
Queueing Analysis of Software Defined Network
with Realistic OpenFlow–based Switch Model

Yuki Goto∗, Hiroyuki Masuyama∗, Bryan Ng†, Winston K.G. Seah† and Yutaka Takahashi∗

∗Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Email: goto@sys.i.kyoto-u.ac.jp, {masuyama,takahashi}@i.kyoto-u.ac.jp
†School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand

Email: {winston.seah,bryan.ng}@ecs.vuw.ac.nz

Abstract—Software Defined Networking (SDN) is the latest
network architecture that does for networking what virtualisation
did for servers in data centres. In SDN, separation of the control
plane from the data plane brought about new flexibility in the
routing of flows through the network. Closely associated with
SDN is OpenFlow, the most widely used protocol governing the
information exchange between the data plane (switching devices)
and the control plane (controller). The ease of implementing and
testing new schemes in SDN has prompted many researchers
to adopt the experimental and prototyping approach to validate
their ideas. Consequently, there has been very little work done
to evaluate the performance of SDN and/or OpenFlow–based
networks analytically. While the experimentation approach in
validation has merits, analytical modelling provides valuable
insights by making explicit the dependence of SDN performance
on chosen parameters. In this paper: (i) we propose a queueing
model of an OpenFlow–based SDN that takes into account
classful treatment of packets arriving at a switch and (ii) derive
an exact analysis of the proposed queueing model.

Index Terms—Queueing analysis, Software Defined Networks,
OpenFlow, packet transfer delay, loss probability.

I. INTRODUCTION

Software Defined Networking (SDN) became prominent

in 2007 after a period of research that started as early as

2003 [1]. It gives carriers, service providers and enterprises

greater control over the way packets are moved around their

networks. This is achieved by decoupling the control plane

(that makes decisions about where network traffic is sent) from

the data plane (the underlying systems that forward traffic

to the selected destinations.) Network providers can make

centralized and optimized decisions on how traffic should flow

(move) from one point to another within their networks, and

disseminate these flow decisions to the networking devices

(routers and switches) that make up their infrastructures; in

current networks, these traffic flow decisions are made by

routers/switches in a distributed manner using information and

policy rules that are configured into them.

To date, analytical modelling research for SDN typically

uses two different approaches, viz. queueing theory and

network calculus. Proper adaptation of queueing theoretic

modelling techniques and analytical methods can contribute

to accurate performance evaluation of SDN-based production

networks that are exposed to new user demands continually,

facilitating early identification of potential traffic hotspots

and/or bottlenecks which carriers and network providers can

quickly remedy before they become problems. With this goal

in mind, we propose a queueing model of an OpenFlow–based

software defined network that aims to model the operation of

the network devices as accurately as possible.

A critical functionality that has not been addressed by

queueing analytic modelling research is the different treatment

of packets arriving at a switch from a controller, and this is our

key consideration. In the next section, we discuss the relevant

research on analytical modelling of SDN and OpenFlow–based

networks, and then present our queueing model in Section III.

Following that, in Section IV, we derive the average packet

transfer delay in the whole system and packet loss probabilities

of the two different types of packets arriving at a switch,

together with a numerical example to validate our analysis in

Section V. Lastly, we summarize our contributions and briefly

discuss ongoing and future research.

II. RELATED WORK

SDN’s flexibility allows and encourages researchers to

quickly implement prototypes and testbeds for experimental

validation and performance measurements [2]. As the focus

of this paper is on mathematical performance analysis and

modelling, we shall only discuss related work that utilizes

mathematical techniques, and refer the reader to recent sur-

veys, e.g. [3, 4], for details on other related work.

The first attempt to study the performance of OpenFlow–

based networks analytically modelled the network as a

feedback-oriented queueing model, where the switch is mod-

elled as an M/M/1 queue and the controller as a feedback

queueing system of the delay-loss type M/M/1-S [5]. In a

recent extension of that work [6], a Jackson network is used

to model the data plane while the controller is separately

modelled as an M/M/1 queue (considering both infinite and

finite buffer scenarios.) Based on the OpenFlow standard,

traffic arriving at a switch that comes from the controller

should not be sent back to the controller again. However, this

important aspect was not accounted for by both models [5, 6];

they did not distinguish between traffic from the controller

and other traffic, thus providing only an approximation of the

interaction between the controller and switches.

With the consolidation of the control plane in a logically

centralized location, viz. the controller, the performance and

scalability of the controller architectures became a critical

problem [7]. Analytical performance models have been pro-

posed to study the response times of three typical SDN

control plane architectures, viz., centralized, decentralized and

hierarchical [8]. In [9], flow set-up requests from switches to

controller are modelled as a batch arrival process M[x]/M/1

to derive the average flow service time. Given a limited

flow set-up time, the number of switches can be determined,

thus providing a method to evaluate the capacity of a single

controller, extendable to multiple controllers.

While extensive research has been done on SDN and Open-

Flow, the use of analytical performance evaluation methods

remains lacking. The preceding discussion, which is by no

means comprehensive, has summarized the notable work in

this aspect. As noted above, current queueing models do not

accurately model the OpenFlow protocol’s operation on the

switch. We aim to address this shortcoming by separating

traffic coming from the controller from the rest of the traffic

into different queues, so that traffic arriving from the controller

are not sent back to the controller.

III. QUEUEING MODEL

Figure 1 shows the queueing model for a simple OpenFlow

switch-controller topology. The system has one switch and

one controller. External packets arrive at the switch, which

����������

���	�	��
���
	�

��	�
�

�	�	��
���
	�

��	����

���	���

��������	��

�	���	���	��

Fig. 1. Queueing model of simple network with an OpenFlow switch
connected to a single controller.

we call class S packets, according to a Poisson process with

parameter λ. The switch checks the flow table to match the

forwarding methods of class S packets. The forwarding time

of class S packets follows an exponential distribution with

parameter µ1. If the forwarding methods of class S packets

do not exist in the flow table, these packets are directed to the

controller, that is, the switch makes inquiries to the controller

about the forwarding methods of those packets (acomplished

via a packet in message) . We assume this event occurs with

probability β. If the forwarding methods of class S packets

are found in the flow table, the packets are forwarded to the

appropriate output port. We assume this event occurs with

probability 1 − β. Namely, the probability of the first packet

of a flow is β and that of the succeeding packets is 1 − β.

Thus, the packet flow size follows a geometric distribution

with average 1/β.

Packets whose forwarding information is missing in the

flow table are forwarded to the controller, and we refer to

them as class C packets. Upon receiving class C packets, the

controller confirms the forwarding methods of class C packets

and updates the flow table in the switch. The processing time

of class C packets follows an exponential distribution with

parameter µ2. After being processed by the controller, class C

packets are redirected (back) to the switch and we call them

class F packets. As for forwarding discipline of the switch,

class F packets have priority over class S packets because class

F packets were originally received by the switch earlier than

class S packets in the buffer. After being processed by the

switch, class F packets are directed to the output port. We

assume that the controller has buffer of infinite capacity while

the switch has finite buffer that can enqueue no more than K1

packets.

IV. ANALYSIS

In the following discussions, we derive a continuous-time

Markov chain and the transition rate matrix in subsection IV-A.

Section IV-B provides numerical calculation methods in order

to derive stationary state distribution. In Section IV-C, we

derive performance measures.

A. Derivation of continuous-time Markov chain

Let NC(t) (respectively, NF(t) and NS(t)) denote the

number of class C (respectively, class F and class S) packets.

These variables meet the following condition.

0 ≤ NF(t) +NS(t) ≤ K1, 0 ≤ NC(t). (1)

We consider the stochastic process {(NC(t), NF(t), NS(t));
t ≥ 0}, with state space F given as follows:

F = {(i, j, k) | i ∈ Z+,

(j, k) ∈ {0, 1, . . . ,K1} × {0, 1, . . . ,K1 − j}}.

As described in Section III, external packets arrive according

to a Poisson process and the forwarding times in the switch

and the controller are distributed according to independent

exponential distributions. From the assumptions for the model,

the stochastic process {(NC(t), NF(t), NS(t)); t ≥ 0} is a

continuous-time Markov chain with infinite state space F. Now

let Q denote the transition rate matrix of the Markov chain,

and taking NC(t) ∈ Z+ as the level variable, Q is given as

follows:

Q =























F0 F1 F2 · · ·

F0 B1 A0 O O · · · · · ·

F1 A2 A1 A0 O
. . .

. . .

F2 O A2 A1 A0 O
. . .

... O O A2 A1 A0
. . .

...
. . . O A2 A1

. . .
...

. . .
. . .

. . .
. . .

. . .























(2)

where Fi = {(i, j, k) ∈ F | i ∈ Z+}, and matrices A0, A1,

A2 and B1 also have block structures. Thus, taking NF(t)
as the second level variable, A0, A1, A2 and B1 also have

similar structures.

1) Elements of block matrix A0: If NC(t) increases by 1,

NF(t) is 0 because class F packets have priority over class S

packets when being processed and forwarded by the switch.

Thus, A0 has the following structure:

A0 =













Fi,0 Fi,1 · · · Fi,K1

Fi,0 C O · · · O

Fi,1 O O
...

...
...

. . .
...

Fi,K1
O · · · · · · O













where

Fi,j = {(i, j, k) ∈ F|i ∈ Z+, j = 0, 1, . . . , K1},

C =
(

Ck,k
′

)

(k,k′)∈Z
6K1
+

×Z
6K1
+

, and

Z
6i
+ : = {0, 1, . . . , i}.

If NC(t) increases by 1 and NF(t) = 0, NS(t) decreases by

1 and thus the elements of matrix C become,

Ck,k
′ =

{

βµ1, k
′

= k − 1,

0, otherwise.

2) Elements of block matrix A2: If NC(t) decreases by 1,

NF(t) increases by 1, and therefore A2 is given as follows:

A2 =

















Fi,0 Fi,1 · · · · · · Fi,K1

Fi,0 O D(0) O · · · O

Fi,1

...
. . .

. . .
. . .

...
...

...
. . .

. . . O
...

...
. . . D(K1−1)

Fi,K1
O · · · · · · O

















where D(j) =
(

D
(j)

k,k
′

)

(k,k′)∈Z
6K1−j

+
×Z

6K1−j+1

+

.

If NC(t) decreases by 1 and NF(t) increases by 1, NS(t)
does not change; hence, matrix D(j) becomes

D
(j)

k,k
′ =

{

µ2, k
′

= k,

0, otherwise.

3) Elements of block matrix A1 and B1: If NC(t) does

not change, NF(t) does not change or decreases by 1. Thus,

A1 is given as follows:

A1=

















Fi,0 Fi,1 Fi,2 · · · Fi,K1

Fi,0 E(0) O · · · · · · O

Fi,1 F (1) E(1) . . .
. . .

...
...

...
. . .

. . .
. . . O

...
...

. . . F (K1−1) E(K1−1) O

Fi,K1
O · · · O F (K1) E(K1)

















(3)

where

E(j) =
(

E
(j)

k,k
′

)

(k,k′)∈Z
6K1−j

+
×Z

6K1−j

+

,

F (j) =
(

F
(j)

k,k
′

)

(k,k′)∈Z
6K1−j

+
×Z

6K1−j+1

+

.

Besides, the diagonal block elements of B1 are not E(j) but

E(0,j) because matrix B1 is different from matrix A1 only in

the diagonal block elements. The entries F (j) corresponds to

the case that NC(t) and NS(t) remain unchanged and NF(t)
decreases by 1. Then F (j)is given by:

F
(j)

k,k
′ =

{

µ1, k
′

= k,

0, otherwise.

Next, we derive E(j), which represents state transitions that

NC(t) and NF(t) remain unchanged and that NS(t) changes.

If NF(t) = 0, NS(t) increases or decreases by 1. If NF(t) 6= 0,

NS(t) increases by 1. Thus, E(j) is given by:

E
(j)

k,k
′ =











λ, k
′

= k + 1,

(1 − β)µ1, j = 0, k
′

= k − 1,

0, otherwise.

The diagonal elements of E(j) are given as follows:

E
(j)
k,k =



















−µ2 − λ, j = 0, k = 0,

−µ1 − µ2 − λ, j = 0, 0 < k < K1,

−µ1, 0 ≤ j ≤ K1, k = K1 − j,

−µ1 − µ2 − λ, 0 < j ≤ K1, 0 ≤ k < K1 − j.

The diagonal elements of B1, that is, the diagonal elements

of E(0,j) are given by

E
(0,j)
k,k =



















−λ, j = 0, k = 0,

−µ1 − λ, j = 0, 0 < k < K1,

−µ1, 0 ≤ j ≤ K1, k = K1 − j,

−µ1 − λ, 0 < j ≤ K1, 0 ≤ k < K1 − j.

4) Stability condition of the Markov chain: The Markov

chain is irreducible. If it is positive recurrent, we have the

unique state distribution vector π = (πi,j,k)(i,j,k)∈F where

πi,j,k = lim
t→∞

Pr(NC(t) = i, NF(t) = j,NS(t) = k).

We assume βλ−µ2 < 0, and thus the Markov chain is positive

recurrent.

B. Numerical solution

As the transition rate matrix Q is block tridiagonal, we

have the following equation for the stationary state distribution

π = (π0,π1, . . .) where πi := (πi,j,k)(i,j,k)∈Fi
:

πk−1A0 + πkA1 + πk+1A2 = 0, k = 2, 3, (4)

The Markov chain is the quasi-birth-and-death process, hence,

the stationary state distribution is a matrix-geometric solution

and there exists a matrix R such that πk = πk−1R [10],

where R is the least nonnegative solution of

A0 +RA1 +R2A2 = 0.

Substituting πk = πk−1R in (4), we obtain πk = π1R
k−1.

Writing down the boundary elements of πQ = 0, we have:

π0B1 + π1A2 = 0,

π0A0 + π1A1 + π2A2 = 0.

Substituting π2 = π1R for the above equation, we have the

following equation:

(π0,π1)

(

A
(0)
1 A0

A2 A1 +RC

)

= 0. (5)

The sum of all probabilities is equal to 1, and we obtain

1 = π0e+

∞
∑

k=1

πke = π0e+ π1(I −R)−1e. (6)

With R, we can calculate π from (5) and (6). Moreover, quasi-

birth-and-death process is a special case of the Markov chains

of M/G/1-type. Therefore, the probability matrix G, showing

the first passage probability until NC(t) decreases by 1, exists

and fulfills the following equation [10]:

A2 +A1G+A0G
2 = 0.

Now, R is expressed by using G as follows:

R = A0(−A1 −A0G)−1.

To calculate G, we use the Logarithmic Reduction algorithm

described in [11].

C. Performance measures

We consider three performance measures, namely, packet

loss probabilities in class S and F, and average packet transfer

delay through the system. The packet loss probabilities of class

S and F are denoted as P
(S)
loss and P

(F)
loss, respectively. In the

following, we analyze the packet trajectory and derive packet

loss probabilities.

Fig. 2. Modelling class S and class F packets in the network.

First, we trace the packet trajectory of a class S packet as

shown in Figure 2. Because the switch forwards a packet with

rate µ1, the throughput of class S packets, TS, is expressed as:

TS = µ1

∞
∑

i=0

K1
∑

k=1

πi,0,k.

In stationary state, the packet arrival rate and the packet

departure rates are equal and this yields λ(1 − P
(S)
loss) = TS.

Therefore P
(S)
loss is expressed as:

P
(S)
loss = 1−

µ1

∑K1

k=1

∑K2

i=0 πi,0,k

λ
.

Next, we focus on packet trajectory of a class C packet,

which is shown in Figure 2. As the controller finishes for-

warding a packet with rate µ2, the throughput of class C, TC,

is given by:

TC = µ2

∞
∑

i=1

K1
∑

k=0

K1−k
∑

j=0

πi,j,k.

Similarly, the probability of NF(t) = j (j ≥ 1) is given

by
∑∞

i=0

∑K1−j

k=0 πi,j,k and the switch finishes forwarding a

packet with rate µ1. Thus, we obtain the throughput of class

F, TF , as:

TF = µ1

∞
∑

i=0

K1
∑

j=1

K1−j
∑

k=0

πi,j,k.

As for P
(F)
loss , we have the equation TC(1− P

(F)
loss) = TF, thus,

P
(F)
loss is given as:

P
(F)
loss = 1−

µ1

∑K1

j=1

∑K1−j

k=0

∑K2

i=0 πi,j,k

µ2

∑K2

i=1

∑K1

k=0

∑K1−k

j=0 πi,j,k

.

Finally, we derive the average packet transfer delay in the

system. The average total number of packets in the system is
∑∞

i=0

∑K1

k=0

∑K1−k

j=0 (i + j + k)πi,j,k and the throughput of

the system, T , is obtained as,

T = (1− β)TS + TF,

and, from Little’s formula, we obtain the average packet

transfer delay as:

E[W] =
∑∞

i=0

∑K1

k=0

∑K1−k

j=0 (i + j + k)πi,j,k

(1− β)µ1

∑∞
i=0

∑K1

k=1 πi,0,k + µ1

∑∞
i=0

∑K1

j=1

∑K1−j

k=0 πi,j,k

.

V. NUMERICAL EXAMPLE & VALIDATION

In this section, we show numerical results of three per-

formance measures namely: (i) packet loss probability for

class S (P
(S)
loss), (ii) packet loss probability for class F (P

(F)
loss)

and (iii) average packet transfer delay derived earlier in

Section IV. The purpose of this evaluation is to validate the

proposed queueing model and to better understand dynamics

of increased traffic on the switch and controller. Table I lists

the values of the parameters used in the numerical evaluation.

We first investigate how performance measures change as

the external packet arrival rate λ increases from 20 to 40 in

Section V-A. Next, in Section V-B, we consider the effect of

increasing flow size on each performance measure. Simulation

results shown in Figure 3 to Figure 8 with the corresponding

95% confidence interval.

TABLE I
PARAMETER SETTING

Parameter Value
Buffer capacity of switch K1 [packets] 10

Forwarding rate of switch µ1 [packets/ms] 50
Forwarding rate of controller µ2 [packets/ms] 4

External packet arrival rate λ [packets/ms] 20, 40
Average flow size 1/β [packets] 20, 100, 500

A. Effect of external packet arrival rate

In this subsection, we investigate the effect of external

packet arrival rate for the case of 1/β = 20, 100, and 500.

The curves in Figure 3 show that a higher external packet

arrival rate induces a higher packet loss probability in class S.

This is intuitively explained through observation of λ. If λ is

large, there is increased likelihood that packets are buffered in

the switch and this contributes to higher probability of packet

drops. A similar explanation holds for packet loss probabilities

for class F shown in Figure 4 with the difference that the loss

probabilities are slightly lower for identical arrival rates.

Figure 5 illustrates the average packet transfer delay where

we observe that it increases when external packet arrival rate

increases. This is explained by a larger value of λ inducing

a larger number of packets in the switch and the cumulative

effect results in packets having to wait for longer durations

until the switch forwards the packets. The average packet

transfer delay decreases with increasing flow size because the

proportion of packets passing through class F with lower delay

is significantly higher for larger flow sizes. Again, we see that

the average delay obtained by the queueing analysis matches

the simulation results very well thus validating the analysis

presented in this paper.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 20 25 30 35 40

P
a
c
k
e
t
lo

s
s
 p

ro
b
a
b
ili

ty
 o

f
C

la
s
s
 S

External packet arrival rate to Switch [packets/ms]

analysis, flow size = 20
analysis, flow size = 100
analysis, flow size = 500

simulation, flow size = 20
simulation, flow size = 100
simulation, flow size = 500

Fig. 3. Effect of external packet arrival rate on packet loss probability of
class S.

B. Effect of flow size

In this subsection, we discuss the influence of average

flow size on network performance for λ = 20 and 40, and

µ1 = 50 and 100. Both Figure 6 and Figure 7 exhibit a trend

of packet loss probability slowly decreasing as a function of

increasing flow size. When average flow size gets larger while

 1e-005

 0.0001

 0.001

 0.01

 0.1

 20 25 30 35 40

P
a

c
k
e

t
lo

s
s
 p

ro
b

a
b

ili
ty

 o
f

C
la

s
s
 F

External packet arrival rate to Switch [packets/ms]

analysis, flow size = 20
analysis, flow size = 100
analysis, flow size = 500

simulation, flow size = 20
simulation, flow size = 100
simulation, flow size = 500

Fig. 4. Effect of external packet arrival rate on packet loss probability of
class F.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 10 15 20 25 30 35 40

A
v
e

ra
g

e
 p

a
c
k
e

t
tr

a
n

s
fe

r
d

e
la

y
 [

m
s
]

External packet arrival rate to Switch [packets/ms]

analysis, flow size = 20
analysis, flow size = 100
analysis, flow size = 500

simulation, flow size = 20
simulation, flow size = 100
simulation, flow size = 500

Fig. 5. Average packet transfer delay in the system.

keeping external arrival rate unchanged, the arrival rate of

class F packets becomes smaller, and then the packet loss

probability decreases and gradually gets less sensitive to the

average flow size.

Figure 8 shows the relationship between the average packet

transfer delay and average flow size. Recall that only the first

packet of a new flow is sent to the controller and thus most

of the packets in a large sized flow are directed to the output

port without recourse to the controller. Hence, for long flows,

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0 20 40 60 80 100 120 140 160 180 200

P
a
c
k
e
t
lo

s
s
 p

ro
b
a
b
ili

ty
 o

f
C

la
s
s
 S

Flow size [packets]

analysis λ=20,µ1=50
analysis λ=40,µ1=50

analysis λ=40,µ1=100
simulation λ=20,µ1=50
simulation λ=40,µ1=50

simulation λ=40,µ1=100

Fig. 6. Effect of average flow size on packet loss probability of class S.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0 20 40 60 80 100 120 140 160 180 200

P
a
c
k
e
t
lo

s
s
 p

ro
b
a
b
ili

ty
 o

f
C

la
s
s
 F

Flow size [packets]

analysis λ=20,µ1=50
analysis λ=40,µ1=50

analysis λ=40,µ1=100
simulation λ=20,µ1=50
simulation λ=40,µ1=50

simulation λ=40,µ1=100

Fig. 7. Effect of average flow size on packet loss probability of class F.

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 p

a
c
k
e
t
tr

a
n
s
fe

r
d
e
la

y
 [
m

s
]

Flow size [packets]

analysis λ=20,µ1=50
analysis λ=40,µ1=50

analysis λ=40,µ1=100
simulation λ=20,µ1=50
simulation λ=40,µ1=50

simulation λ=40,µ1=100

Fig. 8. Packet transfer delay in the system.

the average packet transfer delay is insensitive to flow sizes,

since the number of packets transferred to the controller is

small, which alleviates queueing delays at both the switch and

controller.

VI. CONCLUSION

In this paper, we have proposed a queueing model to analyze

an OpenFlow–based software defined network as realistically

and accurately as possible. We constructed a continuous-time

Markov chain whose states represent the number of class C,

class F and class S packets, and derived average packet transfer

delay in the whole system and packet loss probabilities in class

S and class F.

In our ongoing research, we are extending the queueing

model to consider a network comprising a single controller

with multiple switches while future work includes modelling

the performance of various controller architectures. Concur-

rently, we are applying queueing analysis to evaluate the

performance of test bed and then production networks. After

validating our analytical results in comparison with both

experimental results from the test bed and simulation results,

we will then use these queueing models for future network

design and dimensioning.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The Road to

SDN – An intellectual history of programmable net-

works,” ACM Queue, vol. 11, no. 12, December 2013.

[2] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Ap-

penzeller, J. Little, J. Reijendam, P. Weissmann, and

N. Mckeown, “Maturing of openflow and software-

defined networking through deployments,” Computer

Networks, 2013.

[3] B. Nunes, M. Mendonca, X. Nguren, K. Obraczka, and

T. Turletti, “A Survey of Software-Defined Networking:

Past, Present, and Future of Programmable Networks,”

IEEE Communications Surveys & Tutorials, 2014.

[4] D. Kreutz, F. M. V. Ramos, P. E. V. issimo, C. E. Rothen-

berg, S. Azodolmolky, and S. Uhlig, “Software-Defined

Networking: A Comprehensive Survey,” Proceedings of

the IEEE, vol. 103, no. 1, Jan 2015.

[5] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll,

and P. Tran-Gia, “Modeling and Performance Evaluation

of an OpenFlow Architecture,” in Proceedings of the 23rd

ITC, San Francisco, CA, USA, Sep 2011, pp. 1–7.

[6] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel,

“Modelling of OpenFlow-based software-defined net-

works: the multiple node case,” IET Networks, vol. 4,

no. 5, pp. 278–284, 2015.

[7] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali,

“On Scalability of Software-Defined Networking,” IEEE

Communications Magazine, vol. 51, no. 2, pp. 136–141,

Feb 2013.

[8] J. Hu, C. Lin, X. Li, and J. Huang, “Scalability of Control

Planes for Software Defined Networks: Modeling and

Evaluation,” in Proceedings of the IEEE/ACM Interna-

tional Symposium on Quality of Service (IWQoS), Hong

Kong, China., 26-27 May 2014.

[9] L. Yao, P. Hong, and W. Zhou, “Evaluating the controller

capacity in software defined networking,” in Proceedings

of the 23rd International Conference on Computer Com-

munication and Networks (ICCCN), Shanghai, China, 4-7

Aug 2014.

[10] N. Makimoto, Queueing Algorithm – Matrix Analytic

Approach. Asakura Publishing Co. Ltd., 2001, in

Japanese.

[11] G. Latouche and V. Ramaswami, Introduction to Matrix

Analytic Methods in Stochastic Modeling. ASA-SIAM,

1999.

