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Abstract—Data Centre Networks (DCNs) handle large volumes
of data transmission that can consume a lot of bandwidth in
short bursts or over prolonged periods of time. One class of
traffic that constantly poses a challenge is Heavy-Hitter (HH)
flows – large-volume flows that consume considerably more
network resources than other flows combined. The identification
of such flows is critical to prevent network congestion and overall
network performance degradation. Most of the existing methods
to identify HHs are based on thresholds, i.e., if the flow exceeds
a predefined threshold, it will be marked as a HH; otherwise,
it will be classified as a non-HH. However, these approaches
present two significant issues. First, there is no consistent and
accepted threshold that would reliably classify flows. Second, the
existing threshold approaches use counters (duration, packets,
and bytes); thus their accuracy depends on how complete the
flow information is. In this paper, we address those issues using
per-flow packet size distribution which can capture the behaviour
and dynamics of network traffic flow more accurately than the
counters in the early stage of the flow. We then propose the use
of the template matching technique to identify HHs and achieved
a classification accuracy of 96% using only the first 14 packets
of a flow.

Index Terms—heavy-hitters, flow, elephant, mice, data centre
networks, packet size distribution, threshold, software-defined
networking, template matching

I. INTRODUCTION

In the last few decades, DCNs have become vital com-
ponents of a wide range of applications, such as big data
processing, cloud computing infrastructure, and multimedia
content delivery. A traditional DCN comprises a very high
number of network devices that support the seamless exchange
of traffic between the virtual machines/servers and the Internet.
These devices include switches that interconnect hosts, routers
that forward the traffic, and gateways that act as a junction
between the DCN and the Internet. The main DCN limitations
have been scalability and growing management complexity.

To overcome these limitations, new networking paradigms
such as Software-Defined Networking (SDN) have been intro-
duced into DCNs. SDN is an emerging technology, in which
the control plane is decoupled from the forwarding plane. By

moving the control logic from the forwarding devices to a log-
ically centralised device, namely, the controller, the network
devices become simple forwarders that are programmable
through a standardised protocol such as OpenFlow [1]. Data
centres implemented using SDN are referred to as Software-
Defined Data Centre Networks (SDDCNs).

One of the main benefits of SDDCN is the centralised
view of the network and, most importantly, its traffic flows.
However, the clear and well-defined benefits of central network
traffic control cannot guarantee that the network performance
will not degrade when traffic volume increases. Applications
and services have increasing Quality of Service (QoS) re-
quirements. In consequence, managing the traffic that flows
through the network remains a challenge [2]. An essential
tool to ensure the reliable operation of networks is traffic
flow classification, which provides inputs for a variety of net-
work managerial related activities [3]. In network performance
maintenance a significant objective is to identify and classify
flows that exhibit heavy-tailed or long-tailed distribution.

Examination of heavy-tailed distribution in flows has been
an objective of several research efforts. An inferable obser-
vation, that can be deduced from these works is that a very
small percentage of flows carry the bulk of the traffic [4],
[5]. These flows are most commonly referred to as Heavy-
Hitter (HH) or elephant flows. One of the consequences of
unsupervised forwarding of HH flows is, among others, that it
often leads to network congestion and, subsequently, to overall
network performance degradation [4], [6]. The identification
of HHs provides inputs for a variety of network managerial
related activities, such as flow scheduling, QoS provisioning,
and load balancing.

In this paper, we propose a novel HH identification approach
based on packet size distribution (PSD) and template matching
(TM). Our evaluation shows that our approach achieves up
to 96% accuracy while using only the first 14 packets of a
flow. Furthermore, this accuracy remains consistent throughout
all classifications while existing approaches yield different
accuracies for different flow size-based thresholds.



TABLE I: Related work in the domain of SDDCN

Work Citations Year Appeared In Threshold Value Static Adaptive

Curtis et al. [7] 326 2011 IEEE INFOCOM Flow Size 128KB, 1MB and 100MB X
Sivaraman et al. [8] 79 2017 Symposium on SDN Research Number of packets Not specified X
Chiesa et al. [9] 68 2016 IEEE/ACM Trans. Netw. Bandwidth 10% X
Trestian et al. [10] 32 2013 IFIP/IEEE IM Rate Not specified X
Liu et al. [11] 24 2013 IEEE Commun. Lett. Rate 1-10 Mbps X
Lin et al. [12] 18 2014 IEEE GLOBECOM Flow Size 100 MB X
Bi et al. [13] 11 2013 IEEE GLOBECOM Flow Size Not specified X
Poupart et al. [14] 10 2016 IEEE ICNP Workshop Flow Size 10 Kb to 1 Mb X
Liu et al. [15] 2 2017 Wiley Int. J. Netw. Man. Flow Size Not specified X

The remainder of this paper is organised as follows. In
Section II, we review related work while Section III discusses
PSD and its efficiency in HH detection. Then, in Section IV,
we present the details of our HH classification technique. Sec-
tion V introduces the measurement outcomes and discusses the
achieved results. Finally, we conclude this work in Section VI.

II. RELATED WORK

In SDDCNs, the SDN controller has central awareness and
control of the flows. The main role of an SDN controller is to
instruct the devices how the network should accommodate the
forwarding of the traffic. The main features used to achieve
this are flow counters, specifically duration, packet count, and
bytes. Assuming that we are able to achieve a central view of
all flows and reliable collection of flow counters’ data, then
performing HH detection is simple: first, we set a threshold
and then all flows exceeding this threshold are classified as
HHs while flows below this threshold are classified as non-
HHs. Despite this simple methodology, HH identification is
surrounded by a number of challenges from data collection
(i.e., achieving the central view of all flows) to threshold
determination and classification [7], [9], [11].

In this work, we focus on the classification aspect of HH-
detection. Table I summarises related works in the domain
of SDDCN. A common observation from Table I is that
there is no consensus about the threshold that would reliably
separate the flows into HHs and non-HHs, nor regarding the
feature or set of features (e.g., size, duration, and rate) that
should be used for HH identification. In general, two HH
classification approaches exist: static and dynamic threshold-
based approaches.

In the former, the threshold is usually determined at the
beginning of the detection phase and this threshold remains
unchanged until the end of the measurement or unless the
detector is required to be reconfigured and restarted. While a
static threshold HH detection mechanism is relatively simple
to implement, this approach is considered to be inaccurate
due to its inability to adapt to changes in the traffic behaviour.
In the latter, also often referred to as the adaptive approach,
the threshold is adjusted in specific time intervals based on
changes in conditions such as the variation of the traffic load.

III. PER-FLOW PACKET SIZE DISTRIBUTION

A flow is defined as a set of packets passing an observation
point during a specific duration of time [16]. All the packets

that belong to the same flow share a number of attributes,
specifically, the source and destination IP addresses, source
and destination port numbers and the protocol identifier num-
ber. To identify a flow as HH, a certain number of packets must
be observed before a decision can be made. This number is
usually kept at a minimum to achieve real-time classification.
However, the packets belonging to various flows pass through
the data plane in an indeterministic sequence. As a result, it
is not uncommon to see that packets belonging to the same
flow are captured with intervals of more than tens of seconds.
Therefore, to achieve real-time classification, a time limit for
per-flow packet collection is usually implemented. This way
the identifier does not have to wait too long to see a specific
number of packets before it makes a decision. However, the
classification accuracy is challenging when at any given period
only part of the flow is known or if there are too few packets
in the flow.

To overcome this challenge, a feature is required that cap-
tures the flow behaviour (HH or non-HH) well even if only a
few packets are known in the flow. We argue that per-flow PSD
captures the behaviour and dynamics of network traffic flows
as accurately as the traditional counters (duration, packets, and
bytes) that are used by existing HH identification approaches,
especially with respect to their heavy-tailed distribution. The
advantage of PSD over traditional counters is that it can
perform reliably even if only limited information is available
about the flow.

An important consideration when analysing the viability
of PSD for identifying HH flows is the minimum number
of packets. This number represents a ‘window’ in which
the PSDs are going to be analysed. To determine the size
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Fig. 1: Regions created by θs and θpkt
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(a) PSD of an arbitrary flow from Region 1
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(b) PSD of an arbitrary flow from Region 2
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(c) PSD of an arbitrary flow from Region 3
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(d) PSD of an arbitrary flow from Region 4

Fig. 2: Flow samples with various per-flow PSDs

of this ‘window’, we performed clustering-based analysis on
the UNIV1 [4] dataset as a test case. The results of this
clustering-based analysis are available at [17]. We examined
the unlabelled flows and observed that they can be classified
into four classes (clusters). The threshold of these classes can
be clearly defined using the flow size θs and the packet count
θpkt features. In UNIV1, the optimal threshold values are
θs = 6 KB and θpkt = 14 [17]. These two thresholds classify
each flow in UNIV1 into exactly one of the four regions as
depicted in Figure 1.

Figure 2 provides an example of the packet size distribution
of an arbitrary flow belonging to each of the four regions.
The flows in Regions 1 (Figure 2(a)) and 4 (Figure 2(d))
represent the minimums and maximums, i.e., non-HHs and
HHs, respectively. The difference in terms of per-flow PSD
is clear and simple to recognise without the need for a
detailed investigation of the flow. Regions 2 (Figure 2(b))
and 3 (Figure 2(c)) are, however, not that obvious as the
flows exhibit similar characteristics in terms of PSD. The
classification of these flows requires an in-depth investigation.

IV. SYSTEM DESIGN

In general, per-flow PSD can be considered as a collection
of points (see Figure 2). To obtain more efficient represen-
tation of PSD, we can also consider these packet sizes as a
continuous random variable with different values. Then, we
can generate a function which describes how such variable is
distributed in a range given. The probability density function
(pdf ) is a statistical feature that is suitable for describing
this phenomenon. It defines the probability distribution of a
continuous random variable.

We denote a continuous random variable representing each
packet size belonging to a certain flow as xpkt. The pdf
provides the value of the function at any given xpkt. We
emphasise that pdf does not directly provide the probability
of xpkt. Instead, it yields the probability P that xpkt will take
on a value within a given interval [a, b]. This can be formally
expressed as:

P [a <= xpkt <= b] =

∫ b

a

pdf(xpkt)dxpkt. (1)
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Our approach to identify HH is based on per-flow PSD and
TM. The PSD is able to capture the behaviour and dynamics
of network traffic, and TM [18] is used for pattern recognition.

A crucial point of TM when used in pattern recognition is
to adopt an appropriate “measure” to quantify similarity given
an input and a template. In our case, the input is a flow, which
is expressed as

fs =

N∑
i=1

xpkt(i), (2)

where xpkt represents the size of packet belonging to a certain
flow. The templates represent the flow size behaviours in a
particular region, i.e. a pdf class. Our system provides a
similarity measure per-template given an input. The higher
the similarity, the more probable is that the input (i.e., a flow)
belongs to the region.

Figure 3 shows the architecture of our approach. It is
composed of three main components: Density Estimation,
Template Generator, and Template Matching.

A. Density Estimation Module

This module is responsible for estimating the pdf of the
incoming flow. We can consider the flow packet sizes as
random variables. Several techniques exist to estimate the pdf
of a random variable. In general, the density estimator can be
classified into two types: parametric and non-parametric [19].
The parametric estimators need a fixed form or structure of
the data and depend on the previous data point while the non-
parametric estimators have no fixed structure and depend on
all the input data points. We use Kernel Density Estimation
(kde) to estimate pdf(xpkt); formally expressed as:

kde(xpkt) =
1

N

N∑
i=1

Kh(x− xi), (3)

where Kh is a kernel function, and x represents each point of
xpkt. The kde is a non-parametric method in which does not
require any preceding models. Moreover, in contrast to other
non-parametric methods such as the histograms, its density
estimates are smoother, continuous and differentiable [20].

We use Gaussian Kernel to estimate the pdf since it
has been shown to yield good performance under general
smoothness assumptions. In addition, it has good performance
when no additional knowledge of the data is available [21].

B. Template Generator

This module is composed of the Template Database and
Template Adaption components. Template Database is re-
sponsible for storing the individual templates. Consider R =
[R1, R2, R3, R4] as the set of the four regions introduced in
Figure 2 while Rn = [fs1 , fs2 , ..., fsN ] denotes an arbitrary
region composed of a set of N flows.

Templates per each region are generated based on the Tem-
plateGenerator procedure as per Algorithm 1. This procedure
has three main functions: pktExtractor, kdeEstimation, and
FinalTemplate. pktExtractor is responsible for extracting the
first θpkt packets that are necessary to be collected before
a flow can be classified. pdfEstimation computes the pdf
estimation. The output of this function is a template for each
flow in Rn. In our prototype implementation in Python, each
template is a floating point real value while these values
(templates) are stored (per each region) as a list of floats.

Obviously, the number of templates in Rn depends on
the numbers of flows in the region. This, however, can lead
to challenges in real-world applications (e.g., in terms of
resource, time, and memory constraints). To minimise the
computing demands, we reduce the number of templates
per each region. More specifically, instead of maintaining
hundreds of thousands of templates, we compute only one

Algorithm 1 TemplateGenerator
1: procedure TEMPLATEGENERATOR(i, θpkt)
2: . pd: Python pandas library
3: function FINALTEMPLATE(Xkde, Ykde)
4: global mainT
5: if len(mainT) ! = 0 then
6: for j in range(0, len(Ykde)): do
7: yaux = mainT[y][i].max()
8: yaux2 = Ykde[i].max()
9: if yaux < yaux2 then

10: mainT = {‘x’: Xkde,‘y’: yaux2}
11: else
12: mainT = {‘x’: Xkde,‘y’: yaux}
13: else
14: mainT = {‘x’: Xkde,‘y’: Ykde}
15: return Template

16: function PDFESTIMATION(y)
17: kde = KernelDensity(kernel, bandwidth)
18: kde.fit(Ykde[:, None])
19: return Xkde, Ykde

20: function PKTEXTRACTOR(i, θpkt)
21: for index, row in i.iterrows: do
22: if index < len(i)−1 then
23: flowIDaux = i[ index+1, fkey ]
24: if flowIDaux ! = i[ index, fkey ] then
25: data = i.copy()
26: data.drop[data[ fkey ] != i[index−1, fkey]
27: y = data.head(θpkt)
28: if len(y) == θpkt then
29: Xkde, Ykde = KDEESTIMATION(y)
30: r = FINALTEMPLATE(Xkde, Ykde)
31: return r . Final template
32: Template = PKTEXTRACTOR(i, θpkt)
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Fig. 4: Template adaptation for efficient matching

‘master’ template per each region. To achieve this, we use
the FinalTemplate function that computes the maximum value
of each template in a particular region. Obviously, as new
flows are observed, new templates are generated and so the
maximum values continuously update the final template.

Lastly, Template Adaption adapts the templates to the pdf
of the observed flow (that is going to be classified). Consider
Figure 4(b) as the process that compares a pdf of a flow (see
Figure 4(a)) calculated by the Density Estimation Module to
a template of a particular region provided by the Template
Database. From Figure 4(b) is evident that not all the data
points are equally significant in terms of matching. In addition,
the point-by-point comparison of each data point between the
flow to be classified and the template is a computationally
complex task especially with respect to memory and comput-
ing resources. To improve the performance of our solution,
before the matching takes place, we adapt the template to the
input flow so that only those data points that are required
for accurate classification are preserved. An example of such
adaptation is provided in Figure 4(c).

C. Template Matching Module

This module is responsible for performing a similarity
measure between the pdf of the observed flows and the
templates. In practice, this means that the pdf is compared
with each ‘master’ template (one out of the four) in the
template database and is classified into that class that yields the
highest similarity measure. The similarity measure is usually
calculated using distance or correlation metrics [18]. In our
work, we specifically use the Pearson correlation and Dynamic
Time Warp (DTW) similarity measures.

Pearson correlation is a number between −1 and 1 that
indicates how much two variables are linearly related. The
computational demand of obtaining Pearson correlation is
relatively low while sensitive to a linear relationship between
the variables [22]. A correlation of −1 indicates that the
input and the observed template have a perfect inverse linear
correlation. A correlation of 0 means no linear relation. Finally,
a correlation equal to 1 means that both the input and the

template have a perfect direct linear correlation. DTW, on the
other hand, is a distance measure which allows two-time series
that are similar but locally out of phase to align in a non-
linear manner [23]. DTW computation follows three major
steps [23]:

1) Compare each point in pdf(f) with every point in Xr,
generating a matrix.

2) Work through the matrix and calculate the lowest cumu-
lative distance for each cell. Subsequently, add the value
to the distance of the focal cell.

3) The distance between the two signals is then calculated
based on the most efficient pathway through the matrix.

Similarity measure between the input and each template is
implemented based on Algorithm 2. We query the templates
stored in the Template Database, and perform similarity mea-
surement first using Pearson correlation and then with DTW.
The Pearson correlation is computed using the Python scipy
library [24] while DTW is calculated via the DTAIDistance
library [25]. As we will demonstrate in Section V, the combi-
nation of Pearson correlation and DTW improves the results
of TM.

V. RESULTS

We evaluate our approach using the UNIV1 [4] traffic trace
that was collected in a university DCN. We processed and

Algorithm 2 Match
1: procedure MATCH(fpkt, Tn)
2: . fpkt: pdf of incoming flow
3: . Tn: Template per-region
4: Tn = [ Xr1 , Xr2 , Xr3 , Xr4 ]
5: corrResult [1] = pearsonr(Xr1 , fpkt) . Region 1
6: DWTResults [1] = dtw.warping(Xr1 , fpkt)
7: corrResult [2] = pearsonr(Xr2 , fpkt) . Region 2
8: DWTResults [2] = dtw.warping(Xr2 , fpkt)
9: corrResult [3] = pearsonr(Xr3 , fpkt) . Region 3

10: DWTResults [3] = dtw.warping(Xr3 , fpkt)
11: corrResult [4] = pearsonr(Xr4 , fpkt) . Region 4
12: DWTResults [4] = dtw.warping(Xr4 , fpkt)
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Fig. 5: Template per-region for UNIV1

organised UNIV1 into flow records with an expiration time
set to 150 s. The obtained data set contains 34 788 flows out
of which 13 457 flows belong to R1, 6894 to R2, 391 to R3,
and 14 046 to R4. This dataset was split into training and test
sets with a 70/30 ratio while cross validation was also used to
increase the effectiveness of the model. We used the training
set to compute the templates.

Following the six-step knowledge discovery process [26],
we determined the minimum number of packets before clas-
sification is performed. Our Silhouette analysis of the dataset
returned k = 4 as the optimal number for clustering. Subse-
quently, using K-Means, we obtained the average number of
packet counts, specifically 14. For a more detailed treatment
of the clustering, the interested reader may consult [17]. To
create the templates for the regions, as shown Figure 1, besides
θpkt = 14 we also used a further threshold that appeared to
be the optimal number of minimum size (bytes) of flows, i.e.
θs = 6 KB. This value was also determined via clustering-
based analysis [17].

A. Performance evaluation

The performance measures in this paper are given by five
metrics derived from the Confusion Matrix, viz., True Positive
Rate (TPR), False Positive Rate (FPR), Accuracy, Precision,
and f-measure. Table III shows a typical confusion matrix of
a binary classification. The True Positive (TP) represents a
successful classification, e.g., a particular sample belonging
to Rn, which was classified in class Rn. True Negative (TN)
depicts successful classification in which the sample did not
belong to Rn and was classified as Non-Rn. False Positive
(FP) refers to an unsuccessful classification, e.g., a sample
belonging to Non-Rn was classified as Rn. False Negative
(FN) represents an unsuccessful classification as well. In this
case, a sample belongs to Rn is classified as Non-Rn.

TABLE III: Confusion Matrix for Rn

A′
A

Rn Non-Rn

Rn TP FP
Non-Rn FN TN

The classification system has been trained to distinguish
between R1, R2, R3, and R4. We conduct the performance
measures for each region. Table IV reports the confusion
matrix for each region. Supplementary to Table IV, the per-
formance measures are summarised in Table V.

The results obtained indicate that the region with highest
TPR is Region 3, with TPR value of 0.9847, and the reason
behind this is related to the number of flows belonging to this
region. In contrast to the other regions, Region 3 contains very
few flows, roughly 391. It is likely that, when the templates
were generated, most of the flows belonged to Region 3. This
results in a better representation of the flow behaviour. The
region having the lowest TPR 0.8860 is the Region 2. This
can be regarded as the opposite of Region 3, i.e., when the
templates were generated, few flows belonged to Region 2.
Overall, our approach achieves a TPR of 0.9385 which means
our approach has high sensitivity.

Our best FPR value is 0.002 which corresponds to Region
4. The highest value obtained is for Region 1 with 0.037.
Notwithstanding this region has the highest value, it still is
near to zero, which indicates good performance. The general
result obtained shows an average of 0.020 which means that
our approach has a low false positive rate.

The best accuracy result is 1, whereas the worst is 0. Region
3 has the accuracy of 0.9734, while Region 2 is the region with
lowest value, 0.9582. The reason is the same as that for TPR.
Our approach achieves an average accuracy of 0.96.

There is a natural trade-off between TPR and precision,
which is why the region that performs best on one measure
is not usually the one that perform best on the other measure.
This is the case of Region 3. The precision value for Region
3 is 0.2952, while the other regions’ values are over 0.9018.
Such a low value for the Region 3 indicates that flows
belonging to the other regions tend to be classified as Region
3 mostly. The overall precision is 0.7841 giving our approach
an acceptable false positive rate.

An f-measure score reaches its best value at 1 and worst
value at 0. A low f-measure score is an indication of both
poor precision and poor recall. In our case the average of
both recall and precision is high. Thus, the intuitive f-measure
score for our approach is high, nearly 1.

Although we have achieved promising results in our ex-
periments, we did not examine the impact of time. Time is
a critical factor in HH detection. The packets belonging to
various flows pass through the data plane in an indetermin-
istic sequence. As a result, it is not uncommon for packets
belonging to the same flow to be captured with intervals of
more than tens of seconds. In real-time HH detection, waiting
for tens of seconds or longer is not acceptable. For instance,
we can achieve an accuracy of up to 96%, when classifying



TABLE IV: Confusion matrix per-region

Region 1 Region 2 Region 3 Region 4

A′
A

R1 Non-R1 A′
A

R2 Non-R2 A′
A

R3 Non-R3 A′
A

R4 Non-R4

R1 12 930 780 R2 6108 667 R3 385 919 R4 12 955 44
Non-R1 527 20 080 Non-R2 786 27 227 Non-R3 6 33 478 Non-R4 1091 20 698

TABLE V: Performance measures for UNIV1 dataset

TPR FPR Accuracy Precision f-measure
R1 0.9608 0.037 0.9619 0.9431 0.9519
R2 0.8860 0.024 0.9582 0.9018 0.8937
R3 0.9847 0.027 0.9734 0.2952 0.9628
R4 0.9223 0.002 0.9673 0.9966 0.9580

Mean 0.9385 0.020 0.9623 0.7841 0.9362

UNIV1 with θs = 6, 10, 100 and 1000 KB and θpkt = 14
packets. However, for some flows, it takes up to 460 seconds
to collect enough packets/bytes to meet these thresholds, which
is unacceptable for timely classification. A time limit set for
per-flow packet collection could resolve this problem simply.
This way the classifier does not have to wait too long to
see a specific number of packets before it makes a decision.
However, this also raises degradation in accuracy due to too
few packets captured per flow within the time duration. Real-
time classification might be achieved but at the expense of
collecting too few packets to make an accurate detection. As
such, in future work we plan to perform a rigorous examination
of our approach especially with respect to the impact of time.

B. Performance comparison

We compared our result with classification techniques used
by Poupart et al. [14]. They report only the TPR obtained
using Neural Networks (NN), Gaussian Processes Regression
(GPR), and Online Bayesian Moment Matching (oBMM) to
classify HHs. NN is one of the most flexible predictors in
the sense that it can approximate any function when using
sufficiently many nodes and data. The GPR models are non-
parametric kernel-based probabilistic models. oBMM is a
tractable online Bayesian learning algorithm for learning mix-
ture models using the method of moments [14]. We made sure
to adopt the same thresholds applied by Poupart et al. [14].

Figure 6 shows the TPR of each algorithm, and our approach
which is denoted as TM. It is evident that our approach
achieves only comparable results. However, there are some
significant considerations. First, we compare only TPR results
as Poupart et al. [14] does not provide any information on the
other measures that we also calculated. As such, the compar-
ison is only partial while it is also likely that the thresholds
selected by Poupart et al. were selected optimally for their
purposes. Second, GPR and NN cannot maintain the same
performance when the threshold is changed. Our TM approach
achieves the same performance in different thresholds. Third,
the NN and oBMM approaches tend to be affected by class
imbalances more than the Gaussian process, which explains
why their accuracy often suffers as the classification threshold
increases. In our approach, the imbalance in the regions is not

a problem, since each flow is analysed in the same packet
window. Also, the template is generated by the same packet
window. Lastly, considering Table V, the achieved results are
promising. Per-flow PSD is capable of capturing the behaviour
and dynamics of traffic flows and as such, it is suitable for HH
detection. Using TM, we can achieve a classification accuracy
of 96% and higher per each class.
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Fig. 6: True positive rate comparison

VI. CONCLUSION

In this work, we first show the usefulness of per-flow PSD
in describing the flow behaviour. Then, we applied TM to
classify flows by sizes, based on their packet size distribution
that can be extracted from the first few packets of each flow.
Based on the obtained results, packet size distribution can be
used to describe the behaviour of the flow. The TM technique
can achieve an overall accuracy of 96%.

This approach does not require any modification to the
applications or end hosts and it provides an indication of which
flow is leading to be a HH upon the start of each flow. The
ability to predict which flow will have an impactful size in
an early stage allows us to improve activities related to the
network such as routing mechanisms, QoS provisioning, and
so on. In particular, for the routing mechanisms, it helps to
avoid congestion and to mitigate the need for load balancing.

However, the time required to collect enough flow details
for reliable classification can still be a challenge and requires
further research. Motivated by the results provided in this
paper, future work will be aimed at investigating the usefulness
of per-flow PSDs with other approaches that were shown to
be effective in network traffic management [27], [28].
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