
Machine Learning in Network 
Anomaly Detection

Winston Seah
School of Engineering and Computer 

Science



Network Anomaly Detection
Network anomaly detection refers to the problem of finding 

patterns in network data that do not conform to 
expected behaviour.

Caveat: in the literature, network anomaly detection is 
usually associated with intrusion detection; network 
anomalies encompass more than intrusions, including 
malware, faulty devices, surge of traffic, 
misconfigurations, etc.



Types of Network Anomalies
• Volume-based – abnormal traffic volume

• Contextual – normal / abnormal in different contexts

• Point – single data point/event deviating from norm

• Collective – group of data points deviating from norm

• Protocol/Port - unusual activity on non-standard ports or 
protocols (e.g., HTTP traffic on SSH ports)

• Behavioural - deviations in user/device behaviour

• Performance – degradation in performance metrics



Anomaly Detection System
An anomaly detection system S can be defined as:

S = (M, D)
where

M is the model of normal system behaviour,

D is a similarity measure that, given a history of activity, 
determines the degree of deviation of activities with regard 
to the model M.



Typical Anomaly Detection Methods

• Time Series Analysis

• Statistical

• Classifier

• Signature-based Detection

• Behavioural Analysis



Learning-based Methods
• Machine Learning (ML)

– Supervised, Unsupervised, Semi-supervised

• Deep Learning (DL)

– uses artificial NNs (ANNs) with multiple layers to 
automatically extract patterns from raw data; no 
need for manual feature engineering



ML-based Anomaly Detection
Machine learning (ML) is
• a subset of Artificial Intelligence (AI) and a powerful analytical tool 

based on statistics.

• used in complicated scenarios for identifying complex patterns that 
are not obvious to humans.

For known anomalies, ML learns from existing data to 
understand their characteristics.

For unknown anomalies, ML finds the outlier from the intrinsic 
patterns in the data.



ML-based Anomaly Detection
Based on the available dataset, the network operator 
could choose:
• supervised learning to train a predictor when the size of 

labelled data is large, or

• semi-supervised learning when the number of labelled data is 
limited.

Running the same model to detect the same type of anomaly 
may (not unlikely at all) get different outcomes; outcomes vary 
depending on features that you tell the ML models to consider.



ML-based Anomaly Detection
Fact: 

most difficult step in ML → data preparation, from 
data collection to annotation (labelling); 

a high quality dataset is vital to the prediction, as 
the ML algorithm relies heavily on the data to learn 
how to distinguish anomalous from normal 
behaviours.



DL-based Anomaly Detection
• Enables identification of complex, subtle and 

evolving threats in high-dimensional network 
data.

• Typical methods:
– Autoencoders (AEs)

– Convolutional Neural Networks (CNNs)

– Recurrent Neural Networks (RNNs/LSTMs)



Autoencoders
Compresses input data (e.g., network traffic logs) into a 

latent space and reconstructs it. Anomalies exhibit high 
reconstruction errors due to deviations from learned 
“normal” patterns.

Use cases: 

• detecting DDoS in cloud environments; 

• detecting BGP route hijacks by modelling normal routing 
behaviour.



Convolutional Neural Networks (CNNs)
Extracts spatial features from network traffic matrices 
or spectrograms (e.g., packet headers converted to 2D 
images)

Use cases: 

• classifying intrusion in imbalanced datasets; 

• detecting jamming attacks in wireless networks using 
signal strength patterns, e.g. RSSI, SNR, etc.



Recurrent Neural Networks (RNNs)
Models temporal dependencies in sequential data (e.g., 

time-series network logs) to flag deviations.

Use cases:

• Identifying APTs (Advanced Persistent Threats) via 
long-term behavioural analysis;

• Real-time detection of lateral movement in internal 
traffic.



Benefits of DL approaches
• Useful for Unstructured Data: Excels with images, 

audio, and text where traditional ML struggles.

• Accurate: Outperforms humans in tasks like object 
detection.

• Scales well: Improves with more data and compute 
power (unlike ML, which plateaus).



Limitations of DL Approaches
Data Hungry: Requires massive labelled datasets.

Computational Complexity: Needs GPUs/TPUs for 
training → expensive and energy-intensive.

Black Box: Hard to interpret how decisions are made, 
critical in many applications, e.g. healthcare, finance, 
network management, etc.



REALTIME DETECTION AND VISUALIZATION OF

BGP ANOMALIES USING MACHINE LEARNING



Routing in the Internet
Border Gateway Protocol (BGP) is the backbone of the 

Internet that determines how traffic is routed through 
networks or Autonomous Systems (AS) in the Internet. 

An AS defines a set of IP prefixes (Internet Protocol 
network addresses) that belong to a network or a 
group of networks.



Routing in the Internet
BGP update packets are regularly exchanged by routers 
to determine the routes for sending datagrams to their 
intended destinations.

• BGP Bviews – infrequent periodic exchange (usually once 
every hour) of the routing table of a BGP router;

• BGP Updates – propagated (usually in 15-minute 
periods) to advertise routable paths, as routes may 
change more frequently than hourly timeframes.



BGP Updates – Key Attributes 



BGP Anomalous Events



Problem
Existing BGP anomaly detection methods (e.g. historical BGP, time 
series, and reachability check)
• cannot automatically learn from experience;
• use node level features to detect anomalies:
– Average Autonomous System (AS) path length;
– Number of withdrawals or announcements;

• do not consider the entire network graph;
• are incapable of real-time detection and determining the source of 

the anomaly.
Need to select network-level features to detect anomalies.



Graph-based Approach
1. Select appropriate BGP update attributes.
2. Construct network graph.

Before anomaly event During anomaly event After anomaly event



Centrality
Ranks nodes within a network graph based on their network 
position; key centrality metrics include:



Workflow of Anomaly Detection



Features and Models

Degree 

Centrality

Closeness 

Centrality

Autoencoders used 

to capture complex 

relationships amongst 

the datapoints in the 

dataset.

Individual network 

anomaly detection

using Univariate 

Gaussian



Test Case – CenturLink Outage



Evaluation Process
Process BGP update data at various ASes, viz. NZ, WIDE (JP) 

and SOXRS (Serbia), with a network view up to 2 hops away; 
more hops give better global view but also increases 
computation load significantly.

Network-wide analysis show anomalies for entire network, 
but source or infected ASes also need to be identified to 
prevent routing to such networks.

Data are unlabelled and it is possible that network was 
unstable before anomaly event; hence, rise in anomaly score 
before anomaly event is possible.



Network Wide Degree Centrality



Network Wide Closeness Centrality



AS38022 Anomaly Detection from NZ & WIDE



AS3561 Anomaly from NZ, WIDE & SOXRS



Observations
• Use of graph-level features to represent and 

detect network anomalies before they occur.

• Ability to detect network-wide as well as AS-
specific anomalies.

• Corroboration of multiple networks, e.g. NZ, 
Japan and Serbia, to provide better network 
anomaly detection capability.



Challenges
Resource constraints when dealing with major core 

routers, such as, London and Singapore, that 
contain GBs of data for each 15-minute BGP 
update in comparison to KBs/MBs of data in NZ, 
WIDE and SOXRS.

Current work is limited to the NZ core router and its 
neighbours (up to 2 hops away); anomalies in 
other parts of the Internet are not evaluated. 



Current Work

A Lightweight Framework for BGP 
Anomaly Detection with Centrality 

Trajectories and Subgraph Partitioning



Partition-based Anomaly Detection



Data Collection Module
(1) Data Source: Route Views 
(2) Types of Data Obtained:

– RIB (Routing Information Base):
obtained every two hours and provides a complete, static view.

– Updates: They are collected every 15 minutes to notify 
neighbors of changes in network topology or path attributes, 
ensuring dynamic updates to the routing table.

(3) Tools Used:
– Data Parsing: BGP dump parsing is performed using tools within 

the Linux system.



Data Collection Module

RIB (only major attributes listed):

AS Path, Prefix, Next Hop, Origin AS

Updates:

Announcements, Withdrawals



Partition-based Anomaly Detection



Feature Extraction Module

①Degree

② Closeness

③ Eigenvector

④ Betweenness

Calculating Centrality Combinations:

1. ①, ②, ③, ④

2. ①②, ①③, ①④, ②③, ②④, ③④

3. ①②③, ①②④, ①③④, ②③④

4. ①②③④



Network Partitioning



Network Partitioning
Feature Louvain Algorithm Leiden Algorithm

Optimization 
Quality

Prone to local optima Higher quality, stronger 
community connectivity

Efficiency Moderate, faster for large-
scale networks

Faster, suitable for large-scale 
networks

Connectivity May produce disconnected 
communities

Ensures community connectivity

Robustness
Sensitive to initial 
conditions

More stable, higher robustness



Feature Extraction Module
Centrality Vector per Subgraph
• Degree, Betweenness, Closeness, Eigenvector
• Concatenated as a structural snapshot vector

Sliding Window Trajectory

• Fixed-length window over time
• Each subgraph forms a centrality trajectory

Input for Detection
• Trajectories fed into LSTM-AutoEncoder
• Captures temporal structural evolution



Whole Network, Louvain, and Leiden 



Execution Time

GNN Performance 
for Different Layers



Whole Network, Louvain, and Leiden 

Detection by WIDE using Betweenness & Eigenvector combination



SFMIX using whole network & Leiden



Conclusion
Effectively detect BGP anomaly by:

• Fusing multiple centrality measures to 
enhance detection performance.

• Partitioning (using Louvain and Leiden) 
significantly reduce computation time, with 
Leiden being more suitable for real-time 
analysis.



Future Work
• Adaptive retraining pipeline to significantly improve 

long-term robustness by aligning the model with the 
ever-changing routing environment.

• Dynamically adjusting observation windows based on 
streaming data could increase sensitivity to short-lived, 
high-impact anomalies and enable more timely 
mitigation responses.

• Detecting multiple types of anomalies through 
parallelism and federated learning.



Contact Details


	Slide 1: Machine Learning in Network Anomaly Detection
	Slide 2: Network Anomaly Detection
	Slide 3: Types of Network Anomalies
	Slide 4: Anomaly Detection System
	Slide 5: Typical Anomaly Detection Methods
	Slide 6: Learning-based Methods
	Slide 7: ML-based Anomaly Detection
	Slide 8: ML-based Anomaly Detection
	Slide 9: ML-based Anomaly Detection
	Slide 10: DL-based Anomaly Detection
	Slide 11: Autoencoders
	Slide 12: Convolutional Neural Networks (CNNs)
	Slide 13: Recurrent Neural Networks (RNNs)
	Slide 14: Benefits of DL approaches
	Slide 15: Limitations of DL Approaches
	Slide 16: Realtime Detection and Visualization of BGP Anomalies using Machine Learning
	Slide 17: Routing in the Internet
	Slide 18: Routing in the Internet
	Slide 19: BGP Updates – Key Attributes 
	Slide 20: BGP Anomalous Events
	Slide 21: Problem
	Slide 22: Graph-based Approach
	Slide 23: Centrality
	Slide 24: Workflow of Anomaly Detection
	Slide 25: Features and Models
	Slide 26: Test Case – CenturLink Outage
	Slide 27: Evaluation Process
	Slide 28: Network Wide Degree Centrality
	Slide 29: Network Wide Closeness Centrality
	Slide 30: AS38022 Anomaly Detection from NZ & WIDE
	Slide 31: AS3561 Anomaly from NZ, WIDE & SOXRS
	Slide 32: Observations
	Slide 33: Challenges
	Slide 34: Current Work
	Slide 35: Partition-based Anomaly Detection
	Slide 36: Data Collection Module
	Slide 37: Data Collection Module
	Slide 38: Partition-based Anomaly Detection
	Slide 39: Feature Extraction Module
	Slide 40: Network Partitioning
	Slide 41: Network Partitioning
	Slide 42: Feature Extraction Module
	Slide 43: Whole Network, Louvain, and Leiden 
	Slide 44: Execution Time
	Slide 45: Whole Network, Louvain, and Leiden 
	Slide 46: SFMIX using whole network & Leiden
	Slide 47: Conclusion
	Slide 48: Future Work
	Slide 49: Contact Details

