvious effect is that most of the strategies only show
a significant hop count reduction starting from a minimum
distance to source. In all strategies except for LCD, there is a

slight reduction at 3 hops and then a substantial one at 4 hops.
The reason for this is that at shorter distances, there is less
cache space between the producer and the consumer, which
means fewer opportunities for content to be cached on the
path. This makes it much more likely that a request will have
to be routed all the way to the prefix owner to be satisfied.
After a distance of 4 hops, the hops to hit will increase again
as the distance to source increases. The “turning point” at
which caching begins to have a noticeable impact seems to lie
between 3 to 4 hops for most strategies. After this point, there
is enough cache space on the path that content is likely to be
found at a closer node.

The impact of the topology type can be most clearly seen
when examining the performances of ProbCache and Prob-
CacheInv in the core and edge topologies. ProbCache [9] is a
probabilistic strategy that favours caching content closer to the
consumer (i.e. the edge). ProbCacheInv is our own variation
on this strategy which simply inverts the probability so that
content is more likely to be cached closer to the core instead.
We can clearly see that depending on where paths intersect
in the network, either one or the other strategy is clearly
superior. In the hybrid topology, where path intersections are
more evenly distributed, the two strategies are closer together
in performance, with ProbCache narrowly beating out the
inverted variant thanks to the high number of subtrees near
the edge of the topology.

LCD is a bit of an outlier with extreme performance dif-
ferences depending on topology. In the two extreme topology
types it performs very strongly and very poorly respectively.
This is due to the fact that LCD is very conservative and
keeps contents very close to the core. This is beneficial in
a topology where all paths intersect at the core, as it means
that cached content can serve Interests from many sources,
but entirely counterproductive if paths intersect at the edge of
the network, as in this case Interests would still need to travel
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Fig. 7. Hop count, latency, and latency reduction for different caching reduction strategies

almost the entire distance to the core. In the more realistic
hybrid topology, LCD’s behaviour is more similar to the other
strategies, but its performance falls off especially at longer
path lengths.

It has been observed multiple times [6], [9], [11], [51] that
CEE is not an optimal caching strategy for ICN, and this is
supported by the results presented here. The reason is that
CEE is vulnerable to thrashing effects (especially if the LRU
replacement policy is used, which is almost always the case)
when nodes are caching high volumes of diverse data. The
limited size of caches in IoT only exacerbates this effect.

D. Latency Reduction Ratio

The results are shown in the bottom row of Fig. 7. TheSome text →
at the start
of this
section
has been
moved to
motivation
in Sec-
tion II-B.

relative performances of the strategies are the same as for
the HRR in the top row, showing that hop reduction ratio
is a clear indicator of expected latency reduction. However,
if we contrast the results shown in Fig. 7 with the cache
hit rate in Fig. 6, we can see some discrepancies in the
relative performances that may have been inferred from the
earlier figure. We will address these discrepancies and the

shortcomings of the cache hit rate as a performance indicator
in the following section.

E. Demonstrating the Limits of the Cache Hit Rate

In Section III-A, we argued about limitations of cache hit
rate in the context of IoT. We now demonstrate using our
experimental results the lack of strong correlation between
cache hit rate and content delivery latency. Fig. 8 shows the↖Section

revised
and text
removed to
reduce du-
plication.

relation between these two metrics and the content delivery
latency. We chose three strategies with distinct differences
in RCH and plotted the relation between RCH and latency
as well as HRRi and latency for 30 individual experiment
runs. These results make it relatively obvious that the relation
between cache hit rate and latency is not linear; simply
increasing the hit rate does not guarantee a proportionate
decrease in latency. While strategies with higher hit rates do
have a very slight tendency towards lower latencies (since
a cache is always closer to the consumer than the original
producer), the difference is marginal. As mentioned above,
this shows that even though a strategy may increase cache

winston
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hits, this alone does not improve performance if caches are
not actually significantly closer to the consumer.

The reduction in hops to hit, on the other hand, exhibits
a much more linear correlation with the reduction in latency.
Consequently, this metric should have more impact on the
choice of caching strategy in the IoT domain. It is further
worth noting that while there is a strong stratification between
strategies implied by the cache hit rate (the strategies occupy
almost entirely separate sectors along the x axis on the left-
hand side of Fig. 8), this stratification does not translate to
the y axis, while in the right-hand plot, there is considerably
more overlap between the strategies along the x axis, but a
clear linear relation between x and y values.

Some text
at the end
of this
section →
removed
to reduce
duplication.

F. Cache Access Factor and Cache Latency Factor

The cache access and latency factor metrics are shown in
relation to latency in Fig. 9, as well as in Fig. 6 along with the

cache hit rate for comparison. Fig. 9 clearly shows that there is
a much stronger correlation between both of these metrics and
the latency than with the cache hit rate. While the average hops

↗
Text on
definitions
at start of
this section
has been
moved to
Section III.

to hit as shown in Fig. 8 is the most strongly correlated with
latency (which is to be expected), the new metrics are more
nuanced and include more information while still indicating
a general performance trend. Examining the new metrics in
Fig. 6, we can see that while there is a slight overall trend of
strategies doing well in terms of cache hit rate also doing well
in the two new metrics, some pairwise comparisons using the
new metrics actually produce results that disagree with the
ordering implied by RCH and more closely align with the
observations in Fig. 7. Therefore, we conclude that the cache
access and cache latency factors provide valuable new insights
into relative caching performance that would not have been
possible using only the traditional metrics.
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VI. CONCLUSION

We have demonstrated how the traditional cache hit rate
metric falls short of expectations when applied to the domain
of information-centric IoT. We then introduced two new,
comprehensive metrics, the cache access factor FCA and the
cache latency factor FCL, which provide a more nuanced
understanding of a given strategy’s expected performance. We
showed the efficacy of these new metrics using experimental
validation on a real IoT testbed provided by IoT-Lab.

While any performance evaluation should always strive to
examine as many different metrics as feasible in order to paint
a complete picture (and the cache hit rate absolutely has a
place among these metrics), a metric that provides a simple
way to predict a strategy’s expected performance at a glance
should prove very useful when presented with a wide variety
of possible solutions.
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