

Kitakyushu, Japan, Nov 25-27, 2024

Quantum Internet

Winston Seah School of Engineering and Computer Science

CAPITAL THINKING. GLOBALLY MINDED.

Classical Computing & Networking

- Classical computers
 - Store information in bits, either "0" or "1"
 - Deterministic & measurements do not change state
 - Two bits 00, 01, 10 and 11
- Classical networks

Building Block of the Internet

CAPITAL THINKING. GLOBALLY MINDED.

Emerging Networking Technologies

•2000

- Multipath virtual sink architecture for underwater sensor networks and underwater drones
- Wireless sensor networks powered by ambient energy harvesting
- 2010 nanoscale networks
 - Pulse arrival scheduling for nanonetworks under limited IoT access bandwidth (LCN 2017 best paper award)
- 2020 quantum networks ...

CAPITAL THINKING. GLOBALLY MINDED. MAILTE IHO KI TE PAE

Emerging Networking Technologies

Unique features of underlying physical network:

- Underwater networks Acoustic communications
 - Long delay, very high error rates,
- Energy-harvesting powered networks
 - Unpredictable energy supply
 - Challenges established theory unslotted multiple access better than slotted multiple access
- Nanoscale networks
 - Pulse communication and severe resource constraints

Quantum bits, **qubits** – superposition of "0" or "1"

• State of A, one-qubit system $|A> = a_o|O> + a_1|1>$ where $a_o, a_1 \in \mathbb{C}$ $a_o, a_1 - \text{probability amplitudes to}$ measure "O" or "1"

• Probability of measuring |0> is $|a_0|^2$ and |1> is $|a_1|^2$, and $|a_0|^2 + |a_1|^2 = 1$

Quantum bits, **qubits** – superposition of "0" or "1"

- Two qubit example $|A> = a_{oo}|00> + a_{o1}|01> + a_{10}|10> + a_{11}|11>$ where $|a_{oo}|^2 + |a_{o1}|^2 + |a_{10}|^2 + |a_{11}|^2 = 1$
- *n* classical bits are only ever in ONE of the 2ⁿ possible states at any given moment, an *n*-qubit register can be in a superposition of ALL of the possible states.

How to make qubits?

- Non-solid state
 - Photons
 - Trapped ions
- Solid state
 - Superconductors
 - Nitrogen-Vacancy-Centres or NV-Centres in diamond
 - Semiconductor Quantum Dots
 - quantum dot → single electron transistor, very similar to classical field effect transistor

Quantum measurement

- Measuring/reading a classical bit "0" or "1" is easy and *repeatable*.
- Measuring/reading a qubit's state, "0" or "1" is also possible, BUT it is an *irreversible operation*
- "Reading" a qubit will "destroy" it.
- Cannot read a qubit more than once!

No-cloning theorem

- Qubit can be directly transmitted to a remote node via an optical fiber link or free space optical
- But, if photon is lost due to attenuation or it is corrupted by noise,
 - it cannot be recovered by some form of measurement or by re-transmitting a copy of the original information.
 - classical communication / networking approaches are NOT applicable!!!

Entanglement

- links qubits together such that the state of one instantly affects the other no matter the distance.
- reliable way to transport a qubit from point-to-point.

Entanglement analogy

- Imagine a Mystery Kit Kat (plain packaging)
 - Two flavours of chocolate = DARK, WHITE
 - Break in half without revealing contents
 - Give on half to Alice and other half to Bob

Teleportation

- Suppose two qubits A and B are "entangled"
- If A is measured, then B will immediately have the same state as A
- No matter how far apart A and B are !!!
- How to transmit information?

Teleportation

- Create entanglement
- Perform a joint measurement of A & $|\phi>$ giving a classical 2-bit outcome
- Send 2-bit outcome to B
- Measure B, then depending on the 2-bit value, B applies one of 4 *actions* to obtain $|\phi\rangle$

Oubit to be sent

(*x y*) Classical communications

 Φ

(x y)

|φ>

Teleportation

1. Measure B. 2. If (x y) = q[1]00 - do nothing q[2]01 - apply X gate t^+ 10 - apply Z gate c_{11} 11 - apply ZX gate c_{21}

Entanglement swapping

- Generate entanglements between qubits in A & repeater and between qubits in repeater & B
- Entanglement swap between qubits in repeater → two existing pairs of entanglement destroyed but new entanglement created

CAPITAL THINKING.

Quantum Internet

- Global network interconnecting heterogeneous quantum networks, able to transmit qubits and to generate and distribute entangled states
- Sits side-by-side with classical internet
- Supports distributed quantum application protocols with highest fidelity & efficiency

Quantum Internet

- Application classes as defined by Quantum Internet Research Group (QIRG) of Internet Engineering Task Force (IETF) :
 - quantum cryptography quantum key distribution, fast Byzantine negotiation (consensus/mining in blockchains), quantum money (suggested in 1970s)
 - quantum sensing network clock synchronization, extending baseline of telescopes
 - quantum computing distributed quantum computing, secure with privacy preservation

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Internet Protocol Stack

Quantum Internet Protocol Stack

"by simply replacing or extending some classical protocols to their quantum counterpart, without any global modification of the overall protocol stack. Unfortunately, this approach is doomed to fail..."

– Illiano *et al.*, "Quantum Internet protocol stack: A comprehensive survey," *Computer Networks*, 2022.

CAPITAL THINKING. GLOBALLY MINDED.

Quantum Internet Protocol Stacks

Proposals:

- Van Meter *et al*.
- Wehner *et al*.
- others

Quantum Stack by Van Meter et al.

Image source: Van Meter et al., "System Design for a Long-Line Quantum Repeater," IEEE Trans on Networking, 2009.

CAPITAL THINKING. GLOBALLY MINDED.

Quantum Stack by Van Meter *et al.*

Quantum Recursive Network Architecture

- Proposed in 2011
- Recursive executions of PC/ESC

→ single individual link represented by a high-fidelity entanglement shared between source and destination nodes

Image source: Van Meter *et al.* "Designing quantum repeater networks," *IEEE Communications Magazine*, 2013.

• Like *network of networks* \rightarrow the Internet

Quantum Stack by Van Meter *et al.*

- Entanglement distribution among quantum nodes requires *virtual/physical network topology* and *coordination among nodes*
- In 2019, proposed a *bootstrap protocol* for:
 - supporting coordinated autonomous decision-making in quantum operations over a network
 - quantifying achievable fidelity, accounting for classical control messages

Quantum Internet Protocol Stacks

Proposals:

- Van Meter *et al*.
- Wehner *et al*.
- others

Quantum Stack by Wehner et al.

- Layered model for quantum networks, based on bipartite entanglement
- Physical and link layer functionalities and protocols
- For NV centres in diamond
- later revised to be underlying platform independent

Image source: Pompili et al., npj Quantum Inf, 2022.

Quantum Stack by Wehner et al.

Image source: Illiano et al., "Quantum Internet protocol stack: A comprehensive survey," Computer Networks, 2022.

CAPITAL THINKING.

VICTORIA UNIVERSITY OF WELLINGTON TE HERENGA WAKA

Ú

Open issues and research directions

Image source: Illiano et al., "Quantum Internet protocol stack: A comprehensive survey," Computer Networks, 2022.

Open Issues – Standardization

- Lack of unified quantum internet protocol stack
- International projects and standardization efforts (e.g., in ITU, IETF, IEEE, GSMA, ETSI) for:
 - architectures, interfaces and protocols
 - interoperability between quantum networks
 - seamless interworking with current infrastructures

Open Issues – Signaling vs Data

- Coordination is critical and exchange of control information still relies on classical internet
- Telecommunication networks have dedicated signaling channels
- Classical internet carries both data and signaling in-band
- Entanglement needs qubits on nodes → less qubits on nodes for quantum data

CAPITAL THINKING. GLOBALLY MINDED.

Open Issues – Medium Access

- How to arbitrate / coordinate access to virtual link → utilization of entanglement as resource?
- Two or more nodes share an entanglement
 - Which node to use and when?
 - Entanglement Access Control (EAC) protocol
 - Much harder with multiparty entanglement
- No-broadcasting theorem unknown quantum state cannot be broadcast to two / more receivers

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Ongoing Research

Synchronization Control-Plane Protocol for Quantum Link Layer

- <u>QLL role</u> create entanglements between adjacent nodes, using <u>heralded entanglement generation</u>.
- QEGP and MHP handles the generation of entanglements between two nodes.

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Eventual Synchronization Protocol

- ESP Control Plane Protocol that enables nodes to synchronize before making an entanglement.
- Quality of the generated entanglement, referred to as fidelity, *F*, where *F* ∈ [0, 1].
 F = 1 is the ideal state
- Fidelity directly affects the functionality of higher-level services that utilize these entanglement.
- In practice, only *F* > 0.5 is useful.

Eventual Synchronization Protocol

E, *F*, *G*, and *H* are **BUSY**. *C* and *I* are **IDLE**. *B* and *D* are in **SYN_SENT**. *F* has a queued **WAKE** request for *I*.

CAPITAL THINKING. GLOBALLY MINDED.

Open Issues – Networking

- Given *no-cloning* theorem, how to provide basic networking functionalities neighbour discovery, path discovery, forwarding and routing
- Entanglement-based communications vs direct transmission
- Entanglement generation and entanglementaware routing
- Error control and correction for reliability

Acknowledgements

• Dr Del Rajan, PhD.

for introducing me to quantum networking

- Royal Society of New Zealand for James Cook Research Fellowship to conduct fulltime research for 2 years on *Quantum Networking Protocols and Algorithms*
- Brandon Ru

for contributions to synchronization protocol

Questions???

My contact details:

Email: <u>winston.seah@ecs.vuw.ac.nz</u>

Research group website:

https://ecs.wgtn.ac.nz/Groups/WiNe/WirelessNetworksResearchGroup

