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Abstract

OpenFlow supports internal bu↵ering of data packets in Software-Defined Networking (SDN) switch whereby a frac-
tion of data packet header is sent to the controller instead of an entire data packet. This internal bu↵ering increases
the robustness and the utilization of the link between SDN switches and the controller by absorbing temporary burst
of packets which may overwhelm the controller. Existing queuing models for an SDN have focused on the switches
that immediately sends packets to the controller for decisioning, with no existing models investigating the impact of
the internal bu↵er in SDN software and hardware switches. In this paper, we propose a unified queueing model to
characterise the performance of SDN software and hardware switches with the internal bu↵er. This unified queueing
model is an analytical tool for network engineers to predict a delay and loss during SDN deployments in delay and loss
sensitive environments. Our results show that a hardware switch achieves up to 80% lower average packet transfer de-
lay and 99% lower packet loss rate at the cost of requiring up to 50% more queue capacity than a software switch. The
proposed models are validated with a discrete event simulation, where the error between 0.6%-2.8% was observed for
both average packet transfer delay and average packet loss rate. Moreover, a hardware switch outperforms a software
switch with increasing number of hosts per switch suggesting that a hardware switch has better scalability. We use the
insights from the model to develop guidelines that help network engineers decide between a software and hardware
switch in their SDN deployments.

1. Introduction

Software-Defined Networking (SDN) is a new net-
working architecture that simplifies the switch by mov-
ing the forwarding decisions away from a switch to
a centralised system which is typically realised as a
software-based controller. The concept of an SDN is
realised with OpenFlow which is among the first (and
most widely used) specification to define the commu-
nication between the controller and switch in an SDN
architecture [1]. At present, OpenFlow is the dominant
protocol for programming SDN switches [2]. Open-
Flow handles di↵erent types of messages from the
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controller-to-switch or conversely from the switch-to-
controller. The switch-to-controller messages are called
asynchronous messages as they are sent without con-
troller solicitation [3].

In the OpenFlow specifications [3], an OpenFlow
switch maintains one or more flow tables to make de-
cisions on packet forwarding behavior. Flow tables are
linked together to form a pipeline, where each flow ta-
ble has flow table entries (FTEs) that consist of match
fields and actions. Incoming data packets are matched
against the match fields and if there is no matching FTE,
an asynchronous message called a “packet-in” is gener-
ated and sent to the controller.

As SDN deployments move away from traditional
data centers to wide area SDNs, wireless access net-
work (called SDWAN - software defined wireless ac-
cess network) and mobile SDNs, the usual assumption
of a reliable and highly available control channel no
longer holds. Fortunately, the OpenFlow specifications
have provisions for switches to internally bu↵er packet-
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in messages destined for the controller.
Packet-in messages are sent by the switch when there

is no matching flow information for an arriving packet
to the switch. Packet-in messages are sent either with
the arriving data packet or only with a fraction of the
data packet header based on the availability of mem-
ory in a switch for internal bu↵ering. The data packet
header contains routing information which is used by
the controller to make forwarding decisions. If a switch
has su�cient memory to bu↵er packets, then the packet
header along with a bu↵er ID (identifier of the bu↵ered
packet) is sent with the packet-in message. Similarly,
some switches do not support internal bu↵ering and re-
quire full data packet (not just the header) to be sent
with the packet-in message.

1.1. Internal Bu↵er

The internal bu↵er in a switch plays an important role
in packet forwarding behaviour. Data packets are inter-
nally bu↵ered in an SDN switch to avoid congestion and
improve the throughput of the network. The concept of
internal bu↵ering is not new to SDN switches and has
been traditionally used in Banyan switches [4]. These
are a network of complex crossover switches designed
to avoid blocking between packets at the input ports. In
other areas of networking such as ATM (asynchronous
transfer mode), internal bu↵ering has been used in ATM
switches to reduce the packet loss rate due to the asyn-
chronous nature of ATM tra�c [5].

In an SDN, the internal bu↵er helps in addressing the
impact of lossy and unreliable control plane behavior,
a scenario of increasing importance. The study in [6]
showed that a lossy control channel significantly de-
grades a data plane throughput and latency. Some of
the benefits of internal bu↵ering in SDN switches are:
the forwarding delay of data packets can be decreased
[7], Quality of Service can be improved with reduced
packet loss [8], and bandwidth of the control channel
can be optimized [9].

In an OpenFlow-based SDN switch, if a packet-in
event is configured to internal bu↵ering and the switch
has su�cient memory to bu↵er a data packet, then the
fraction of a data packet header and bu↵er ID is encap-
sulated with a packet-in message. Otherwise, an entire
data packet is encapsulated with a packet-in message.
The controller processes a packet-in message and gen-
erates a packet-out message to the switch updating flow
information [3].

Most existing research in the literature analyses the
performance of SDN switches with no internal bu↵er-
ing [10–25]. This is perhaps attributed to the evolv-
ing nature of the OpenFlow specifications which in their

current incarnation leaves the bu↵ering of a data packet
as an optional feature. However, it will be increas-
ingly important for the next generation of SDN switches
to support internal bu↵ering with increasing diversifi-
cation of SDN deployments. In these new diversified
SDN deployments, there may be intermittent connec-
tivity between the SDN switch and the controller during
SDN deployments in domains such as SDWANs, mo-
bile SDN and IoT.

1.2. Hardware vs. Software Switch

In this paper, we are concerned with the modelling of
both physical SDN switches (i.e. hardware switches)
and virtual switches (i.e. software switches), both
with the internal bu↵er. Both software and hardware
switches have strengths and weaknesses, and internal
bu↵ering may a↵ect their performance in an SDN. To
identify the potential bottlenecks that could hinder the
performance of an SDN, the trade o↵s between choos-
ing a hardware versus software switch with the internal
bu↵er need to be studied and investigated to improve the
performance of SDN.

An SDN-based software switch with the internal
bu↵er maintains the flow table in SDRAM (syn-
chronous dynamic random access memory) where the
incoming packet is matched against the FTE using a
CPU (central processing unit) [26]. If there is no match-
ing FTE, a data packet is internally bu↵ered and a
packet-in message is sent to the controller which feeds
back forwarding information to the switch and updates
the software flow table. The packet processing logic
in a software switch is implemented in software [1]
usually with the help of optimized software libraries.
Open vSwitch (OVS) [27], Pantou/OpenWRT [28], of-
softswitch13 [29], Indigo [30] running on commodity
hardware (e.g. desktops with several network interface
cards) are few examples of SDN software switches.

Similarly, in an SDN-based hardware switch with
the internal bu↵er, a packet processing function is em-
bedded in the specialised hardware. This specialised
hardware includes layer two forwarding tables imple-
mented using content-addressable memories (CAMs),
layer three forwarding tables using ternary content-
addressable memories (TCAMs) [1] and application
specific integrate circuits (ASICs). In a hardware
switch, FTEs are stored in CAMs and TCAMs of
the specialised hardware and packets are processed by
ASICs. Hardware switches are also equipped with
SDRAM and CPU allowing a hardware switch to main-
tain flow tables in both TCAM and SDRAM [26]. Sim-
ilar to software switches in an SDN, the CPU in a hard-
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ware switch internally bu↵ers data packets when there
is no matching FTE.

In this paper, we use queuing theory to derive a first
order estimate of an OpenFlow switch’s performance
and to identify potential trade-o↵s between an SDN-
based software and hardware switch with the internal
bu↵er. Queueing models are useful in predicting switch
performance trends as parameterized functions and link
the cause to e↵ect relationships of the switch perfor-
mance. The main contributions of this paper are as fol-
lows:

• It proposes a unified queueing model to charac-
terise the performance of hardware and software
switches with the internal bu↵er in an SDN.

• It identifies the benefits and trade-o↵s of hardware
switch vs. software switch with the internal bu↵er
in an SDN.

• It validates a unified queueing model with a dis-
crete event simulation.

• It investigates the performance of software and
hardware switches for a scalable SDN with in-
creasing number of hosts connected to the switch.

The remainder of this paper is structured as follows.
Section II discusses the related work and background
theory of SDN-based software and hardware switches,
and internal bu↵ering. Section III presents the queueing
model for an SDN-based software switch with the inter-
nal bu↵er which is followed by the queuing model for
an SDN-based hardware switch with the internal bu↵er
in Section IV. Section V discusses bu↵er dimensioning.
Section VI discusses the analytical and validation re-
sults in detail. Finally, Section VII concludes the paper
with a discussion of the results and conclusion.

2. Related work & Theory

While internal bu↵ering has been well studied in a
traditional switch, the bu↵ering of asynchronous mes-
sages over a separated control-data plane remains un-
explored. The separation of the data plane and con-
trol plane in SDN brings a di↵erent set of challenges
for switch designers working with SDN switches. For
example the control decisions from the controller may
take up to 1 millisecond to reach the switch.

The internal bu↵ering for software-based SDN
switches can be easily realised by configuring packet-
in events to support bu↵ering of packets. However,
for hardware-based SDN switches, there are very few

commodity switches that support internal bu↵ering.
Pica8 switches are among the few that support Open-
Flow’s feature to configure temporary bu↵ering of pack-
ets [31], while other commodity switch manufacturers
like Cisco [32], HP enterprise [33], Juniper [34], Arista
network [35], and Extreme network [36] still do not sup-
port internal bu↵ering. The reason behind fewer com-
modity switches supporting internal bu↵ering is due to
hardware limitations in hardware switches. This is also
the reason why there is almost no experimental research
conducted on SDN commodity switches to analyse in-
ternal bu↵ering.

In [37], the authors adopted an SDN for wireless
mesh networks and show that the delay variability and
limited bandwidth over the wireless induces through-
put and packet losses. However, no internal bu↵ering
was considered. The use of internal bu↵ering in [37]
could have improved the channel utilization in the SDN-
enabled wireless networks for increasing control traf-
fic. Earlier studies [7, 9] suggest that the smoothing of
control tra�c via the internal bu↵er would reduce the
losses during periods of poor wireless connectivity or
sudden burst of new flows to a mesh router. However,
these studies have not explored the drawbacks of inter-
nal bu↵ering in an SDN.

For SDWAN applications, a multi-path OpenFlow
channel for resilience and scalability in wireless envi-
ronments was proposed in [38]. In SDWANs, the con-
trol path may incur failure due to many reasons, such
as deep fading, mobility, etc. In such cases, bu↵er-
ing packets in the internal bu↵er of the switch allows
the switch to continue operating momentarily while the
control channel recovers back to its stable state.

Hu et al. [39] take a radically di↵erent approach
whereby the control packets are neither bu↵ered nor
sent to the controller immediately but sent through a
looping path - inducing delay to allow the control mes-
sages to be processed and the feedback from the con-
troller. The internal bu↵ering in [39] could have reduced
the delay at the cost of extra memory.

From a performance modelling perspective, queue-
ing theory has been widely used to model and pre-
dict the performance of an SDN [10–22, 40]. Most of
these studies have modelled a software switch except
for [17, 20] which are among the first to model a hard-
ware switch in an SDN. Similarly, the model presented
in [40] is among the first to model an SDN switch with
the internal bu↵er.

The above mentioned models use the generic mod-
els as shown in Figure 1 for a software switch and Fig-
ure 2 for a hardware switch where the input bu↵er of
the CPU is modelled either as a single shared queue
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or two-priority queue. In the single shared queue
model [10–12, 16–18, 21, 22], the data tra�c and con-
trol tra�c shares a single queue with FIFO service
discipline. While in a two-priority queue model [13–
15, 19, 20, 40], control tra�c goes to a high priority
class queue and data tra�c goes to a low priority class
queue where data tra�c is served without preemption.
The single shared queue model is not suitable for mod-
elling internal bu↵ers because there is no packet level
distinction between data and control tra�c. This dif-
ferentiation is easily modelled in the two-priority queue
model and thus is the most relevant starting point for our
work presented in this paper.

Moreover, a key finding from previous modelling
work on SDN switches shows that the use of two-
priority queue in the output bu↵er of a switch better
reflects the SDN behaviour. Analytical and simulation
studies in [19] show that the time to install FTE is sig-
nificantly lower in a priority queue compared to a single
shared queue.

The model presented in [40] shows the benefit of the
internal bu↵er which significantly reduces the delay and
loss rate but at the cost of the higher memory required
by the CPU for internal bu↵ering. However, this model
considers internal bu↵ering in a software switch and
cannot model the dynamics of a faster hardware switch
that has dual service rates (i.e. specialized hardware ser-
vice rate and CPU service rate) – thus producing esti-
mates that are less accurate for hardware switches.

The model presented in [17] assumes that the input
bu↵er of a switch as a single shared bu↵er but have not
accounted the switch-controller interaction. The analy-
sis in this work does not map the workings of a hardware
switch such as the flow matching and dedicated packet
processing to the queueing model as shown in Figure 2.
These limitations of [17] have been addressed in [20]
through a unified queueing model with both software
and hardware switches. However, a unified queueing
model in [20] has not considered the internal bu↵ering
capabilities of an SDN switch.

The models in [40] and [20] have paved the way
for building a new unified queueing model for internal
bu↵ering within SDN switches. A summary of existing
queueing models for SDN switches with and without
the internal bu↵er is shown in Table 1. Similarly, Ta-
ble 2 lists the notations used for performance analysis
in this paper.

In the following subsection, generic models for SDN
software and hardware switches are discussed.

2.1. Packet Flow in Software and Hardware SDN

Switches

A generic block diagram of an SDN-based software
switch where the external data packet arrives at the
switch which is connected to the controller is shown
in Figure 1. There are three important phases an SDN

Figure 1: Generic model for an SDN with Software Switch.

model of a software switch must capture. Phase (1), the
first packet of a flow arrives at the switch and there is no
matching FTE for the packet in SDRAM. Phase (2), the
packet without a matching flow entry is forwarded to the
controller or a packet with the matching FTE is serviced
by the switch and forwarded to the destination. All
packet processing and forwarding in the switch is ex-
ecuted on the CPU and the SDRAM. Finally, Phase (3),
the controller feeds the forwarding information back to
the switch and updates the flow table. Software switches
have been studied and analysed in [10–16, 18–22, 40]
based on the generic block model shown in Figure 1.

Figure 2 shows the block diagram of an SDN-based
hardware switch where the switch maintains flow tables
in both hardware and software. The hardware and soft-
ware flow tables are synchronised through a middleware
layer on the switch [42, 43] to avoid duplicate entries
and to ensure consistent forwarding behaviour.

There are four important phases an SDN model of
a hardware switch must capture. Phase (1), the first
packet of a flow arrives at the specialised hardware in
the switch that maintains hardware FTEs and there is
no matching FTE for the packet. Phase (2), a packet
with the matching FTE in the TCAM is serviced by
the ASIC and forwarded to the destination, otherwise
a packet without a matching FTE in TCAM is matched
against the FTE in SDRAM and processed by the CPU
for forwarding to the destination. In phase (3), a packet
without any matching FTE in the TCAM or SDRAM is
forwarded to the controller. In phase (4), the controller
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Table 1: Summary of queueing models for SDN switches with and without the internal bu↵er.
Model Internal Bu↵ering CPU Analysis Switch Type

Yes No model Exact Approximate Software Hardware
Jarschel [10] X M/M/1 X X
Mahmood [11] X M/M/1 X X
Miao [41] X M/M/1 X X
Shang [16] X M/H2/1 X X
Sood [17] X M/Geo/1 X X
Miao [13] X MMAP X X
Goto [14] X GI/M/1/K X X
Javed [18] X M/G/1 X X
Singh [19] X GI/M/1/K X X
Lai [21] X MMPP/M/1 X X
Singh [40] X X GI/M/1/K X X
Fahmin [22] X M/M/1 X X
Singh [20] X GI/M/1/K X X X
Our Analysis X X GI/M/1/K X X X

Table 2: Notations used for performance analysis.

Parameters Description
� External arrival rate at the switch
µc Service rate of the controller proces-

sor
µsp Service rate of the CPU processor
µsh Service rate of the hardware processor
� Table miss probability
BER Bit Error Rate
PER Packet Error Ratio
n Number of bits in the packet
N Number of hosts connected to the

switch
⇢ Server utilisation at the queue
T Throughput of the queue
t Mean sojourn time of packets at the

queue
E[L] Total number of data packets in the

system
PL Average packet loss rates
Kmin Minimum queue capacity for a switch
mr Controller to CPU Processing Ratio

(µc/µsp)
ms Specialised hardware to CPU Pro-

cessing Ratio (µsh/µsp)
✏K Relative minimum capacity
✏d Relative average delay
✏l Relative packet loss rate

Figure 2: Generic model for an SDN with Hardware Switch.

feeds the forwarding information back to the switch, up-
dates the flow tables in both TCAM and SDRAM. Fi-
nally, the packet is serviced by the CPU and forwarded
to the destination. A hardware switch has been studied
and analysed in [20] based on the generic block model
shown in Figure 2.

Based on these generic models, this paper investi-
gates SDN software and hardware switches that support
internal bu↵ering with the help of queuing theory. Ad-
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ditionally, a priority queueing structure is used for the
CPU that handles data and control packets, and bu↵er
dimensioning is performed to calculate the minimum
queue capacity for the switch which is discussed in the
following subsection.

2.2. Bu↵er Dimensioning

The concept of bu↵er dimensioning in queueing net-
work is to determine the bu↵er size (K) for a given
desired loss probability, hence to ensure losses due to
queueing are below desired loss probability. In an SDN
queuing network, it is of prime importance to provide
no losses to control packets that carry the updated flow
table information. The desired loss probability for the
outgoing link is given in bit error rate (BER), which
is 10�12 for 1Gbps link according to IEEE 802.3 stan-
dard [44]. In this paper, we use this value of BER for
bu↵er dimensioning.

For bu↵er dimensioning, the bu↵ers are first assumed
to be an infinite queue, and the queue is truncated at
some finite integer K, such that the desired loss proba-
bility is achieved [45, 46]. The required bu↵er space is
measured in packets.

The minimum queue capacity for a switch (denoted
by Kmin) can be derived using an infinite queue model
(i.e. M/M/1 queue). However, losses in queues are
typically expressed as Packet Error Ratio (PER) while
losses in outgoing links are expressed by BER. The re-
lationship between BER and PER is given as:

PER = 1 � (1 � BER)n, (1)

where n is the number of bits in the packet. In an M/M/1
queue, the probability the queue length (L) exceeds Kmin
is given by Pr{L > Kmin} = ⇢Kmin , where ⇢Kmin is the
server utilization at the queue for given Kmin. The value
of Kmin is calculated as

Kmin �
log[PER]
log[⇢Kmin ]

. (2)

In this paper, Kmin determines the minimum queue ca-
pacity of the switch in the queueing model.

2.3. Quasi-Birth-Death process

In queueing theory, Quasi-Birth-Death (QBD) pro-
cess has been widely used to model a computer net-
work due to the flexibility it provides to account a larger
amount of details [47, 48]. For this reason, the mod-
elling approach in this paper is based on QBD pro-
cesses. Hence, this subsection is devoted to describe
the notation and concepts behind QBD processes.

A QBD process is a continuous-time Markov chain
with multidimensional state spaces that can be parti-
tioned into disjoint levels [49]. A continuous-time QBD
process is a two-dimensional Markov chain represented
as {(Xt,Yt), t � 0} with the state space S = {(i, j) 2
{0, 1, ...,K}⇥{0, 1, ..., L}}where i and j denotes level and
phase variables of the process, respectively [50]. Simi-
larly, K and L determines the queue capacities of level
and phase variables respectively which can be finite or
infinite.

In queueing networks, a QBD process can be
multi-dimensional with one level variable and multi-
dimension phase variables, whereby the phase variables
denote the number of the nodes or queues in the net-
work. For N number of queues, the state of the net-
work can be represented by the vector n = (n1, n2, ..., nN)
where nl is the number of packets in queue l. If queue
1 is the queue of interest for analysis, then packets at
queue 1 are represented by the level variable and packets
at queues other than queue 1 are represented by phase
variables as the vector r = (n2, n3, ..., nN) [51].

In QBD process, the transitions between the state are
limited within the level or between two adjacent levels.
If the transitions of QBD process are independent of the
level, then such type of QBD process is homogenous or
level-independent. Similarly, if the transitions are de-
pendent of the level, then QBD process is nonhomoge-
nous or level-dependent [52].

For an SDN switch with the internal bu↵er, the level
variable tracks the number of packets in the internal
bu↵er of the switch and the phase variable tracks the
number of packets in the switch (excluding the inter-
nal bu↵er) and the controller. Due to the dependency
of packets in the controller and the switch with tem-
porarily bu↵ered packets in the internal bu↵er, QBD
process for an SDN switch with the internal bu↵er is
non-homogeneous.

Using standard QBD notation [53], the transition rate
matrix of non-homogenous QBD process is given by in-
finitesimal generator matrix denoted as G with a repeti-
tive block structure expressed as:

G =

0
BBBBBBBBBBBBBBBBBBBBB@

B1 A
(0)
0 0 . . .

A
(1)
2 A

(1)
1 A

(1)
0

. . .

0 A
(2)
2 A

(2)
1 A

(2)
0
. . .

...
. . .

. . .
. . .

. . .

1
CCCCCCCCCCCCCCCCCCCCCA

,

where A
(i)
0 , A

(i)
1 , and A

(i)
2 are non-negative sub-matrices

for i � 0. The sub-matrices A
(i)
0 , A

(i)
1 , and A

(i)
2 repre-

sent phase variable distribution when the level variable
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increases by 1 (i.e. i ! i + 1), remains unchanged
(i.e. i ! i), and decreases by 1 (i.e. i ! i � 1 for
i > 0), respectively. Note that the use of A0, A1, A2, and
B1 are standard QBD notations [14, 51, 52]. The sub-
matrices B1 and A1 represent phase distribution when
level variable remains unchanged. The sub-matrix B1 or
A

(0)
1 represents the state of the network when the level

variable is “0” (i.e. the internal bu↵er has no packets
in its queue), while A1 represents the network with the
internal bu↵er having at least one packet in its queue.
Similarly, A0 and A2 represent phase distribution when
number of packets in the internal bu↵er increases or de-
creases by 1 respectively.

The exact distribution probabilities or the stationary
state distribution (⇡) for QBD process is obtained by
solving the system, ⇡G = 0 and ⇡e = 0, where e is the
column vector with all elements as one. These distribu-
tion probabilities can be used to determine various per-
formance metrics of the queueing network like average
delay and throughput.

Throughout this paper, we assume the controller has
an infinite capacity queue with M/M/1 distribution, and
the CPU of a switch has a finite capacity GI/M/1/K
queue to represent independent arrivals with general
distribution [54]. The total number of hosts connected
to the switch is denoted as N. External packets arriving
at the switch from each connected hosts are assumed to
arrive according to a Poisson distribution with param-
eter �. If there is no matching FTE in the switch, an
external packet is temporarily bu↵ered in the internal
bu↵er and packet-in message is generated and sent to
the controller with a probability �. The service rates
of the CPU and the specialised hardware in the switch,
and the controller are denoted by µsp, µsh, and µc, re-
spectively. The average packet transfer delay and loss
rate are primary performance metrics to compare SDN
software and hardware switches with the internal bu↵er.

3. Software Switch with the internal bu↵er: SPQ

We have named our queueing model for a software
switch with the internal bu↵er as Model SPQ, where
“S” refers to the switch with a software data plane, “P”
refers to use of a two-priority queueing structure, and
“Q” refers to queueing of data packets in the internal
bu↵er.

As seen in Figure 3, the switch supports internal
bu↵ering and the input bu↵er of the switch is modelled
as a finite capacity with non-preemptive two-priority
class queues, Class ES (low priority class for data pack-
ets) and Class CS (high priority class for control pack-
ets) like “SPE” in [19].

Figure 3: SPQ–An SDN software switch with the internal bu↵er.

The packet processing in SPQ can be explained in
four steps as shown in Fig. 3: (1) external data pack-
ets arrive at Class ES of the switch from N number of
hosts cooverallnnected to the switch, (2) data packets
are temporarily bu↵ered in the internal memory and a
fraction of data packets are forwarded to the controller
encapsulated with “packet-in” control messages if the
switch does not have matching FTE or successfully
forwarded to the destination through an output port,
(3) the controller feedback the forwarding information
with packet-out message to Class CS of the switch, (4)
switch process the control packetss in Class CS, update
the flow table with forwarding information, temporar-
ily bu↵ered data packets are extracted from the internal
bu↵er and forwarded to the destination through an out-
put port.

SPQ is modelled as a continuous time
Markov process with four state variables,
{(nb(t), nc(t), ncs(t), nes(t)), t � 0}. The state vari-
ables denoted by nb(t), nc(t), ncs(t), and nes(t) represent
the number of packets in the internal bu↵er, controller,
Class CS, and Class ES respectively. Let the Markov
process at time t be defined as:

{nb(t), nc(t), ncs(t), nes(t)} = {w, x, y, z} (3)

where w 2 ZK3
+ , x 2 Z+, y 2 ZK1

+ and z 2 ZK2
+ .

The number of packets in the controller and Class CS
is dependent on the number of packets in the internal
bu↵er. Therefore, the state space of the controller and
Class CS can be rewritten as, x 2 Zw

+ , and y = (w � x)
subject to (w � x)  K1.

For example, if the number of packets in the in-
ternal bu↵er at some instant t is 1, i.e. nb(t) = 1,
then the permissible state space for controller and Class
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Table 3: Permissible transitions for Model SPQ

Event
From To Rate

One packet arrives to Class ES. (nb, nc, ncs, nes) (nb, nc, ncs, nes + 1) N�

One packet departs from Class ES to out
of the system (SPQ).

(nb, nc, 0, nes > 0) (nb, nc, 0, nes � 1) µsp(1 � �)

One packet departs from Class ES to
the internal bu↵er and subsequently one
packet-in message is sent to controller.

(nb, nc, 0, nes > 0) (nb + 1, nc + 1, 0, nes � 1) µsp�

One packet-out serviced by Controller to
Class CS.

(nb, nc > 0, ncs, nes) (nb, nc � 1, ncs + 1, nes) µc

One packet in Class CS is processed and
subsequently one packet departs from the
internal bu↵er to out of the system (SPQ).

(nb > 0, nc, ncs > 0, nes) (nb � 1, nc, ncs � 1, nes) µsp

CS are nc(t) = {0, 1} and ncs(t) = {1, 0} respectively.
Due to this dependency, Markov process in SPQ is
nonhomogenous QBD process [51] with the internal
bu↵er as a level variable; while the number of pack-
ets in the controller, Class CS and Class ES are phase
variables. The permissible transitions for the Markov
chain {(nb(t), nc(t), ncs(t), nes(t))} are shown in Table 3
and these help us to derive sub-matrices (denoted by
A0, A1, B1 and A2) of transition generator matrix (G) for
SPQ. These sub-matrices are inputs to the matrix geo-
metric solution for computing the stationary distribution
probability (⇡) which is used to determine performance
metrics for SPQ.

3.1. Elements of matrix A0:

The sub-matrix A0 for SPQ represents the phase dis-
tribution of the controller, Class CS, and Class ES when
the number of packets in the internal bu↵er (i.e. nb(t) or
w in Eq. (3)) increases by 1:

A0(x,x0) =

8>><
>>:

A00
(x), x

0 = x + 1,
0, otherwise,

where,

A00
(x)

(y,y0) =

8>><
>>:

A001
(y), y

0 = y = 0,
0, otherwise,

where,

A001
(0)

(z,z0) =

8>><
>>:
µsp�, z

0 = z � 1,
0, otherwise.

3.2. Elements of matrix A1

The sub-matrix A1 for SPQ represents the phase dis-
tribution of the controller, Class CS, and Class ES when
the number of packets in the internal bu↵er remain
unchanged and there are some packets in the internal
bu↵er (i.e. nb(t) or w in Eq. (3) is a positive integer that
remain unchanged):

A1(x,x0) =

8>>>>><
>>>>>:

A11
(x), x

0 = x,

A12
(x), x

0 = x � 1,
0, otherwise,

where,

A11
(x)

(y,y0) =

8>><
>>:

A111
(y), y

0 = y,

0, otherwise,

and

A12
(x)

(y,y0) =

8>><
>>:

A120
(y), y

0 = y + 1,
0, otherwise,

where,

A111
(y)

(z,z0) =

8>>>>><
>>>>>:

N�, z
0 = z + 1,

µsp(1 � �), y = 0, z0 = z � 1,
0, otherwise,

and

A120
(y)

(z,z0) =

8>><
>>:
µc, z

0 = z,

0, otherwise.

The diagonal elements of A111
(y)

(z,z0) where z is equal to
z
0 has four distinct cases:
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(i) when there is no packet in the controller (i.e. nc(t)
or x in Eq. (3) is equal to 0),

A111
(y)

(z,z0) =

8>>>>><
>>>>>:

�N� � µsp, 0  z < K2;
�µsp, z = K2;
0, otherwise,

(ii) when the number of packets in the controller is
less that the number of packets in the internal
bu↵er i.e. 0 < x < w and w < K3,

A111
(y)

(z,z0) =

8>>>>><
>>>>>:

�N� � µsp � µc, 0  z < K2;
�µsp � µc, z = K2;
0, otherwise,

(iii) when the number of packets in the controller is
equal to that in the internal bu↵er which is not full
i.e. x = w and w < K3,

A111
(y)

(z,z0) =

8>>>>>>>><
>>>>>>>>:

�N� � µc, z = 0;
�N� � µsp � µc, 0 < z < K2;
�µsp � µc, z = K2;
0, otherwise,

(iv) when the number of packets in the controller and
the internal bu↵er are equal to the queue size of
the internal bu↵er i.e. x = w = K3,

A111
(y)

(z,z0) =

8>>>>>>>><
>>>>>>>>:

�N� � µc, z = 0;
�N� � µsp(1 � �) � µc, 0 < z < K2,
�µsp(1 � �) � µc, z = K2,

0, otherwise,

3.3. Elements of matrix B1

The sub-matrix B1 for SPQ represents the phase dis-
tribution of the controller, Class CS, and Class ES
when the number of packets in the internal bu↵er is un-
changed and there is no packet in the internal bu↵er (i.e.
nb(t) or w in Eq. (3) is equal to 0):

B1(x,x0) =

8>><
>>:

B11
(x), x

0 = x = 0,
0, otherwise,

where,

B11
(0)

(y,y0) =

8>><
>>:

B111
(y), y

0 = y = 0,
0, otherwise,

where,

B111
(0)

(z,z0) =

8>>>>><
>>>>>:

N�, z
0 = z + 1,

µsp(1 � �), z
0 = z � 1,

0, otherwise.

The diagonal elements of B111
(0)

(z,z0) where z is equal to
z
0 are expressed as

B111
(0)

(z,z0) =

8>>>>>>>><
>>>>>>>>:

�N�, z = 0,
�N� � µsp, 0 < z < K2,

�µsp, z = K2,

0, otherwise.

3.4. Elements of matrix A2

The sub-matrix A2 for SPQ represents the phase dis-
tribution of the controller, Class CS and Class ES when
the number of packets in the internal bu↵er (i.e. nb(t) or
w in Eq. (3)) decreases by 1:

A2(x,x0) =

8>><
>>:

A21
(x), x

0 = x,

0, otherwise,

where,

A21
(x)

(y,y0) =

8>><
>>:

A212
(y), y

0 = y � 1,
0, otherwise,

where,

A212
(y)

(z,z0) =

8>><
>>:
µsp, z

0 = z,

0, otherwise.

3.5. Peformance Metrics for SPQ

The throughputs of Class CS (Tcs) and the internal
bu↵er (Tb) for SPQ are same because we have assumed
a data packet in the internal bu↵er is extracted instan-
taneously after a control packet in Class CS has been
processed. This assumption is reflected in the permissi-
ble transitions table for SPQ as shown in Table 3. The
throughput of the internal bu↵er for SPQ is given by the
sum of probabilities that the internal bu↵er has at least
one data packet to forward (service rate of µsp) and this
is given by:

Tb = Tcs = µsp

K3X

w=1

w�1X

x=0

K2X

z=0

⇡w,x,y,z . (4)

overall Similarly, the throughput of the controller (Tc)
for SPQ is given by the sum of probabilities that the con-
troller has at least one control packet to forward (service
rate of µc) with the condition that there is at least one
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data packet temporarily bu↵ered in the internal bu↵er,
and this is given by:

Tc = µc

K3X

w=1

wX

x=1

K2X

z=0

⇡w,x,y,z . (5)

Also, the throughput of Class ES (Tes) for SPQ is given
by the sum of probabilities that the Class ES has at least
one data packet to forward (service rate of µsp) and there
is no packet in Class CS in the stationary state, and this
is given by:

Tes = µsp

K3X

w=0

wX

x=0

K2X

z=1

⇡w,x,0,z . (6)

The average number of data packets in SPQ is E[L]S PQ

where data packets travel only through the switch (the
Class ES and the internal bu↵er). Therefore, E[L]S PQ is
expressed as:

E[L]S PQ =

K3X

w=0

wX

x=0

K2X

z=0

(w + z)⇡w,x,y,z. (7)

Again, applying Little’s theorem to Eq. (7) yields the av-
erage packet transfer delay in SPQ (commonly denoted
by the mean sojourn time of the packet) at the switch
(denoted by tS PQ) which is expressed as:

tS PQ = E[L]S PQ/TS PQ, (8)

where TS PQ is the throughput of SPQ expressed as:

TS PQ = Tb + (1 � �)Tes. (9)

Similarly, the average packet loss rate of the Class
CS (PLcs), the Class ES (PLes), and the internal bu↵er
(PLib) represents the average number of packets being
blocked or dropped by the Class CS, the Class ES, and
the CPU’s internal bu↵er out of total incoming packets.
The loss rates PLcs, PLes, and (PLib) for Model SPQ are
expressed as:

PLcs = PLib = 1 � Tcs/Tc,

PLes = 1 � Tes/N�.
(10)

Assuming independence between the arrival at the
Class CS, the Class ES and the internal bu↵er, the total
packet loss rate for SPQ (PLS PQ) is the sum of packet
loss rate in the Class CS, the Class ES and the internal
bu↵er which is given as,

PLS PQ = PLcs + PLes + PLib. (11)

4. Hardware Switch with internal bu↵er: HPQ

Similar to “SPQ” for a software switch with the inter-
nal bu↵er, we have named queueing model for a hard-
ware switch with the internal bu↵er as Model HPQ,
where “H” refers to a hardware data plane. HPQ is
an extension of SPQ, with one additional server and a
queue for the specialised hardware with M/M/1/K dis-
tribution.

As shown in Figure 4, the switch has two servers,
one for the specialised hardware (referred as hardware
processor and denoted by µsh) and other one for the CPU
(referred as CPU processor and denoted by µsp). Similar
to SPQ, CPU is modelled as a finite capacity with non-
preemptive two-priority class queues; Class HP (similar
to Class ES for SPQ) as a low priority, Class CP (similar
to Class CS for SPQ) as a high priority.

Figure 4: HPQ–An SDN hardware switch with internal bu↵er.

The packet processing in HPQ can be explained in
five steps as shown in Fig. 4: (1) external data pack-
ets arrive at the specialised hardware of the switch from
N number of hosts connected to the switch, (2) data
packets are forwarded to Class HP of the CPU if spe-
cialised hardware in the switch does not have match-
ing FTE or forwarded to destination through an out-
put port, (3) data packets are temporarily bu↵ered in
the internal memory and a fraction of data packets are
forwarded to the controller encapsulated with packet-in
messages, (4) the controller feedback the forwarding in-
formation with packet-out messages to Class CP of the
CPU, (5) finally the CPU processes control packets in
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Class CP, updates and synchronises the software flow
table with the flow table in the specialised hardware, ex-
tracts temporarily bu↵ered data packets from the inter-
nal bu↵er and forwards them to the destination through
an output port.

HPQ is modelled as a continuous time
Markov process with five state variables,
{(nb(t), nc(t), ncs(t), nes(t), nsh(t)), t � 0}. The state
variables denoted by nb(t), nc(t), ncs(t), nes(t), and nsh(t)
represent the number of packets in the internal bu↵er,
controller, Class CP, Class HP, and the specialised
hardware respectively.

Similar to SPQ, queue capacities of the internal
bu↵er, Class CP and Class HP are K3,K1, and K2 re-
spectively; and the controller is assumed to have infinite
capacity. The queue capacity of the specialised hard-
ware is K4. Let the Markov process at time t be defined
as:

{nb(t), nc(t), ncs(t), nes(t), nsh(t)} = {v,w, x, y, z} (12)

where v 2 ZK3
+ , w 2 Z+, x 2 ZK1

+ , y 2 ZK2
+ , and z 2

ZK4
+ . The number of packets in the controller and Class

CP is dependent on the number of temporarily bu↵ered
packets in the internal bu↵er, therefore state space of the
internal bu↵er, controller and Class CP can be rewritten
as, v 2 ZK3

+ , w 2 Zw

+ , and x = (v � w) subject to
(v � w)  K1.

Due to the dependency of nc(t) and ncs(t) on the inter-
nal bu↵er, the process governing the number of packets
in HPQ is also nonhomogenous QBD process with the
internal bu↵er as a level variable; the controller, Class
CP, Class HP, and the specialised hardware as phase
variables. The permissible transitions for the Markov
chain {(nb(t), nc(t), ncs(t), nes(t), nsh(t))} are shown in Ta-
ble 4. These transitions help us derive sub-matrices
(A0, A1, B1 and A2) of the generator matrix (G) for HPQ.
These sub-matrices are input to matrix geometric solu-
tion to compute the stationary distribution probability
(⇡) which is used to determine performance metrics for
HPQ.

4.1. Elements of matrix A0:

The sub-matrix A0 for HPQ represents the phase dis-
tribution of the controller, Class CP, Class HP, and the
specialised hardware when the number of packets in the
internal bu↵er (i.e. nb(t) or v in Eq. (12)) increases by
1:

A0(w,w0) =

8>><
>>:

A00
(w), w

0 = w + 1,
0, otherwise,

where,

A00
(w)

(x,x0) =

8>><
>>:

A001
(x), x

0 = x = 0,
0, otherwise,

where,

A001
(0)

(y,y0) =

8>><
>>:

A0012
(y), y

0 = y � 1,
0, otherwise,

where,

A0012
(y)

(z,z0) =

8>><
>>:
µsp, z

0 = z,

0, otherwise.

4.2. Elements of matrix A1

The sub-matrix A1 for HPQ represents the phase dis-
tribution of the controller, Class CP, Class HP, and the
specialised hardware when the number of packets in the
internal bu↵er remain unchanged and there are some
packets in the internal bu↵er (i.e. nb(t) or v in Eq. (12)
is a positive integer that remain unchanged):

A1(w,w0) =

8>>>>><
>>>>>:

A11
(w), w

0 = w,

A12
(w), w

0 = w � 1,
0, otherwise,

where,

A11
(w)

(x,x0) =

8>><
>>:

A111
(x), x

0 = x,

0, otherwise,

and

A12
(w)

(x,x0) =

8>><
>>:

A120
(x), x

0 = x + 1,
0, otherwise,

where,

A111
(x)

(y,y0) =

8>>>>><
>>>>>:

A1111
(y), y

0 = y,

A1110
(y), y

0 = y + 1,
0, otherwise,

and

A120
(x)

(y,y0) =

8>><
>>:

A1201
(y), y

0 = y,

0, otherwise,

where,

A1111
(y)

(z,z0) =

8>>>>><
>>>>>:

N�, z
0 = z + 1,

µsh(1 � �), z
0 = z � 1,

0, otherwise,
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Table 4: Permissible transitions for Model HPQ

Event
From To Rate

One packet arrives to switch hardware. (nb, nc, ncp, nhp, nsh) (nb, nc, ncp, nhp, nsh + 1) N�

One packet departs from hardware to
out of the system (HPQ).

(nb, nc, ncp, nhp, nsh) (nb, nc, ncp, nhp, nsh � 1) µsh(1 � �)

One packet arrives at Class HP for
CPU processing.

(nb, nc, ncp, nes, nsh) (nb, nc, ncp, nhp + 1, nsh � 1) µsh�

One packet departs from Class HP to
the internal bu↵er and subsequently
one packet-in message is sent to con-
troller.

(nb, nc, 0, nhp, nsh) (nb + 1, nc + 1, 0, nhp � 1, nsh) µsp

One packet serviced by Controller to
Class CP.

(nb > 0, nc, ncp, nhp, nsh) (nb > 0, nc � 1, ncp + 1, nhp, nsh) µc

One packet out in Class CP is pro-
cessed and subsequently one packet
departs from the internal bu↵er to out
of the system (HPQ).

(nb > 0, nc, ncp, nhp, nsh) (nb � 1, nc, ncp � 1, nhp, nsh) µsp

A1110
(y)

overall(z,z0) =

8>><
>>:
µsh�, z

0 = z � 1,
0, otherwise,

and

A1201
(y)

(z,z0) =

8>><
>>:
µc, z

0 = z,

0, otherwise.

The diagonal elements of A1111
(y)

(z,z0) where z is equal to
z
0 has four distinct cases:

(i) when there is no packet in the controller (i.e. nc(t)
or w in Eq. (12) is equal to 0),

A1111
(y)

(z,z0) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

�N� � µsp, 0  y  K2,
z = 0;

�N� � µsh � µsp, 0  y < K2,
0 < z < K4;

�N� � µsh(1 � �) � µsp, y = K2,
0 < z < K4;

�µsh � µsp, 0  y < K2,
z = K4;

�µsh(1 � �) � µsp, y = K2,
z = K4;

0, otherwise,

(ii) when the number of packets in the controller is
less than that the number of packets in the internal

bu↵er i.e. 0 < w < v and v < K3,

A1111
(y)

(z,z0) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

�N� � µsp � µc, 0  y  K2,
z = 0;

�N�� µsp � µsh � µc, 0  y < K2,
0 < z < K4;

�µsp � µsh � µc, 0  y < K2,
z = K4;

�N� � µsp

� µsh(1 � �) � µc,
y = K2,
0 < z < K4;

�µsp � µsh(1 � �)
� µc,

y = K2,
z = K4;

0, otherwise,

(iii) when the number of packets in the controller is
equal to that in the internal bu↵er which is not full
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i.e. w = v and v < K3,

A1111
(y)

(z,z0) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�N� � µc, y = z = 0;
�N� � µsh � µc, y = 0,

0 < z < K4;
�µsh � µc, y = 0,

z = K4;
�N� � µsp � µc, 0 < y  K2,

z = 0;
�N�� µsp � µsh � µc, 0 < y  K2,

0 < z < K4;
�µsp � µsh � µc, 0 < y  K2,

z = K4;
�N� � µsp � µc

� µsh(1 � �),
y = K2,
0 < z < K4;

�µsp � µsh(1 � �)
� µc,

y = K2,
z = K4;

0, otherwise,

(iv) when the number of packets in the controller and
the internal bu↵er are equal to the queue size of
the internal bu↵er i.e. w = v = K3,

A1111
(y)

(z,z0) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

�N� � µc, 0  y  K2,
z = 0;

�N� � µsh � µc, 0  y < K2,
0 < z < K4;

�µsh � µc, 0  y < K2,
z = K4;

�N� � µsh(1 � �)
� µc,

y = K2,
0 < z < K4;

�µsh(1 � �) � µc, y = K2,
z = K4;

0, otherwise,

4.3. Elements of matrix B1
The sub-matrix B1 for HPQ represents the phase dis-

tribution of the controller, Class CP, Class HP, and the
specialised hardware when the number of packets in the
internal bu↵er remain unchanged and there is no packet
in the internal bu↵er (i.e. nb(t) or v in Eq. (12) is equal
to 0:)

B1(w,w0) =

8>><
>>:

B11
(w), w

0 = w = 0,
0, otherwise,

where,

B11
(0)

(x,x0) =

8>><
>>:

B111
(x), x

0 = x = 0,
0, otherwise,

where,

B111
(0)

(y,y0) =

8>><
>>:

B1111
(x), y

0 = y,

0, otherwise.

where,

B1111
(y)

(z,z0) =

8>>>>><
>>>>>:

N�, z
0 = z + 1,

µsh(1 � �), z
0 = z � 1,

0, otherwise.

The diagonal elements of B1111
(y)

(z,z0) where z is equal to
z
0 is expressed as

B1111
(y)

(z,z0) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�N�, y = 0, z = 0;
�N� � µsh, y = 0,

0 < z < K4;
�µsh, y = 0, z = K4,

�N� � µsp, 0 < y  K2,
z = 0;

�N� � µsh � µsp, 0 < y < K2,
0 < z < K4;

�µsh � µsp, 0 < y < K2,
z = K4;

�N� � µsh(1 � �) � µsp, y = K2,
0 < z < K4;

�µsh(1 � �) � µsp, y = K2, z = K4;
0, otherwise.

4.4. Elements of matrix A2

The sub-matrix A2 for HPQ represents the phase dis-
tribution of the controller, Class CP, Class HP, and the
specialised hardware when the number of packets in the
internal bu↵er (i.e. nb(t) or v in Eq. (12)) decreases by
1:

A2(w,w0) =

8>><
>>:

A21
(w), w

0 = w,

0, otherwise,

where,

A21
(w)

(x,x0) =

8>><
>>:

A212
(x), x

0 = x � 1,
0, otherwise,

where,

A212
(x)

(y,y0) =

8>><
>>:

A2121
(y), y

0 = y,

0, otherwise.

where,

A2121
(y)

(z,z0) =

8>><
>>:
µsp, z

0 = z,

0, otherwise.
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4.5. Peformance Metrics for HPQ

Like SPQ, the throughputs of the Class CP (Tcp) and
the internal bu↵er (Tb) for HPQ are same. The through-
put of the internal bu↵er for HPQ is given by the sum
of probabilities that the internal bu↵er has at least one
data packet to forward with service rate of µsp, and this
is given by:

Tb = Tcp = µsp

K3X

v=1

v�1X

w=0

X

x

K2X

y=0

K4X

z=0

⇡v,w,x,y,z . (13)

Similarly, the throughput of the controller (Tc) for HPQ
is given by the sum of probabilities that the controller
has at least one control packet to forward with service
rate of µc, and there is at least one data packet temporar-
ily bu↵ered in the internal bu↵er. This is given by:

Tc = µc

K3X

v=1

vX

w=1

K2X

y=0

K4X

z=0

⇡v,w,x,y,z . (14)

Also, the throughput of Class HP (Thp) for HPQ is given
by the sum of probabilities that the Class HP has at least
one data packet to forward with service rate of µsp and
there is no packet in Class CP in the stationary state, and
this is given by:

Thp = µsp

K3X

v=0

vX

w=0

K2X

y=1

K4X

z=0

⇡v,w,x,0,z . (15)

Finally, the throughput of the specialised hardware (Tsh)
for HPQ is given by the sum of probabilities that the
specialised hardware has at least one data packet to for-
ward with service rate of µsh and this is given by:

Tsh = µsh

K3X

v=0

vX

w=0

K2X

y=0

K4X

z=1

⇡v,w,x,y,z . (16)

The average number of data packets in HPQ is E[L]HPQ

where data packets travel only through the specialised
hardware (i.e. TCAM) and the CPU (i.e the Class HP
and the internal bu↵er). Therefore, E[L]HPQ is ex-
pressed as:

E[L]HPQ =

K3X

v=0

vX

w=0

K2X

y=0

K4X

z=0

(v + y + z)⇡v,w,x,y,z. (17)

Again, applying Little’s theorem to Eq. (17) yields
the average packet transfer delay in HPQ (commonly
denoted by the mean sojourn time of the packet) at the
switch (denoted by tHPQ) which is expressed as:

tHPQ = E[L]HPQ/THPQ, (18)

where THPQ is the throughput of HPQ expressed as:

THPQ = Tb + (1 � �)Tsh. (19)

Similarly, assuming independence of packet arrivals
between the Class CP, Class HP, internal bu↵er and the
specialised hardware queue, the average packet loss rate
of the Class CP (PLcp), Class HP (PLhp), internal bu↵er
(PLib) and the specialised hardware queue (PLsh) rep-
resents the average number of packets being blocked
or dropped by the Class CS, Class ES, internal bu↵er
and the specialised hardware queue out of total incom-
ing packets in respective queue. The packet loss rates
PLcp, PLhp, PLib and PLsh for HPQ are expressed as,

PLcp = PLib = 1 � Tcp/Tc,

PLhp = 1 � Thp/Tsh,

PLsh = 1 � Tsh/N�.

(20)

Therefore, the total packet loss rate for HPQ (PLHPQ)
is the sum of packet loss rate in the Class CP, Class HP,
internal bu↵er and the specialised hardware queue of the
switch which is given as,

PLHPQ = PLcp + PLhp + Pib + PLsh. (21)

In the following section, we will discuss bu↵er dimen-
sioning for SPQ and HPQ.

5. Bu↵er Dimensioning for SPQ and HPQ

In this section, to perform bu↵er dimensioning for
SPQ and HPQ, we assume that the switch queues are
M/M/1 (see Section 2.2) as opposed to GI/M/1/K (used
for the CPU in both SPQ and HPQ) and M/M/1/K (used
for the specialised hardware in HPQ).

The minimum capacity for the switch in SPQ is de-
noted by (Kmin)S PQ which is the sum of K1 (i.e. min-
imum queue capacity required for the Class CS), K2
(i.e. minimum queue capacity required for the Class
ES), and K3 (i.e.minimum queue capacity required for
the internal bu↵er) which are calculated using Eq. (2)
as:

K1 �
log[PER]
log[⇢cs]

,K2 �
log[PER]
log[⇢es]

,K3 �
log[PER]
log[⇢ib]

,

(22)
where ⇢cs, ⇢es, and ⇢ib are the server utilization at the
Class CS, Class ES, and the internal bu↵er, respectively,
which are defined as:

⇢cs =
�N�

µsp

, ⇢es =
N�

µsp

, ⇢ib =
�N�

µsp

.
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Table 5: Parameter used for Numerical Simulation for both SPQ and HPQ
Parameter Value

Table miss probability, � 0.1⇠1
CPU processing rate, µsp (packets/sec) 1000

Controller to CPU Processing Ratio (µc/µsp), mr 0.1⇠2
Specialised hardware to CPU Processing Ratio (µsh/µsp), ms 1⇠1000

Arrival rate, � (packets/sec) 12, 24
Bit Error Rate, BER 10�12

MTU TCP packet size (byte) 1500
Number of hosts per switch, N 1 ⇠ 80

Therefore, (Kmin)S PQ can be expressed as

(Kmin)S PQ = K1 + K2 + K3. (23)

Likewise, for HPQ, the minimum queue capacities for
the Class CP, Class HP, internal bu↵er, and the spe-
cialised hardware are denoted as K1, K2, K3, and K4,
respectively, and can be calculated using Eq. (2) as:

K1 � log[PER]
log[⇢cp] ,K2 � log[PER]

log[⇢hp] ,K3 � log[PER]
log[⇢ib] ,

K4 � log[PER]
log[⇢sh] ,

(24)

where ⇢cp, ⇢hp, ⇢ib, and ⇢sh are the server utilization
at the Class CP, Class HP, internal bu↵er of the CPU,
and the specialised hardware, respectively, which are
defined as:

⇢cp =
N��

µsp

, ⇢hp =
N��

µsp

, ⇢ib =
N��

µsp

, ⇢sh =
N�

µsh

.

Therefore, the minimum queue capacity for the switch
in HPQ is the sum of minimum queue capacity for the
Class CP, Class HP, internal bu↵er, and the specialised
hardware:

(Kmin)HPQ = K1 + K2 + K3 + K4. (25)

In this paper, the minimum queue capacity of the switch
for SPQ and HPQ are (Kmin)S PQ and (Kmin)HPQ, respec-
tively.

6. Results

This section presents the analytical and discrete event
simulation results of the unified queueing model for
SDN software and hardware switches with the internal
bu↵er (i.e. SPQ and HPQ respectively). This section is
divided into the following subsections:

• Validation:

– Validation of analytical models where analyt-
ical results are compared with discrete event
simulation results.

• Performance Characterisation:

– Relative minimum capacity where the total
minimum queue capacity for SPQ and HPQ
is compared.

– Relative average delay where average packet
transfer delay of SPQ and HPQ is compared.

– Relative packet loss rate where packet loss
rate of SPQ and HPQ is compared.

– E↵ect of varying number of hosts connected

to the switch is investigated and compared be-
tween SPQ and HPQ.

– E↵ect of varying µsh in a hardware switch

where the e↵ect of varying hardware process-
ing capacity (i.e. µsh) in HPQ is investigated.

The parameters used for analysis and simulation is
shown in Table 5. From Table 5, the table miss probabil-
ity � varies from 0.1 to 1, the switch processor or CPU
processing rate (µsp) is assumed to be 1000 packets/sec,
the controller to switch processing ratio (mr) varies from
from 0.1 to 2, and the specialised hardware to CPU pro-
cessing ratio (ms) varies from from 1 to 1000. The ex-
ternal arrival rate (�) at the switch from each host is as-
sumed to be 24 or 48 packets/sec and we assume an
Ethernet network for which the BER is assumed to be
10�12. We use TCP as the transport protocol with maxi-
mum transmission unit (MTU) of 1500 bytes. Thus, the
PER is 1.2 ⇥ 10�8 (using Eq. (1)). The number of hosts
per switch (N) is varied from 1 to 80.

The simulations are repeated hundred times and the
95% confidence intervals (CI) are computed on the basis
that the errors are normally distributed.

In the following subsections, to take the packet loss
rate into consideration, we assume queue capacities of
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(a) (b)

Figure 5: Validation of SPQ for (a) average packet transfer delay; (b) packet loss rate.

(a) (b)

Figure 6: Validation of HPQ for (a) average packet transfer delay; (b) packet loss rate.

the Class ES (in SPQ), the Class HP (in HPQ) and the
specialised hardware queue (in HPQ) to be half of their
minimum queue capacities determined from bu↵er di-
mensioning (using Eq. (23) and Eq. (25)). The queue
capacities of the Class CS (in SPQ), the Class CP (in
HPQ) and the internal bu↵er (in both SPQ and HPQ)
are minimum queue capacities determined from bu↵er
dimensioning where there is no packet loss. This bu↵er
sizing ensures no loss of control packets.

6.1. Validation of analytical models

The validation of analytical results for SPQ and HPQ
is done by comparing them with discrete event simu-
lation results. Figures 5 and 6 show the validation re-
sults for SPQ and HPQ respectively for increasing �
with mr = 1 and ms = 1000. The error percentage be-
tween analysis and simulation predictions for both aver-
age packet transfer delay and packet loss rate is between
0.6%-2.8% as shown in Figure 5 and Figure 6. This

16



Figure 7: Relative Kmin between SPQ and HPQ in % i.e. ✏K for in-
creasing �

range of error is acceptable for analysis as computation
of ⇡ distributions for nonhomogenous QBD process is
prone to inaccuracy due to the possibility of singular
matrix becoming nonsingular in machine precision [49].

6.2. Relative minimum capacity

In this subsection, we compute the relative minimum
queue capacity between SPQ and HPQ denoted as ✏K
which is defined as,

✏K =
(Kmin)SPQ � (Kmin)HPQ

(Kmin)SPQ
⇥ 100%.

A positive value of ✏K means HPQ requires less capacity
than SPQ, while a negative value implies HPQ requiring
more capacity than SPQ.

Figure 7 shows the ✏K curve for increasing �. From
Figure 7, we can observe that HPQ requires upto 50%
more bu↵er capacity than SPQ. This is because the
switch in HPQ requires queue capacities for the CPU,
the specialised hardware, and the internal bu↵er. While,
the switch in SPQ requires queue capacities for the CPU
and its internal bu↵er only.

6.3. Relative average delay

We compare the average packet transfer delay be-
tween SPQ (denoted by tS PQ as in Eq. (8)) and HPQ (de-
noted by tHPQ as in Eq. (18)). This comparison helps to
investigate the e↵ect of the internal bu↵er in a software
and hardware switch with reference to average packet
transfer delay.

The relative average packet transfer delay (denoted
by ✏d) between SPQ and HPQ (both with finite capacity)
is calculated as:

✏d =
(tS PQ � tHPQ)

tS PQ

⇥ 100%.

A positive value of ✏d means HPQ has lower average
delay for packet to travel in the network compared to
SPQ.

Figure 8 shows the relative average packet transfer
delay between SPQ and HPQ in percentile. Figures 8(a)
and 8(b) show the relative average delay for increasing �
and mr, respectively with ms = 1000. From Figure 8(a),
we can observe that HPQ exhibits up to 80% reduction
in average delay of the packet compared to SPQ for in-
creasing �. Similarly, Figure 8(b) shows the relative av-
erage packet transfer delay between SPQ and HPQ for
increasing mr, where HPQ exhibits up to 60% reduction
in average delay of the packet.

This is because the specialised hardware of the switch
processes external packets arriving at the switch much
faster than the CPU which reduces the overall average
delay of the packet. However, this reduction in average
delay diminishes with the increasing number of pack-
ets being forwarded to the CPU with increasing � as
seen in Figure 8(a). Similarly, with the increasing con-
troller processing capacity, the average delay of packet
reduces. The relative reduction in average packet trans-
fer delay reaches saturation when mr is greater than 1 as
seen in Figure 8(b).

This shows the benefit of a hardware switch with the
internal bu↵er over a software switch with the internal
bu↵er, that significantly reduces the overall average de-
lay of the packet for lower � and higher mr.

6.4. Relative packet loss rate

We compared the average packet loss rate between
SPQ (denoted by PLS PQ as in Eq. (11)) and HPQ (de-
noted by PLHPQ as in Eq. (21)). This comparison helped
us to investigate the e↵ect of the internal bu↵er in a soft-
ware and hardware switch with reference to the average
packet loss rate.

The relative average packet loss rate (denoted by ✏l)
between SPQ and HPQ (both with finite capacity) is cal-
culated as:

✏l =
(PLS PQ � PLHPQ)

PLS PQ

⇥ 100%.

A positive value of ✏l means HPQ has lower packet loss
rate compared to SPQ.

Figure 9 shows the relative average packet loss rate
between SPQ and HPQ in percentile. Figure 9(a) and
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(a) (b)

Figure 8: Relative average delay between SPQ and HPQ in % i.e. ✏d for increasing : (a) mr = 1; (b) � = 0.5.

(a) (b)

Figure 9: Relative average packet loss rate between SPQ and HPQ in % i.e. ✏l for increasing : (a) mr = 1; (b) � = 0.5.

Figure 9(b) show the relative average packet loss rate
for increasing � and mr, respectively with ms = 1000.
From Figure 9(a) and Figure 9(b), HPQ exhibits up to
100% reduction in average packet loss rate compared to
SPQ increasing � and mr, respectively.

This reduction in average packet loss rate is because
average waiting time of packets in the specialised hard-
ware queue of the switch is less than the CPU. Due
to the lower waiting time, the packet loss rate in spe-

cialised hardware queue is also lower than the CPU.
This shows the benefit of a hardware switch with the

internal bu↵er over a software switch with the internal
bu↵er, that significantly reduces the packet loss rate.

6.5. E↵ect of varying number of hosts connected to the

switch

In this subsection, the e↵ect of varying number of
hosts for both SPQ and HPQ is presented by varying
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(a) (b)

Figure 10: E↵ect of varying number of hosts for mr = 1 and � = 0.5.

N from 1 to 80. Figure 10 shows the e↵ect of varying
number of hosts for mr = 1 and � = 0.5. Figures 10(a)
and 10(b) show the e↵ect of varying number of hosts
on average packet transfer delay and packet loss rate re-
spectively. From Figure 10(a), with the increase in num-
ber of hosts, HPQ exhibits much lower average packet
transfer delay than SPQ. Similarly, from Figure 10(b),
the packet loss rate for both SPQ and HPQ is identi-
cal and increases with the increase in the number of
switches.

This increase in the packet loss rate is because with
the increase in number of hosts, the net arrival of pack-
ets at both SPQ and HPQ increases exponentially. The
specialised hardware of HPQ processes these incoming
packets at line rate that results into relatively lower av-
erage delay than SPQ which has slower processing via
the CPU.

6.6. E↵ect of varying µsh in a hardware switch

In this subsection, the e↵ect of varying µsh in a hard-
ware switch with the internal bu↵er is presented. This
is done by varying ms (i.e. ratio of specialised hardware
to CPU processing) from 1 to 1000.

Figure 11 shows the results for varying µsh in HPQ
with mr = 1 and � = 0.5. Figures 11(a) and 11(b)
show the e↵ect of varying µsh in HPQ for average packet
transfer delay and packet loss rate, respectively. From
Figure 11(a) and Figure 11(b), both average packet
transfer delay and packet loss rate becomes steady for
ms greater than 100.

From this investigation, the processing capacity of
specialised hardware should be atleast 100 times of the
CPU to have optimum reduction in packet transfer delay
and almost zero packet loss rate.

7. Conclusion

In this study, we have proposed a unified queueing
model for software and hardware switches with the in-
ternal bu↵er. Internal bu↵ering in SDN-based software
and hardware switches has not been investigated much,
especially from the analytical modelling aspect. There-
fore, a unified queueing model is a useful tool for net-
work analysts to get quick insights into SDN-based soft-
ware and hardware switches with the internal bu↵er.

The impact of the internal bu↵er in both software and
hardware switches is investigated and the summary of
our analysis is as follows:

• A hardware switch significantly reduces the aver-
age packet transfer delay (almost by 80%) than a
software switch.

• A hardware switch requires additional bu↵er (al-
most 50% more) than a software switch, which is
the tradeo↵ for the gains mentioned in the previ-
ous point – this insight is not provided by any of
the existing models in the literature.

• A hardware switch significantly reduces the packet
loss rate (almost by 99%) compared to a software
switch.
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(a) (b)

Figure 11: E↵ect of varying µsh in hardware switch for mr = 1 and � = 0.5.

• For an increasing number of hosts connected to
the switch, a hardware switch exhibits significantly
lower delay compared to a software switch.

Lastly, the model also suggests that the processing
power of the switch and the controller are intrinsically
tied. Our results show that no improvements in packet
loss occurs after the specialized hardware to CPU pro-
cessing ratio (ms) exceeds 0.2.
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