
Optimal Transmission Scheduling in Data-Intensive
Audio Sensor Networks

Alvin C. Valera∗, Niels Clayton†, Winston K.G. Seah∗, and Tao Zheng‡
∗{fistname.lastname}@ecs.vuw.ac.nz, †claytoniel@myvuw.ac.nz

School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
‡zhengtao@bjtu.edu.cn

School of Electronic and Information Engineering, Beijing Jiaotong University, China

Abstract—We consider the problem of scheduling audio data
transmissions in data-intensive audio sensor networks for animal
tracking where the sensor nodes must use WiFi duty cycling
to reduce power consumption. WiFi duty cycling entails a
startup cost due to probing, authentication, association, and host
configuration which are significant and can reach more than 10
seconds. As such, transmission scheduling is not trivial because a
naı̈ve approach of switching on WiFi whenever there is a data to
send would result in excessive energy consumption overhead. We
model duty cycling after an M/G/1 queue with removable server,
formulate the optimization problem considering both energy and
latency overheads, and obtain the optimal N∗ by which the
interface should be switched on to schedule data transmission.
We propose Optimal Threshold-based Transmission Scheduling
(OTTS), a low-complexity algorithm for determining the opti-
mal threshold and commencing transmission. Experiments and
trace-based simulations show that OTTS can yield substantial
reduction in power consumption that is controllable through
an energy-latency trade-off parameter. Compared with interval-
based scheduling, OTTS provides lower delay which is more
significant at tighter power consumption constraints.

I. INTRODUCTION

Animal tracking and monitoring enables biologists to gain
insights to the movement of animals in their natural habitats
which is important in many applications such as conservation,
health, and food [1]. Advances in computing, communications
and electronics have made it possible to remotely track a
wide variety of animals and over long periods of time. In this
research, we consider an audio sensor network for monitoring
the presence of certain animal species in a region of interest
using their acoustic signature. The network consists of sensor
nodes equipped with microphone array for capturing audio
and direction of arrival (DOA), and a gateway for performing
identification and localization of the audio source. As shown
in Fig. 1, sensor nodes that detect acoustic energy record the
sound for a duration of T seconds and transmits them as audio
files to a gateway which performs the necessary algorithms.

Audio sensor networks are data-intensive as they require the
regular transfer of large volumes of data from sensor nodes
to gateway. Compared to low data rate sensor networks which
are vastly studied in the literature and supported by low-power
wireless networking such as LoRa [2] and IEEE 802.15.4 [3],
data-intensive sensor networks require the use of higher data
rate technologies such as IEEE 802.11 (WiFi) [4]. As WiFi
power consumption is significantly higher, its operation needs

Fig. 1: Audio sensor network for tracking animals of interest in
their habitat. Sensor nodes that detect acoustic energy record
the sound for a duration of T seconds and transmits them to
a gateway which performs identification and localization.

to be duty cycled to conserve energy and prolong the lifetime
of the sensor nodes [5].

Duty cycling necessitates transmission scheduling as the
WiFi interface is not always available for communication with
the gateway. When a sensor node has an audio file to send, the
most straightforward approach is to immediately schedule the
transmission, i.e., switch on the interface and send the file to
the gateway. Unfortunately, switching the interface on entails
a startup cost as it needs to perform probing, authentication,
association, and host configuration which has been known
to be significant and can reach more than 10 seconds [5]–
[7]. It therefore makes more sense to commence transmission
when there are several files in the queue as this will result in
“sharing” of the startup cost leading to better energy efficiency.
However, such an approach introduces a latency cost as file
delay increases due to the need to wait for several more files.

In this paper, we study the problem of determining the
optimal number of files N∗ that need to be queued before
scheduling transmission to the gateway. It turns out that
this problem can be formulated using an M/G/1 queue with
removable server [8], [9]. The key contributions of this paper
are as follows:

• Using the M/G/1 queue with removable server model,
we formulate the problem of determining the optimal
threshold N∗ as a minimization of total expected cost
which considers both startup and latency costs.

• A key advantage of the queueing theoretic formulation
is that it is possible to obtain the optimal solution in

closed form. Our solution is in agreement with the more
general result from the literature [9]. The optimal solution
contains an energy-latency trade-off factor E which can
be adjusted to satisfy application requirements.

• We propose a low-complexity algorithm called Optimal
Threshold-based Transmission Scheduling (OTTS) for
determining the optimal threshold and commencing trans-
mission. OTTS uses exponentially-weighted moving aver-
age (EWMA) to estimate file generation and transmission
rates. Experiments and trace-based simulations show that
OTTS can provide reduction in power consumption that
is controllable through E . Compared with interval-based
scheduling, OTTS provides better delay especially at
tighter power consumption constraints.

The rest of the paper is organized as follows: In Section II,
we discuss the related work. In Section III, we show how
transmission scheduling in conjunction with WiFi duty cy-
cling can be modeled after an M/G/1 queue with removable
server and formulate the optimization problem accordingly. In
Section IV, we solve the optimization problem and introduce
OTTS, whereas in Section V, we present the results from
experiments and trace-based simulations. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

Audio sensor networks belong to a class of wireless sensor
networks (WSNs) known as multimedia sensor networks.
Unlike traditional WSNs, multimedia sensor networks are de-
signed to carry voluminous data such as digital images, video
and audio, from sensors that capture the phenomenon being
monitored [10]. Big data pose various challenges to traditional
WSNs [11] [12] as their transmission require significant net-
work bandwidth that exceeds the capacity of typical WSN
wireless technology such as IEEE 802.15.4, requiring higher
bandwidth technology like IEEE 802.11 which consumes more
energy. But while the latter’s power consumption is higher,
recent results point out that it is more energy efficient than
other low power low data rate technologies in high bitrate
applications [5], [13].

Energy-efficient scheduling schemes for periodic data col-
lection have been proposed but computationally complex to
produce optimal schedules, hence, sub-optimal solutions based
on heuristics are adopted [14]. Moreover, existing duty cycling
mechanisms for WSNs [15], [16] are not suitable for audio
sensor networks as they target low bitrate sensing applications
and mostly designed to operate at the MAC layer.

III. MOTIVATION AND PROBLEM FORMULATION

Our audio sensor network is data-intensive as large audio
files need to be regularly transferred from the sensor node
to the gateway. To illustrate, a mono audio recording for T
seconds sampled at 48,000 Hz using 16 bits per channel would
require 48000 × 16 × T = 768000T bits. Even with lossless
compression which can provide an average compression ratio
of 3:1 [17], around 256T kilobits of data still need to be

transmitted to the gateway. Sending such a payload over LoRa
and IEEE 802.15.4 is simply infeasible.

The high bitrate requirement of the application necessitates
the use of high data rate wireless technologies such as WiFi.
Unfortunately, WiFi power consumption is significantly higher
compared to IEEE 802.15.4 and LoRa and continuously oper-
ating it can lower the sensor node lifetime. Hence, to converse
as much energy as possible, there is a need to duty cycle the
WiFi interface: switch it on only when there are audio files to
be sent to the gateway, and switch it off at other times.

A. WiFi Duty Cycling Startup Cost

Duty cycling the WiFi interface on and off is not straightfor-
ward as it entails overheads. When the interface is powered up,
it needs to perform several steps to establish a link to the target
access point, namely, probing, authentication, association, and
host configuration [5]–[7]. For brevity, we shall refer to these
steps as the startup process. Note that the time taken by
this process is not insignificant as it could take more than
10 seconds [6]. We performed experiments to measure the
WiFi startup process time of ESP32, Raspberry Pi 3 B+, and
Raspberry Pi Zero W and found them to be quite significant
as previously reported.

B. Problem Formulation

Consider a sensor node v that generates files following a
Poisson distribution with an average rate of λ. Instead of
immediately sending every generated file to the gateway node
w, they are inserted to a queue. The storage capacity of the
node is much larger than the individual file sizes, hence we
can model the queue to have infinite capacity.

Node v transitions between wait and send states. In the
former, v does not perform transmission even if its queue is
not empty while in the latter, v switches on its IEEE 802.11
interface, transmits all files from its queue, and switches off the
interface. Each file is sent to w at an average rate µ following
a general distribution. The operation of v can therefore be
modelled after an M/G/1 queue with removable server, i.e. the
server is switched on when there are at least N items waiting
in the queue, and switched off when there are none present [8],
[9]. In this model, N is referred to as the threshold. To clarify
is mode of operation, we show an example file generation and
transmission schedule in Fig. 2 where N = 3.

Because of the association process, we associate a per unit
time startup cost Cs which is incurred every time v switches
to send state. Moreover, each file in the system needs to wait
for transmission, thereby incurring a per unit time latency cost
Cl. Let E[S] and E[L] denote the expected number of send
cycles and expected number of files waiting to be transmitted,
respectively. Then the total expected cost per unit time E[CT]
is given by

E[CT] = CsE[S] + ClE[L]. (1)

Audio File
Generation

Audio File
Transmissions

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

WiFi off WiFi on WiFi off WiFi on WiFi off

WiFi startup process

Fig. 2: Audio file generation and transmission example with
WiFi duty cycling: Horizontal lines denote time axes. Audio
files 1–9 are generated at times indicated by the respective
vertical lines. Transmission is initiated when there are at least
3 files. WiFi is off when the node is not transmitting. When
WiFi is switched on, it must first complete the startup process
before it can send the files in its queue. After sending all the
files, it switches WiFi off again.

For an M/G/1 queue with removable server, Wang and Ke [9]
obtained expressions for E[S] and E[L] as functions of the
threshold N , namely,

E[S] =
λ(1− ρ)

N
(2)

and

E[L] =
N − 1

2
+ ρ+

λ2E[S2]

2(1− ρ)
(3)

where ρ = λ/µ and E[S2] is the second moment of the service
time. Substituting these expressions to Eq. (1) yields

E[CT] = Cs
λ(1− ρ)

N
+ Cl

[
N − 1

2
+ ρ+

λ2E[S2]

2(1− ρ)

]
. (4)

We want to minimize E[CT] with respect to N , hence, we
remove terms that do not contain N . Denoting this cost
function as F (N), we now have

F (N) = Cs
λ(1− ρ)

N
+ Cl

N

2
. (5)

Finally, our problem is to find the optimal threshold N∗ which
minimizes F (N), that is

N∗ = argmin
N

{
Cs

λ(1− ρ)

N
+ Cl

N

2

}
. (6)

IV. OPTIMAL TRANSMISSION SCHEDULING

In this section, we present the optimal solution to the
minimization problem in Eq. (6) and devise an algorithm that
performs optimal transmission scheduling using the optimal
solution.

A. Optimal Solution

To solve the minimization problem in Eq. (6), we need to
solve for N when F ′(N) = 0 and show that F ′′(N∗) ≥ 0.
Differentiating F (N) and equating to 0, we have

F ′(N) =
Cl

2
− Cs

λ(1− ρ)

N2
= 0.

Fig. 3: OTTS state transition diagram.

Solving for N yields the optimal threshold

N∗ =

√
2Csλ(1− ρ)

Cl
. (7)

This result is consistent with the general result obtained by
Wang and Ke [9]. Differentiating F ′(N) further results in

F ′′(N) = 2Cs
λ(1− ρ)

N3

which is obviously positive at N = N∗ > 0. This second
derivative test confirms that F (N∗) is a minimum.

B. Energy-Latency Trade-Off Factor

We now introduce the quantity

E := Cs/Cl (8)

which we call the energy-latency trade-off factor. This sim-
plifies Eq. (7) to

N∗ =
√

2λ(1− ρ)E . (9)

This quantity can be used as a tuning parameter for trading
off between energy-efficiency and latency: a low E means
that latency costs are higher whereas a high E means that
the energy costs are higher. We can select a suitable value for
E based on our priority: (i) for better energy-efficiency, choose
high E ; or (ii) for better latency, choose low E .

C. Optimal Threshold-based Transmission Scheduling (OTTS)

Using the results obtained in the preceding subsection, we
now present the algorithm for achieving optimal transmission
scheduling.

1) File Generation Rate and Transmission Time Estimation:
Note that the computation of N∗ requires the average file gen-
eration rate λ and queue utilization rate ρ = λ/µ where µ is
the average file transmission rate. This makes the performance
of the algorithm to be heavily dependent on the estimation of
λ and µ. To estimate the former, we employ a sliding-window,
exponentially-weighted moving average (EWMA) estimator

λ̂(k + 1) = α
n(k)

Twin
+ (1− α)λ̂(k), (10)

where α is a constant, λ̂(k) is the estimate in the current
window, n(k) is the number of files generated in the current

window, and Twin is the sliding window duration. To estimate
the latter, we use an EWMA estimator

µ̂(k + 1) = β
1

ttx
+ (1− β)µ̂(k), (11)

where β is a constant, µ̂(k) is the last estimate, and ttx is
the transmission time of the last transmitted file. Note that
unlike λ̂(k + 1) which is computed at every window, µ̂(k +
1) is computed after every successful file transmission. The
low computational overhead makes OTTS a low-complexity
algorithm which can be executed at every node in real time.

2) State Transition Diagram: Fig. 3 shows the state transi-
tion diagram of OTTS. Q denotes the queue length at node v.
Whenever a file is generated, v transitions to queue_check
where it will check the number of packets in the transmit
queue. If Q < N̂∗, the node goes back to idle state. N̂∗ is
the optimal threshold using the estimates λ̂ and µ̂ and rounded
up to an integer, that is,

N̂∗ =

⌈√
2λ̂(1− λ̂/µ̂)E

⌉
.

When Q ≥ N̂∗, v transitions to wifi_on where it will switch
on the WiFi interface. After that, v starts transmitting files in
its queue to t. Once all packets have been transmitted, it will
transition to wifi_off state where it will switch off the WiFi
interface. After this, it will transition back to the idle state.

V. EVALUATION

To evaluate OTTS, we performed both experimentation and
simulation. The aim of experimentation was to measure energy
savings, if any, due to the use of OTTS on a single sensor node
as it generates and transmits files to a gateway. The simulation,
in the meantime, was aimed at examining and comparing the
performance of the scheme under a wider range of parameters
using an empirical power consumption model.

A. Experiments

1) Setup: We assembled a sensor node using Raspberry Pi
Zero W and minidsp uma-8 (a microphone array with 7 MEMS
microphones) and implemented OTTS in Python (both α and
β were set to 0.5). The sensor node communicated with a
gateway, based on Raspberry Pi, which also acted as the WiFi
access point. The command rfkill was used to duty cycle
WiFi, whereas ftp was used for transferring files. Raspberry
Pi Zero W average power consumption was measured using
Agilent Technologies U3402A and logged every 10 seconds.
The sensor node recorded audio using the parameter listed
on Table I following an exponentially distributed interval. An
experiment ran for 1800 seconds.

TABLE I: Experiment audio capture parameters

Parameter Value
Resolution 16 bits
Sampling rate 48,000 Hz
Encoding Linear PCM
File format WAV
Recording duration 5 seconds

ON 0 1 10 100
Transmission scheme

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Po
we

r c
on

su
m
pt
io
n
(W

)

(a) 1/λ = 10 s

ON 0 1 10 100
Transmission scheme

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Po
we

r c
on

su
m
pt
io
n
(W

)

(b) 1/λ = 20 s

ON 0 1 10 100
Transmission scheme

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Po
we

r c
on

su
m
pt
io
n
(W

)

(c) 1/λ = 30 s
Fig. 4: Power consumption of the different transmission
schemes at different generation intervals 1/λ.

ON 0 1 10 100
Transmission scheme

0

20

40

60

80

100

De
la
y
(s
)

(a) 1/λ = 10 s

ON 0 1 10 100
Transmission scheme

0

20

40

60

80

100

De
la
y
(s
)

(b) 1/λ = 20 s

ON 0 1 10 100
Transmission scheme

0

20

40

60

80

100

De
la
y
(s
)

(c) 1/λ = 30 s
Fig. 5: Delay of the different transmission schemes at different
generation intervals 1/λ.

2) Power Consumption: Figs. 4 and 5 show the power
consumption and delay of OTTS and ON under different file
generation intervals (1/λ). ON refers to the scheme where
the WiFi interface is always switched on, whereas 0, 1, 10,
and 100 refer to OTTS where E is set to 0, 1, 10, and
100, respectively. E = 0 is equivalent to forcing the WiFi
interface to switch on and transmit at every file generation
time. Regardless of the generation interval, duty cycling had
noticeable effect on the power consumption: the larger E is,
the lower the power consumption. Comparing the schemes
at opposite ends, i.e. ON and E = 100, we observed that
the median power consumption of the latter was 13 mW or
15% lower than the former for all generation intervals. Note
however that even with the use of duty cycling (E = 0 to
E = 100), we could see numerous data points with power
consumption comparable to ON. This was due to the fact that
the power consumption measurements were logged every 10
seconds. The high power consumption data points were due
the activation of WiFi for transmission in the last 10 seconds.

3) Delay: Fig. 5 shows the effect of duty cycling on the
delay. Without duty cycling, median delay was well below
4 seconds for all file generation intervals whereas with duty
cycling, we saw delays increased with increasing E . We
also observed that as generation interval increased, E = 100
showed wider delay variation. We expected this behaviour
because at higher intervals, OTTS had to wait longer to reach
optimal number of files. It was much more noticeable for
E = 100 because it had to wait for significantly more files
than E = 0, E = 1 and E = 10. Once again, comparing delays
of the schemes at opposite ends, i.e. ON and E = 100, we
observed that the median delay of the latter was higher than
the former by 25, 32, and 43 s for file generation intervals 10,
20, and 30 s, respectively. These results, combined with the
results in Fig. 4 clearly demonstrate the effectiveness of using
E for trading off between energy efficiency and latency.

B. Simulations

We performed trace-based simulations to investigate the
performance of OTTS under a wider variety of conditions.
We collected logs of 1,000 WiFi startup processes and 10,000
file transfers from the sensor node to the gateway from 10
different positions. Files of random size between 1-2 MB were
generated. In each WiFi startup process, duration and system
load were logged whereas in each file transfer, file size, file
transfer duration, and system load were logged. We then used
these logs to drive the simulations.

We simulated WIFI-ON (no duty cycling), OTTS, and
interval-based transmission scheduling. The latter represents
the other class of scheduling schemes for aggregating multiple
files into a single transmission session whereby a node checks
the queue at fixed intervals. If there is at least one file in the
queue, WiFi is activated and all files in the queue (includ-
ing those generated during the transmission) are transmitted;
otherwise, the node will check again after the fixed interval.
Table II lists the key parameters used in the simulations.

1) Power Consumption Model: We applied the empirical
model proposed by Kaup et al. [18] for Raspberry Pi to obtain
the power consumption with and without WiFi duty cycling.
Let τ , τup,k and K denote the simulation time, time used for
uploading file k, and number of files uploaded, respectively.
Without duty cycling, the average power consumption Pon of
a sensor node can be obtained using Eq. (12) from Kaup et
al. [18],

Pon = Pidle + PWiFi,idle+

1

τ

K∑
k=1

τup,k[PCPU(uk) + PWiFi,up(rk)] (12)

where Pidle is the power consumption of the system excluding
the interface at load 0, PCPU(uk) is the additional power
consumption due to load of uk > 0, PWiFi,idle is the addi-
tional power consumption when the interface is on but not
performing any upload, and PWiFi,up(rk) is the additional
power consumption when the interface is uploading file k at
throughput rk. From experiments, Kaup et al. [18] obtained
the following results: Pidle = 1.5778 W, PCPU(u) = 0.181 ·u
W, PWiFi,idle = 0.942 W, and

PWiFi,up(r) = 0.02 + 24.387× 10−3r − 1128× 10−6r2.

The latter is the second-order WiFi power consumption model
for uploads. Now, to obtain the power consumption with duty

TABLE II: Simulation parameters

Parameter Value
Simulated duration 3,600 seconds
Seeds per experiment 100
File generation process Poisson
File generation rate (λ) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} files/minute
File size 1-2 megabytes
E (for OTTS) θ2 where θ ∈ {0, 0.1, 0.2, ..., 23.9}

(240 parameter values)
Interval (for interval-based) {1, 2, 3, ..., 240} seconds

(240 parameter values)

File gen. rate (min 1)

2
4

6
8

10 0 100200300400500

Po
we

r c
on

su
m

pt
io

n
(W

)

1.5
1.6
1.7
1.8
1.9
2.0

(a) OTTS

File gen. rate (min 1)

2
4

6
8

10 Interval (s)
0 50 100 150 200 250 Po

we
r c

on
su

m
pt

io
n

(W
)

1.5
1.6
1.7
1.8
1.9
2.0

(b) interval-based
Fig. 6: Power consumption of OTTS and interval-based

File gen. rate (min 1)

2
4

6
8

10 0 100200300400500

De
la

y
(s

)

0
20
40
60
80
100
120

(a) OTTS

File gen. rate (min 1)

2
4

6
8

10 Interval (s)
0 50 100 150 200 250

De
la

y
(s

)

0
20
40
60
80
100
120

(b) interval-based
Fig. 7: Delay of OTTS and interval-based

cycling Pdc, we note that since τup,k denotes the duration that
the interface is uploading file k, it is also denotes the partial
time the interface switched on. The other part is due to the
startup process time, which we denote τstart,j . Then

Pdc = Pidle +
1

τ

J∑
j=1

τstart,j[PCPU(uj) + PWiFi,idle]+

1

τ

K∑
k=1

τup,k[PCPU(uk) + PWiFi,idle + PWiFi,up(rk)]. (13)

Note that J is the number of times the startup process was
initiated, which should be at most K. Note further that for
startups, there is no consumption associated to uploading.

2) Delay vs. Power Consumption Trade-off: Figs. 6 and
7 shows the power consumption and delay, respectively, of
OTTS and interval-based transmission scheduling. The plots
provide insights as to how the schemes trade-off delay with
power consumption using E (for OTTS) and interval (for
interval-based). WIFI-ON is not shown as did not provide
any trade-off: its delay and power consumption was 0.55
s and 2.51 W on the average, respectively, regardless of
λ. Meanwhile, interval-based and OTTS enabled trade-off
between delay and power consumption. For interval-based,
the trade-off was controlled by the interval length: as the
interval length increased, power consumption decreased while
delay increased. For OTTS, the trade-off was controlled by
E : as E increased, power consumption decreased while delay
increased. Both schemes showed lower power consumption
at lower λ because fewer transmissions were scheduled. The
shape of the power consumption plots are somewhat similar
because the effect of increased E and interval was to reduce
the number of WiFi startup processes J in Eq. (13).

File gen. rate (min
1)2468

10
Pt (W)

1.7
1.8

1.9
2.0

interval-otts delay (s)

0
2
4
6

2

4

6

Fig. 8: Delay difference between interval-based and OTTS

While the power consumption plots were somewhat similar,
the shape of the delay plots were substantially different. The
delay of interval-based was purely determined by the interval
whereas both E and file generation rate affected the delay of
OTTS. As expected, the delay for interval-based was half of
the interval because of the Poisson arrivals. For OTTS, the
delay decreased with increasing λ because at higher λ, the
waiting time to attain the optimal N∗ was shorter.

3) Performance Comparison: To compare the performance
of OTTS and interval-based, we studied their delay perfor-
mance when the power consumption was constrained by an
upper bound Pt. That is, we wanted to

minimize Delay
subject to Pdc ≤ Pt

where Pt was varied from 1.65 to 2 W. For clarity, we plotted
the difference between interval-based and OTTS delay as a
function of Pt and λ in Fig. 8. All the differences were
positive, indicating interval-based had higher delay than OTTS
in all cases. Furthermore, the difference was more significant
at tighter power consumption constraints. The main drawback
of interval-based is that in general, there is always a delay
between the last generated file and the closest transmission
schedule. This is not the case with OTTS as its transmission
schedule is immediately triggered by the arrival of a file.
In the most aggressive case where both schemes schedule a
transmission when there is at least one file in the queue, the
delay of interval-based consists of the time from file generation
to the scheduled transmission time, WiFi startup time, and
file transmission time. Whereas for for OTTS, the delay only
consists of the latter two. So in order for interval-based to
match the delay of OTTS, it must use lower interval lengths
which results in more transmission schedules and higher power
consumption. We would like to highlight that our results are
in line with theoretical expectations that in general, schemes
that use interval perform worse compared to schemes that use
queue occupancy [19].

VI. CONCLUSION

We considered the problem of scheduling file transmissions
in a data-intensive sensor network for animal tracking wherein
the WiFi interface was duty cycled to conserve energy. We for-
mulated the optimization problem using an M/G/1 queue with
removable server model and obtained a closed form solution
for the optimal number files that must be in the queue before a

transmission could be scheduled. We proposed OTTS, a low-
complexity algorithm for determining the optimal threshold
and commencing transmission. Experiments and trace-based
simulations show that OTTS can provide reduction in power
consumption that is controllable through E . Compared with
interval-based scheduling, OTTS provides better delay espe-
cially at tighter power consumption constraints.

REFERENCES

[1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, “Terrestrial animal
tracking as an eye on life and planet,” Science, vol. 348, no. 6240, p.
aaa2478, 2015.

[2] A. M. Yousuf, E. M. Rochester, B. Ousat, and M. Ghaderi, “Throughput,
Coverage and Scalability of LoRa LPWAN for Internet of Things,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), 2018, pp. 1–10.

[3] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella, “Performance
study of IEEE 802.15.4 using measurements and simulations,” in IEEE
Wireless Communications and Networking Conference, 2006. WCNC
2006., vol. 1, 2006, pp. 487–492.

[4] G. Klimiashvili, C. Tapparello, and W. Heinzelman, “LoRa vs. WiFi Ad
Hoc: A Performance Analysis and Comparison,” in 2020 International
Conference on Computing, Networking and Communications (ICNC),
2020, pp. 654–660.

[5] A. Abedi, O. Abari, and T. Brecht, “Wi-le: Can wifi replace bluetooth?”
in Proceedings of the 18th ACM Workshop on Hot Topics in Networks,
2019, pp. 117–124.

[6] C. Pei, Z. Wang, Y. Zhao, Z. Wang, Y. Meng, D. Pei, Y. Peng, W. Tang,
and X. Qu, “Why it takes so long to connect to a WiFi access point,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[7] V. K. Ramanna, J. Sheth, S. Liu, and B. Dezfouli, “Towards Under-
standing and Enhancing Association and Long Sleep in Low-Power
WiFi IoT Systems,” IEEE Transactions on Green Communications and
Networking, vol. 5, no. 4, pp. 1833–1845, 2021.

[8] M. Yadin and P. Naor, “Queueing systems with a removable service
station,” Journal of the Operational Research Society, vol. 14, no. 4,
pp. 393–405, 1963.

[9] K.-H. Wang and J.-C. Ke, “A recursive method to the optimal control
of an M/G/1 queueing system with finite capacity and infinite capacity,”
Applied Mathematical Modelling, vol. 24, no. 12, pp. 899–914, 2000.

[10] A. Nauman, Y. A. Qadri, M. Amjad, Y. B. Zikria, M. K. Afzal, and
S. W. Kim, “Multimedia Internet of Things: A Comprehensive Survey,”
IEEE Access, vol. 8, pp. 8202–8250, 2020.

[11] Q. Jawhar, K. Thakur, and K. J. Singh, “Recent Advances in Handling
Big Data for Wireless Sensor Networks,” IEEE Potentials, vol. 39, no. 6,
pp. 22–27, 2020.

[12] L.-M. Ang and K. P. Seng, “Big Sensor Data Applications in Urban
Environments,” Big Data Research, vol. 4, pp. 1–12, 2016.

[13] B. Snajder, V. Jelicic, and V. Bilas, “Performance Evaluation of IEEE
802.15.4 and 802.11 Protocols for Image Transmission in WSNs,” in Eu-
ropean Wireless 2014; 20th European Wireless Conference, Barcelona,
Spain, 14-16 May 2014, pp. 1–6.

[14] S. Kumar and H. Kim, “Energy efficient scheduling in wireless sensor
networks for periodic data gathering,” IEEE Access, vol. 7, pp. 11 410–
11 426, 2019.

[15] R. C. Carrano, D. Passos, L. C. Magalhaes, and C. V. Albuquerque,
“Survey and taxonomy of duty cycling mechanisms in wireless sensor
networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 181–194, 2013.

[16] A. C. Valera, W.-S. Soh, and H.-P. Tan, “Survey on wakeup schedul-
ing for environmentally-powered wireless sensor networks,” Computer
Communications, vol. 52, pp. 21–36, 2014.

[17] M. Hans and R. W. Schafer, “Lossless compression of digital audio,”
IEEE Signal processing magazine, vol. 18, no. 4, pp. 21–32, 2001.

[18] F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: Measuring and
modeling the power consumption of the Raspberry Pi,” in 39th Annual
IEEE Conference on Local Computer Networks, 2014, pp. 236–243.

[19] K.-H. Wang, D.-Y. Yang, and W. L. Pearn, “Comparison of two
randomized policy M/G/1 queues with second optional service, server
breakdown and startup,” Journal of Computational and Applied Mathe-
matics, vol. 234, no. 3, pp. 812–824, 2010.

