
XXX-X-XXXX-XXXX-X/XX/$XX. 00 ©20XX IEEE

ANovel Exponential Dynamic Inertia Weight for
Particle Swarm Optimization

Abstract—The traditional particle swarm optimization
(PSO) algorithm suffers from shortcomings like easily falling
into local optimum and inadequate sharing of information
among particles, To ad-dress these limitations and enhance the
search capacity of the particle swarm algorithm, we present a
novel particle swarm optimization algorithm known as
Exponential Dynamic Inertia Weight for Particle Swarm
Optimization (ExDyPSO) in this paper. ExDyPSO is composed
of two parts: firstly, by introducing dynamic inertia weight
based on exponential distributions and acceleration factors
that vary with the number of iterations, harmonizes the global
and local search capabilities. Secondly, a stochastic particle-
based jump-out strategy is proposed to surmount the case of
particles falling into stagnation during the search process, thus
effectively addressing the issue that PSO is prone to falling into
local optimum. To assess the performance of ExDyPSO, we
carried out experiments on eight benchmark functions and
compared its performance against four alternative PSO
variations. The experimental findings demonstrate that
ExDyPSO achieves quicker and more accurate convergence
towards the global optimal solution, all the while sustaining
population diversity.

Keywords—particle swarm optimization (PSO), dynamic
inertia weights, jump-out strategy, global search, local search.

I. INTRODUCTION
The Particle Swarm Optimization (PSO) algorithm is a

stochastic optimization method whose fundamental
principles are inspired by collective behaviors observed in
groups of organisms, like bird flocking and fish schooling
dynamics [1]. In PSO, each particle in the group represents a
potential solution to the optimization problem. Initially,
particles are dispersed across the search domain with
velocities chosen randomly. Subsequently, each particle
updates its speed based on both its individual best experience
and the collective best experience of the entire population.
The unique interaction mechanism between particles in the
PSO algorithm enable them to efficiently navigate toward the
optimal position under reasonable guidance. As a result, the
PSO algorithm finds applications in various domains, such as
parametric valuation [2], neural networks [3], image
processing [4], and signal processing [5].

Inertia weight and acceleration factors are essential
parameters within the PSO algorithm, playing an important
role in the velocity update process. Inertia weight serves to
retain each particle's prior motion direction. If the inertia

weight's value is substantial, particles tend to persist in their
former direction, enhancing algorithm convergence speed.
Yet, when this weight is minimal, particles assign minimal
significance to their previous motion direction. Furthermore,
the acceleration factors also significantly impact the PSO
algorithm's performance.

In recent years, inertia weight and acceleration factors
have been extensively investigated to achieve enhanced
optimization accuracy and accelerated convergence
[6],[7],[21]. Drawing on prior research, we present a novel
particle swarm optimization algorithm known as Exponential
Dynamic inertia weight for Particle Swarm Optimization
(ExDyPSO). The algorithm introduces dynamic inertia
weight based on exponential distribution, along with an
acceleration factor that adapts to the iteration count. This
design aims to attain a balance between exploitation and
exploration. Furthermore, to overcome the stagnation
phenomenon, we devise a jump-out strategy to help particles
get rid of the local optimal attraction by selecting random
particles to participate in the search.

To assess the effectiveness and optimization performance
of the ExDyPSO, we conducted tests across eight benchmark
functions and conducted comparisons with four other
advanced PSO variants. The experimental outcomes reveal
that ExDyPSO attains a commendable balance between
global and local search, while manifesting steady
performance concerning solution accuracy and convergence
velocity. Furthermore, the analysis of population diversity
shows that ExDyPSO also demonstrates effectiveness in
adjusting variety.

The remainder of this paper is structured as follows.
Section 2 discusses prevalent PSO variations while Section 3
details the proposed ExDyPSO algorithm. Section 4 presents
the experimental results and corresponding analyses to
demonstrate the effectiveness of ExDyPSO. Finally, we
conclude and share future perspectives in Section 5.

II. RELATED WORKS

PSO, an optimization algorithm pioneered by Kennedy
and Eberhart [1], emulates the conduct of a population,
similar to a bird flock or fish school, with each particle
symbolizing a potential solution to some optimization
problem. A particle denoted by i (1 ≤ i ≤ N) possesses two
vectors: a position vector Xi = [Xi,1, Xi,2, …, Xi,D] and a
velocity vector Vi = [Vi,1, Vi,2, …, Vi,D]. These vectors are

initialized randomly. The regulations governing the update of
particle velocity and position are illustrated below:

��,�
�+1 = ���,�� + �1�1 �best �,�� − ��,�� + �2�2 ��est � − ��,�� (1)

��,�
�+1 = ��,�� + ��,�

�+1 1 ≤ � ≤ �,1 ≤ � ≤ � (2)

In Eqs. (1) and (2), symbols ��,�� , and ��,�� represent the
position and velocity of particle i in the dth dimension at
iteration t, respectively. Here, w symbolizes the inertia
weights, while �1 and �2 are the acceleration factors, all set
to 2. 0 [1]. Similarly, �1 and �2 denote two random numbers
within the interval [0, 1]. Pbesti designates the individual best
position found by particle i, while gbest signifies the global
best position found by all particles so far. The velocity and
position of the particles will be updated according to Eq. (1)
and updated iteratively through Eq. (2) to gradually search
for and approach the optimal solution.

Numerous improvement methods have been suggested to
further improve the performance of traditional PSO. Among
them, Shi and Eberhart [8] introduced an enhanced approach
named PSO-LDIW to optimize the PSO algorithm by
linearly reducing the variation of inertia weight w with the
number of iterations. The up-date rule for the inertia weight
(w) is as follows:

� = �1 −�2 × t���−t
t���

+�2

Here, �1 represents the initial value of the inertia weight,
while �2 signifies its final value. In the beginning, a high
inertia weight helps to find particles with favourable
performance. As the process advances, a lower inertia weight
becomes more conducive to precise exploration. The
parameter t represents the current number of iterations, while
t��� indicates the maximum allowable iterations.
Additionally, numerous algorithms have been proposed for
improving the inertia weight � . Examples include linear
decreasing � [9], stochastic � [10], and chaotic dynamics w
[11].

It has been recognized that the performance of the
algorithm is influenced by the variability of the acceleration
factor. Consequently, researchers have pursued numerous
enhancements to the acceleration factor. For instance, a PSO
algorithm incorporating a time-varying acceleration
coefficient (PSO-TVAC) was introduced [6]. Evolutionary
factors have been defined and population evolutionary states
categorized into four scenarios: exploration, exploitation,
escape, and convergence [11]. Furthermore, a PSO algorithm
with a positive cosine acceleration factor has also been
proposed [12].

Apart from parameter enhancements, certain researchers
have directed their attention toward formulating diverse
topologies to amplify the efficiency of the PSO algorithm.
The SPSO algorithm enhances convergence speed by
dynamically updating acceleration coefficients based on
distinct evolutionary states [13]. Conversely, the Competitive
Particle Swarm Optimizer (CSO) algorithm was devised to
address extensive optimization challenges [14]. This involves
the implementation of a pairwise competition mechanism.
Through this mechanism, the particles that lose the match are
adjusted to the position of the winning particles. Moreover,
introducing time delays into PSO algorithms to mitigate local
optima has been proposed [15]. The Multimodal Delayed
Particle Swarm Optimization (MDPSO) algorithm, by
evaluating evolutionary factors during each iteration,

partitions the particle swarm's evolutionary state
equidistantly [16]. A sorted particle swarm with mixed
paradigms has been proposed to improve the optimization
performance; moreover, novel adaptation schemes both for
the ratio of each paradigm and the constriction coefficients
are proposed during the iteration[20]. Several academic
researchers have developed a flexible software framework
for PSO, called PSO-X, which is specifically designed to
integrate the use of automatic configuration tools into the
process of generating PSO algorithms [22].

While the aforementioned improvement methods
enhance various aspects of traditional PSO algorithms, they
also exhibit certain drawbacks and limitations. Firstly, the
strategy of amalgamating diverse evolutionary algorithms
augments algorithmic intricacy. The amalgamation of
distinct algorithms necessitates judicious parameter
configuration and intricate operational procedures, thereby
escalating the challenge of algorithm implementation and
debugging. Secondly, certain improvement methods may
negatively affect the convergence performance of the
algorithm. Although these methods may bolster global search
potential and diversity, they might occasionally result in
slower convergence or local optima. Building upon the
aforementioned shortcomings and restrictions, we devise a
novel algorithm aims to address the shortcomings of the
traditional PSO algorithm in terms of reduced population
diversity and the local optimal solution problem.

III. EXPONENTIAL DYNAMIC INERTIA WEIGHT

In this section, we present our algorithm, focusing on
three aspects: (A) for enhancing the inertia weight, we
propose a dynamic inertia weight that follows an
exponential distribution; (B) In order to achieve a balance
between global and local search capabilities, we propose a
linear adjustment strategy for the acceleration factor; and,
(C) we propose a jump-out strategy based on random
particles to avoid falling into local optimal solutions.

A. Exponential Dynamic Inertia Weight Strategy
Within the conventional particle swarm optimization

algorithm, the inertia weight (w) embodies the influence
of historical velocity on the present pace and ascertains
the equilibrium between the algorithm's global and local
search competencies. With a higher inertia weight (w),
particles prioritize global search, whereas a lower (w)
emphasizes local exploration. Therefore, for achieving an
improved equilibrium between global and local search
strategies, we propose a method named dynamic inertia
weight based on exponential distribution.

A non-linear diminishing strategy has been introduced
to enhance algorithmic performance by adapting the
inertia weight, particularly to mitigate issues of premature
convergence. Despite the improved methods achieved by
these enhanced approaches, they may give rise to
challenges such as inadequate population diversity and
decelerated convergence during the later stages of the
algorithm's execution. To harmonize the algorithm's
global and local search capacities, we propose a dynamic
adjustment strategy based on the exponential distribution.

The exponential distribution is a continuous probability
distribution defined over the range [0, +∞], which has critical
applications in fields such as multivariate statistical analysis

and mathematical statistics. Let the random variable x has a
density function as depicted in Equation (4):

�(�) =
1
�
�−

�
�, � > 0 (� > 0)
0, � ≤ 0

(4)

Then x is said to follow an exponential distribution with
parameter θ , denoted as x ∼ Exp (θ) . The distribution
function is presented as follows:

�(�) = 1 − �−��, � ≥ 0
0, � < 0 (� > 0) (5)

The expression for the inertia weight, following the
incorporation of the exponential distribution, is as follows:

� = ���� − ���� −����
�

����

2
+ (− 1)rand ()�(�

∼ ��� (�))

Where ���� signifies the maximum value of the
manually entered inertia weight w, and ���� represents its
lower limit, t denotes the current iteration count, ����
signifies the maximum iteration count, and rand ()
corresponds to a random parity value. The exponential
distribution with parameter � is denoted by � ∼ ��� (�)
and � is a vital parameter that impacts the range of
fluctuation of the inertia weight (w). This form of
formulation is designed to take full advantage of the
properties of the exponential distribution in order to balance
the capabilities of global exploration and local search, thus
improving the performance of the algorithm. By employing
this strategy, we are better able to cope with the complexity
of the problem.

To ensure w varies within the intended range, selecting
an appropriate value is necessary. In this context, a range of
values for � was tested, viz. , �={0. 05, 0. 1, 0. 15, 0. 2, 0.
25, 0. 3, 0. 35, 0. 4, 0. 45, 0. 5} (comprising 10 instances),
and it was observed that a value of 0. 2 achieved the
intended outcome. As a result, for the subsequent
experiments, we set the parameter � to 0. 2. Fig. 1 shows the
line graph depicting the dynamic inertia weight (w) in
relation to iteration count, employing the parameter values
����= 1. 0, ����= 0. 4, and ���� = 400.

Fig. 1. Dynamic inertia weight based on exponential distribution.

From Eq. (6) and the insights from Fig. 1, we can
conclude that using the dy-namic adjustment strategy based

on exponential distribution makes the inertia weight show a
nonlinear change throughout the search process and
gradually decreases. During the initial phase of the search,
the inertia weight changes by a large margin, which
facilitates the algorithm to search in the broader solution
space, thus improving the diversity of the particle population.
Simultaneously, during the later search phases, the algorithm
can also obtain diverse inertia weight values, thereby further
heightening the search precision of the algorithm. The
incorporation of a dynamic adjustment strategy based on the
exponential distribution enables the harmonization of the
algorithm's global and local search potentials, thereby
mitigating the limitations in the traditional PSO algorithm
during both its initial and concluding search phases.

B. Dynamic Acceleration Factors Based on the Number of
Iterations
In traditional PSO algorithms, acceleration factors are

typically set to fixed values, often as c1=c2=2.0 [1].
However, studies have demonstrated that the selection of
acceleration factors impacts the algorithm's performance. A
higher c1 acceleration factor directs particles to focus more
on their historical optimal solutions, thus enhancing local
search capabilities. However, this could lead to the algorithm
becoming overly dispersed during the search process,
rendering the convergence towards the global optimal
solution challenging. Conversely, a higher c2 acceleration
factor compels particles to concentrate more on the global
optimal solution, thereby accelerating the global search
capability. However, this may result in the algorithm
excessively converging towards the local optimal solution. In
order to achieve a balance between global and local search
capabilities, we propose a linear adjustment strategy for the
acceleration factor, which is dependent on the algorithm's
iteration count. This strategy enables the acceleration factor
to dynamically adjust throughout the search process. The
exact calculation formula is presented below:

�1 = ���� − ���� − ���� × �
����

2
()

�2 = ���� + ���� − ���� × �
����

2
()

where ���� and ���� represent the initial maximum and
minimum acceleration factors, while ���� and � denote the
maximum and current iterations of the algorithm,
respectively. Within the ExDyPSO algorithm, we incorporate
varying particle learning strategies at distinct stages through
the generation of dynamic acceleration factors. This design
enhances particle focus on self-learning during the search's
initial stages, thereby fostering improved optimization
throughout the search space. Furthermore, during the
algorithm's later stages, we fine-tune the acceleration factor
to prioritize population learning. This implies that the
particles allocate greater attention to the global optimal
solution, thus expediting the algorithm's convergence.
Through this strategy, we achieve a balance between particle
self-learning and population learning, consequently
enhancing the algorithm's search performance.

C. Jump-Out Strategy
Sometimes, a particle might become trapped in a local

optimum, halting the particle's fitness updates after a limited
number of iterations. Falling into the local optimum deprives
the particle of the chance to explore the unexplored solution
space. This algorithm introduces a stochastic particle-based

jump-out strategy designed to aid particles in escaping from
the local optimal situation. When a particle stops updating
after G successive iterations (where the fitness ceases to
change), the jump-out strategy will be invoked to enhance
the particle's exploration capability.

�new = 1 − �3 ⋅ ����� �,� + �3 ⋅ ����� �,� + �4 ⋅
����� �,� − ����� �,� 1 ≤ �, � ≤ � ()

Where �new represents the new candidate position of
particle i, with i and j being randomly chosen particles, while
r3 is a random number within the interval [0,1] and r4 is a
random number between [-1,1]. Through the incorporation of
these stochastic factors, the particles are infused with a
degree of randomness and diversity. The position of Xi is
substituted only under the condition that the fitness value of
�new surpasses that of the present particle Xi.

The proposed jump-out strategy exhibits the subsequent
characteristics. Firstly, it provides candidate positions for
particles in a stagnant state, thus offering them the possibility
of jumping out of the deep local optimum. Doing so can help
these particles escape the predicament of being trapped in a
local optimum. In this regard, we are more focused on
helping particles that are experiencing difficulties than the
previous jump-out strategy. Additionally, the strategy fully
capitalizes on the information exchange among particles by
improving the positions of random particles to be provided to
the current particle. This exchange of information serves to
augment the search capability of the entire particle swarm,
stimulating the particles to explore the global search space
more effectively. With these key features, our jump-out
strategy shows significant advantages over traditional
methods in solving optimization problems.

D. ExDyPSO Algorithm
Figure 2 illustrates the flowchart and steps of ExDyPSO.

Fig. 2. Flowchart of ExDyPSO algorithm.

Step 1. Randomly initialize the positions and velocities of
all particles.

Step 2. Calculates the adaptation value of each particle
and initialize Pbest.

Step 3. Updates the inertia weight and acceleration
factors using Eqs. (2), (3), and (4).

Step 4. Updates the particles' velocity and position.

Step 5. Computes the fitness values for all particles in the
population and update Pbest.

Step 6. Determines if the particle is trapped in a local
optimum. If so, apply the jump-out strategy using Eq. (5).

Step 7. Checks whether the ExDyPSO algorithm meets
the termination condition. If satisfied, ExDyPSO produces
the optimal solution; otherwise, proceed back to step 3.

IV. USING THE TEMPLATE EXPERIMENTAL VALIDATION

This section describes validation of the proposed
ExDyPSO algorithm. We initialize each PSO algorithm
using 60 particles and execute independently on all
benchmark functions 50 times. The experimental
environment is configured as follows: host hardware
configuration Intel(R) Core(TM) i7-1065G7 CPU @ 1.
30GHz 1. 50 GHz, with 16. 0 GB of RAM (15. 8 GB
available), and the operating system is Windows 10 64-bit
Home Edition. All code in the experiment was writ-ten in
Python, version number 3. 10. 1, and the experimental
platform was the lightweight PyCharm Community.

A. Benchmark Functions
We employ eight test functions to investigate the

performance of the ExDyPSO algorithm, as shown in Table
1. F1 and F2 are single-peak, and the rest are multi-peak
optimization problems. Among them, the single-peak
function F2, along with the multi-peak functions F3, F4, F5, F6,
and F8 have an asymmetric environment. Each of the chosen
functions represents a minimization problem. Table Ⅰ
presents the minimum and search range for each function,
and the problem's dimensionality D. Four statistical metrics
are used to assess performance, viz. , mean ranking, standard
deviation, minimum and average.

TABLE I. CONFIGURATION OF BENCHMARK FUNCTIONS.

B. Parameter Sensitivity Analysis
Within the ExDyPSO algorithm, three critical parameters

exist: wmax , wmin , and the count of jump-out strategy
evaluations, denoted as G. To comprehend the influence of
these parameters on ExDyPSO's performance, a parameter
sensitivity analysis will be conducted in this subsection.

The variablwmax es and wmin respectively denote the
upper and lower bounds of the inertia weight. To enhance
early-stage exploration performance and expedite later-stage
convergence, the inertia weight value should progressively
decrease as iterations increase. The candidate positions for
[���� , ����] are chosen as {[0. 9,0. 3], [0. 9,0. 4], [0. 9,0.
5]……[1. 1, 0. 5], [1. 1, 0. 6]} (comprising 9 instances) for
testing. If the number of iterations G is set to a smaller value,
particles exhibit higher search velocity during the
exploration phase; however, their capacity to locate the
optimal fitness is compromised. Conversely, when G is set
to a larger value, particles are susceptible to falling into
local optima. To ensure the algorithm executes the jump-out
strategy within a reasonable iteration count, this study
defines the range of G values as {5, 6, 7, . . . , 14, 15} (com
prising 11 instances).

The optimization scores are visualized through 3D bar
charts, as shown in Fig. 3, wherein the bar height signifies
the extent of superior performance. Fig. 3 reveals the notable
influence of various [���� , ����] and G values on
ExDyPSO, and notably, the histogram reaches its maximum
height, signifying optimal performance, when [���� ,
����]=[1. 0,0. 5] and G=11. Consequently, the
hyperparameters in ExDyPSO are configured as ����=1. 0,
����= 0. 5, and G=11.

Fig. 3. Performance presentation of differ-ent parameter combinations.

C. Diversity Analysis Performance Comparison
The variation in population diversity throughout the

iterative process serves as an intuitive indicator of
optimization performance. In this segment, we undertake
comparative experiments to assess population diversity. The
diversity of the population at the k-th iteration is computed
using the following formula [17],

�(�) = 1
�
∑�=1
�   ∑�=1

�   ���(�) − ����(�)
2

(6)

Here, M represents the population size, D specifies the
dimension of the optimization problem, xij corresponds to the
i-th particle in the j-th dimension, and ����(�) denotes the
mean of all particles in the j-th dimension during the k-th
iteration, expressed as ����(�) = (1/�)∑�=1

�  ���(�) . In this
segment, we utilize the experimental outcomes of the

Rastrigin function within a 30-dimensional space as an
illustration to depict the changes in population diversity.

As shown in Fig. 4, a noticeable trend emerges: the
diversity of populations in both the conventional particle
swarm algorithm and the ExDyPSO algorithm diminishes
progressively with an increase in iterations. Reduced
population diversity indicates a gradual concentration of the
population toward a particular region within the search space.
Notably, the ExDyPSO algorithm exhibits superior
convergence in the later phases of the optimization process
compared to the classical PSO algorithm. Consequently, this
indicates that ExDyPSO exhibits improved capability in
converging towards the global optimal solution, manifesting
more effective convergence performance throughout the
optimization process compared to the conventional PSO
algorithm.

Fig. 4. Diversity measure for Rastrigin function F3(x).

D. Performance Comparison
We compare the proposed ExDyPSO algorithm with four

state-of-the-art PSO variants, viz. , a multiple adaptive
strategies-based particle swarm optimization algorithm
(MAPSO) algorithm [18], a novel multimodal delayed
particle swarm optimization (MDPSO) algorithm [16], a
particle swarm optimization algorithm combined with time-
varying acceleration coefficients (PSO-TVAC) [6] and the
Quantum Delta-Potential-Well-based Particle Swarm
Optimization (QDPSO) algorithm [19]. Tables Ⅱ and Ⅲ
present a comparison of ExDyPSO results against the other
four PSO algorithms across eight test functions in both 30
and 60 dimensions. The optimal outcomes among these eight
test functions are shown in bold.

From the outcomes presented in Table Ⅱ , ExDyPSO
achieves the highest performance on seven out of the eight
test functions. The single-peaked functions (F1 and F2) have
a simple shape and a single optimal solution. These functions
are typically employed to assess the global search capacity
and convergence performance of an optimization algorithm, i.
e. , the exploitation ability of the algorithm. Given that
ExDyPSO incorporates a dynamic adaptation mechanism it
can deal with such functions well, and consistently excels in
its performance for the single-peak functions F1 and F2.

Multi-peak test functions are characterized by having
numerous local optima within the search space. These
functions exhibit intricate forms and multiple local optima
and are commonly employed to assess optimization

The Best
Performance

algorithms' proficiency in addressing multimodal problems.
Among the multi-peak functions (F3~F8), ExDyPSO is
excellent in performance across the functions except for F5.
Despite that, it finds the smallest minima. The complexity of
the F5 function lies in its highly nonlinear shape and the
relatively short distance between local optimal solutions.
This structure increases the difficulty of finding a globally
optimal solution on this function and poses a higher
challenge to the optimization algorithm. QDPSO exhibits
superior relative performance due to the so-called quantum
Delta potential well model.

TABLE II. EXPERIMENTAL RESULTS OF PSO ALGORITHMS FOR 30-
DIMENSIONAL TEST FUNCTIONS.

To assess ExDyPSO's performance on prob-lems with
high dimensionality, eight test functions are applied to a
problem dimension D of 60, and results shown in Table Ⅲ.

When the problem dimension D is high, at 60, it becomes
evident that ExDyPSO performs well across all eight test
functions, securing the top position in six of them. These
encompass the single-peak function F1, along with the multi-
peak functions F3, F4, F6, F7, and F8. This underscores
ExDyPSO's strong optimization capability when addressing
high-dimensional problems. The F2 function has a highly
nonlinear shape and a complex local optimal solution
structure in high dimensions which the ExDyPSO failed to
achieve the highest score, but its comprehensive assessment
metric still surpasses that of MAPSO and MDPSO, placing it
in second place. Within the F2 test function, PSO-TVAC
performs better, attributed to the incorporation of its
algorithm's time-varying acceleration coefficient. ExDyPSO
achieves commendable results in the F5 test function, like in
F2, securing the second position in the comprehensive
performance assessment despite not attaining the highest
mean value.

TABLE III. EXPERIMENTAL RESULTS OF PSO ALGORITHMS FOR 60-
DIMENSIONAL TEST FUNCTIONS.

Figures 5 to 12 depict the convergence trajectories of the
seight test functions under a problem dimension of 30.

Fig. 5. Convergence performance on Sphere function F1(x).

Fig. 6. Convergence performance on Sehwwefel P2. 21 function F2(x).

Fig. 7. Convergence performance on Rastrigin function F3(x).

Fig. 8. Convergence performance on Schwefel P1. 2 function F4(x).

Fig. 9. Convergence performance on Griewank function F5(x).

Fig. 10. Convergence performance on Rosenbrock function F6(x).

Fig. 11. Convergence performance on Sum Squares function F7(x).

Fig. 12. Convergence performance on Alpine function F8(x).

It is apparent from all the figures that ExDyPSO
showcases exceptional performance concerning convergence
rate. In general, ExDyPSO exhibits highly stable
performance. Furthermore, these figures depict ExDyPSO's
adeptness at circumventing local optima when tackling
intricate challenges, thereby enhancing convergence velocity.

V. CONCLUSION
In this paper, we presented a novel approach, Exponential

Dynamic Inertia Weight for Particle Swarm Optimization
(ExDyPSO), which uses exponentially distributed dynamic
inertia weight improvement and dynamic acceleration factors
improvement based on several iterations. These
enhancements are geared towards preserving population
diversity and optimizing the equilibrium between global and
local search capabilities. Furthermore, we introduce a
stochastic particle based jump-out strategy to facilitate
particles' jump-out of the case of locally optimal solutions.
We compared the efficacy of ExDyPSO against four state-of-
the-art PSO algorithm variants. We also analyzed the
population diversity by comparing with the classical PSO
algorithm and the findings underscored the performance of
our ExDyPSO algorithm, excelling in search accuracy and
algorithmic robustness for both single-peak and multi-peak
functions.

Our algorithm’s superior performance can be attributed
to its utilization of dynamic parameters which afford it an
extensive scope for population exploration, enhancing the
likelihood of identifying optimal solutions. Additionally,
ExDyPSO's jump-out strategy maximizes the utilization of
information exchange among particles, and by combining the
individual best position information from random particles,

new and better potential positions can be found in a wide
range of regions. Nevertheless, further enhancement of the
dynamic inertia weights is possible using an adaptive
strategy that enables more effective adjustment to diverse
circumstances during the search process.

ACKNOWLEDGMENT

This work was supported by the Natural Science
Foundation of Inner Mongolia Autonomous Region
2021MS06003.

REFERENCES
[1] Kennedy, J. , Eberhart, R. : Particle swarm optimization. In: Proc. of

ICNN'95, pp. 1942–1948. IEEE, Perth, WA, Australia (1995)
[2] Wang, D. , Zhao, S. , Chen, K. , Liu, S. : Parameter estimation of the

classical fractal map based on a given Julia set’s shape. Fractals
29(08), 2150247 (2021)

[3] Nasrabadi, A. M. , Moghimi, M. : Energy analysis and optimization
of a biosensor-based microfluidic microbial fuel cell using both
genetic algorithm and neural network PSO. Int. J. Hydrogen Energy
47(7), 4854–4867 (2022)

[4] Ansari, A. S. , et al. : Detection of Pancreatic Cancer in CT Scan
Images Using PSO SVM and Image Processing. Biomed Res. Int.
2022, 1–7 (2022)

[5] Hammed, K. , Ghauri, S. A. , Qamar, M. S. : Biological inspired
stochastic optimization technique (PSO) for DOA and amplitude
estimation of antenna arrays signal processing in RADAR
communication system. J. Sensors 2016, 1–10 (2016)

[6] Ratnaweera, A. , Halgamuge, S. K. , Watson, H. C. : Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

[7] Zhan, Z. H. , et al. : Multiple populations for multiple objectives: A
coevolutionary technique for solving multiobjective optimization
problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)

[8] Shi, Y. , Eberhart, R. C. : Empirical study of particle swarm
optimization. In: Proc. of the 1999 Congress on Evolutionary
Computation (CEC), pp. 1945–1950. IEEE, Washington, DC, USA
(1999)

[9] Lin, A. , Sun, W. , Yu, H. , Wu, G. , Tang, H. : Global genetic
learning particle swarm optimization with diversity enhancement by
ring topology. Swarm Evol. Comput. 44, 571–583 (2019)

[10] Tao, X. , et al. : Self-Adaptive two roles hybrid learning strategies-
based particle swarm optimization. Inform. Sci. 578, 457–481 (2021)

[11] Zhan, Z. H. , Zhang, J. , Li, Y. , Chung, H. S. H. : Adaptive particle
swarm optimization. IEEE Trans. Syst. Man & Cybern. 39(6), 1362–
1381 (2009)

[12] Chen, K. , et al. : A hybrid particle swarm optimizer with sine cosine
acceleration coefficients. Inform. Sci. 422, 218–241 (2018)

[13] Tang, Y. , Wang, Z. , Fang, J. A. : Parameters identification of
unknown delayed genetic regulatory networks by a switching particle
swarm optimization algorithm. Expert Syst. Appl. 38(3), 2523–2535
(2011)

[14] Cheng, R. , Jin, Y. A Competitive Swarm Optimizer for Large Scale
Optimization. IEEE Trans. Cybern. , 45(2), 191–204 (2015)

[15] Zeng, N. , et al. : A novel switching delayed PSO algorithm for
estimating unknown parameters of lateral flow immunoassay, Cogn.
Comput. 8(2), 143–152 (2016)

[16] Song, B. , Wang, Z. , Zou, L. : On global smooth path planning for
mobile robots using a novel multimodal delayed PSO algorithm.
Cogn. Comput. 9(1), 5–17 (2017)

[17] Thangaraj, R. , Pant, M. , Abraham, A. : A new diversity guided
particle swarm optimization with mutation. In: 2009 World Congress
on Nature & Biologically Inspired Computing (NaBIC), pp. 294–299.
IEEE, Coimbatore, India (2009)

[18] Wei, B. , et al. : Multiple adaptive strategies based particle swarm
optimization algorithm. Swarm Evol. Comput. 57, 100731 (2020)

[19] Sun, J. , Feng, B. , Xu, W. : Particle swarm optimization with
particles having quantum behavior. In: Proc. of the 2004 Congress on

Evolutionary Computation, pp. 325–331. IEEE, Portland, OR, USA
(2004)

[20] Meng, Zhenyu, et al. "PSO-sono: A novel PSO variant for single-
objective numerical optimization. " Information Sciences 586 (2022):
176-191.

[21] Shukla, Amit K. , et al. "Engineering applications of artificial
intelligence: A bibliometric analysis of 30 years (1988– 2018). "
Engineering Applications of Artificial Intelligence 85 (2019): 517-
532.

[22] Camacho-Villalón, Christian L. , Marco Dorigo, and Thomas Stützle.
"PSO-X: A component-based framework for the automatic design of
particle swarm optimization algorithms. " IEEE Transactions on
Evolutionary Computation 26. 3 (2021): 402-416.

	I.INTRODUCTION
	II.RELATED WORKS
	III. EXPONENTIAL DYNAMIC INERTIA WEIGHT
	A. Exponential Dynamic Inertia Weight Strategy
	B.Dynamic Acceleration Factors Based on the Number o
	C.Jump-Out Strategy
	D.ExDyPSO Algorithm

	IV.USING THE TEMPLATE EXPERIMENTAL VALIDATION
	A.Benchmark Functions
	B.Parameter Sensitivity Analysis
	C.Diversity Analysis Performance Comparison
	D.Performance Comparison

	V.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

