
Robust Intra-Slice Migration in Fog Computing
Atefeh Talebian, Alvin Valera, Jyoti Sahni, and Winston K.G. Seah
School of Engineering and Computer Science Victoria University of Wellington

Wellington, New Zealand
{atefeh.talebian, alvin.valera, jyoti.sahni, winston.seah}@ecs.vuw.ac.nz

Abstract—Low latency is critical to applications such as control
of unmanned aerial vehicles. Such latency-sensitive services can
be hosted closer to the user at the fog layer which can reduce
overall latency through the reduction of transmission time and
network congestion. To keep the latency low for mobile users
connected to services deployed at the fog, these services need
to be constantly migrated to follow the users. Unlike the cloud
nodes, fog nodes are less reliable and are therefore subject to
higher failure rate. In this paper, we propose an enhancement to
the post-copy live migration algorithm to make it robust against
failure. Simulation results show that robust migration reduces
total migration time between 10-26% and downtime between 2-
23% compared to non-robust migration. Furthermore, when the
bandwidth to the backup node is lower, robust migration provides
further improvement in both metrics.

Index Terms—Post-copy migration, Fog computing, Network
Slicing, Low latency, Reliability, Robust migration

I. INTRODUCTION

Latency is a critical performance metric in cutting edge and
futuristic Internet of Things (IoT) applications and services.
Services that require real-time response such as command
and control of Unmanned Aerial Vehicles (UAV) require low
latency [1] since high and excessive latency fluctuations could
cause catastrophic failure. To achieve consistently low latency,
latency-sensitive services should be hosted physically closer
to the user at the fog layer instead of the cloud layer. The
physical proximity to the user brings resources (e.g., storage
and computation) closer to the users, thereby reducing overall
latency due to reduction in transmission time and network
congestion.

To support service migration, there is a need to perform
efficient resource allocation within the fog layer, to ensure
that the service has the necessary resources across several fog
nodes in a multi-tenant network. Fortunately, this problem is
addressed using network slicing [2]. Using this technique, a
slice satisfying the Quality of Experience (QoE) requirements
can be allocated to the service [3].

As can be seen in Fig. 1, in scenarios such as UAVs where
users are mobile, when such users host their services at fog
nodes, there is an unavoidable need to move the service to
follow the physical trajectory of the users [4]. Otherwise,
this will result in the service being farther away from users,
thereby increasing the latency or even losing the connection
and therefore the service. Moving the service from one fog
node to another fog node is essentially a migration problem.

Migration in general is one of the key techniques for re-
source management in fog computing [5]. It can be categorized

Fig. 1. Mobility Induced Migration

into either cold or live migration, and can be applied to either a
Virtual Machine (VM) or a container that is hosting a service1.
In cold migration, the hosted service is paused during the
entire migration whereas in live migration, the hosted service
is allowed to run and only paused for a short time. The time
that the service is paused is called downtime, and it adversely
affects the latency or response time of users that rely on the
service. To achieve low latency during the migration it is
preferable to use live migration rather than cold migration.
This is due to the long downtime of cold migration which
makes it unsuitable for migrating latency-sensitive services.

Among several live migration techniques, post-copy [6]
is known to achieve better performance compared to other
techniques not only because of its shorter migration time but
more significantly due to its lower migration traffic and faster
handover [7]. In post-copy, all memory pages are sent to the
destination node only once and the execution state handover
from the source to the destination node occurs at the early part
of the migration process. These characteristics make post-copy
migration suitable for low-latency sensitive services that serve
mobile users.

One major problem of post-copy migration is robustness [8]
which is becoming a concern in fog computing due to the
lower reliability of fog nodes [1]. If the destination node fails

1Without loss of generality, we assume that a VM or container is hosting
one service but in practice, they can host more than one service.



during the migration process2, the service will be aborted, and
even if recovery is possible, the recovered state of the service is
stale. This happens because in post-copy, only the destination
has the most up-to-date processor state. This is due to the
fact that the execution state is handed over immediately (after
it receives the processor state from the source). However, it
does not have all the memory pages yet as it requests for these
pages only when a page fault occurs. Thus, the failure of the
destination node would result in the service losing the most
current processor state and the updated memory pages. The
consequences of stale state may result in bad user experience
(for instance, in the case of live streaming) or in certain cases,
they can be life-threatening or catastrophic (for instance, in
case of the service controlling UAVs and self-driving cars).
Even if the destination node sends updated memory pages and
processor state to the source node [9] because of the mobility,
the user may have lost the connection with the source node or
suffer from long latency.

This paper will therefore address the robustness problem
of post-copy live migration while preserving its low latency
characteristic. Key to our algorithm is the inclusion of a
back-up node that can take over in case of the destination
node failure. The remaining part of this paper is organized
as follows. Section II discusses the related work. Section III
outlines the system model and algorithm design. Next, the
simulation and results are provided in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK

In this section we review the work that focuses on post-copy
migration. While live migration has lower downtime, in some
cases, it may still negatively affect the user’s QoE. During the
migration process, page faults may happen frequently, increas-
ing the total migration time and delay which will adversely
affect low latency services. In this case the destination node
will send a page fault request to the source node and will wait
to receive it. These page faults increase the total migration
time and delay during migration which will adversely affect
low-latency services.

Several techniques have proposed to reduce the number of
page faults during the post-copy. During the migration, page
faults can be divided into two types, those caused by accessing
a not-yet-received page and those caused by accessing an
already received page by destination node. Shan et al. [10]
designed a page table assistant in Xen which is able to indicate
whether a VM status is in migration. With this technique Xen
can distinguish whether a page fault happens because the page
is not received or already received. Then the destination node
will not send the page fault to the source node for the pages
that have not been fault because of the migration. Therefore
the downtime due to page fault reduces effectively. In another
work, Su et al. [11] proposed an algorithm to reduce the page
fault during the post-copy migration by using the filter for page

2Node failure may happen for different reasons such as flat battery or due
to some hardware failure.

fault. This algorithm reduced the total migration time but the
downtime was almost the same with the original post-copy.
Chou et al. [12] proposed a hardware approach using high-
performance Fabric-Attached Memory (FAM) to interconnect
physical machines. Memory pages are dumped from source
node to FAM during the migration, while the VM is running
at destination node. It helps to release the source node and
recover page faults from FAM faster. These works are trying
to improve the critical page fault latency and total downtime.

Robustness has an essential role on migration performance,
if either source or destination fails during the migration, the
user may lose the whole service. Several works have tackled
source node failure during post-copy migration. Dashpande
et al. [13], [14] proposed a method to make post-copy more
robust by scattering the memory pages from the VM to
multiple nodes (consisting of the destination node and one
or more intermediate nodes). Destination node can obtain the
rest of the memory pages from the intermediate nodes. This
mechanism helps memory pages to be evicted in shorter time
from the source node which helps to lower migration failure
in case of source node failure.

Meanwhile, Fernando et al. [15] focused on reducing the
time of evicting the memory pages from source node with
low impact on VM’s performance during migration. In their
algorithm, a snapshot of the VM’s memory will be sent to a
destination or a fail-over node before the migration. By this
snapshot, recovering the VM after the failure is easier and
faster. Later, Fernando et al. [16] investigated recovering the
VM after failure. This approach uses reverse incremental check
pointing called PostCopyFT. During the migration, the desti-
nation node sends the incremental changes and execution state
to the source node periodically or upon external I/O events. It
helps to recover the almost updated VM’s memory after the
failure of the destination node from the latest checkpoint.

III. SYSTEM MODEL AND ALGORITHM DESIGN

In this section, we introduce the system model and the
algorithm for robustly migrating a service within a slice at
fog layer to maintain the Quality of Service (QoS) for IoT
devices with low-latency sensitive services.

A. System Model

We consider a network slice at the fog layer which consists
of several physical fog nodes that are distributed in a geo-
graphic area where users move around. The slice has a Slice
Manager [17] (SM) which knows the positions of all the fog
nodes, the current positions of all mobile users, and the fog
nodes that are running the user services. The slice manager
is responsible for deciding whether a service needs to be
migrated, and selecting the destination and backup nodes.

The fog nodes can be homogeneous or heterogeneous, and
each has an access point. The users are mobile IoT devices
such as UAVs and Autonomous Vehicles (AV)s hosting their
latency-sensitive services on fog nodes. We do not make any
assumption about the mobility of the users, but we assume
that the slice manager is able to obtain their trajectory at any



point in time. Fig. 2 illustrates the system model used in this
paper.

Fig. 2. System model: Mobile IoT devices hosting their services within a
slice at the fog layer

When a user gets further from a fog node and there is a
nearer fog node, its service should be migrated to the closer
node to maintain low latency [18]. The migration process can
be broken down into three steps: (i) deciding on when to
commence migration, (ii) choosing the best destination node
and (iii) performing the migration. In this work, we focus
on the last step. Hence, we assume that the decision to start
migration has already been made by the slice manager.

B. Preliminaries

Table I shows the notations that we use in this paper.

TABLE I
NOTATIONS

𝑅 Bandwidth

𝑆 Page size

𝑆request Page fault request size

𝑁 Total number of memory pages

𝑃faultrate Page fault rate

𝑁pagefault Total number of page faults

𝑁prepaging Total number of pages that can be pre-paged

𝐸 Processor state size

𝑇pagefaults Total time of sending page faults

𝑇prepaging Total time of actively sending memory pages

𝐷 Downtime

𝑇 Total Migration Time

1) Destination and Backup Node Selection: In the second
step of the migration process, the SM ranks all destination
candidate nodes to choose the best candidate as the destination
for migration. We assume that the network slice has sufficient
nodes such that there are at least two suitable candidate nodes
for migration in the trajectory of the user. The candidates can
be ranked based on QoS or QoE metrics such as bandwidth,
latency between user and node, available resources, load and
location. The highest ranked candidate will be designated
as the destination node and the second highest ranked

candidate will be considered the backup node. Our reason
for choosing the second highest ranked candidate as the
backup node is that if the destination node has indeed failed,
then the new destination node (which is the backup node) will
be the best option among all the remaining candidates to host
the service. It is worth pointing out however that this new
destination node may not provide the same level of QoS as
the original destination node, but this is still better than losing
the service for the user.

2) Pre-Paging: One downside of post-copy is the poten-
tially high page fault rate. When a service encounters a page
fault, its execution is temporarily suspended while the page is
being fetched from the source node to the destination node.
Page faults can cause latency fluctuations which can impact
latency-sensitive services. Note that if 𝑁 memory pages need
to be migrated, then post-copy will incur 𝑁pagefault.

To reduce latency fluctuations, we need to reduce page
faults. To do this, our algorithm uses pre-paging similar to
the technique proposed by Hines et al. [6] which can lower
page fault rate by 79% compared to post-copy without pre-
paging. With pre-paging, the total number of page faults is
given by

𝑁pagefault = 𝑁𝑃faultrate.

As mentioned, every page fault will cause the service to pause.
The amount of time that the service is paused is the sum of
the time needed to send the page fault request to the source
and the time needed to send the page to the destination. Note
that this formulation ignores the time needed by the source
to locate the requested page and other processing overheads.
Let 𝑇pagefaults denote the total time due to page faults. Then
we have

𝑇pagefaults = 𝑁pagefault

(
𝑆 + 𝑆request

𝑅

)
.

The downtime 𝐷 is simply the time needed to send the
execution state to the destination and the total time due to
page faults:

𝐷 =
𝐸

𝑅
+ 𝑁pagefault

(
𝑆 + 𝑆request

𝑅

)
. (1)

Note that when pre-paging is employed, a fraction of the total
number of page faults is pre-paged:

𝑁prepaging = 𝑁 − 𝑁pagefault.

The time needed to send one memory page from one node to
another is simply 𝑆/𝑅. From this, we can obtain the total time
needed to perform pre-paging, denoted by 𝑇prepaging, as

𝑇prepaging = 𝑁prepaging

(
𝑆

𝑅

)
.

We can now obtain the total migration time with pre-paging
which is just the sum of total downtime and the time needed
to perform pre-paging. This is given by

𝑇 =
𝐸

𝑅
+ 𝑁pagefault

(
𝑆 + 𝑆request

𝑅

)
+ 𝑁prepaging

(
𝑆

𝑅

)
.



Since 𝑁pagefault + 𝑁prepaging = 𝑁 , we can simplify the above as

𝑇 =
𝐸

𝑅
+ 𝑁pagefault

(
𝑆request

𝑅

)
+ 𝑁

(
𝑆

𝑅

)
. (2)

3) Fault Detection: During the migration process, the
destination node will periodically send a heartbeat message
to every other node involved in the migration. When no
heartbeat is received, this indicates that the destination node
has encountered some failure.

C. Robust Post-Copy Migration Algorithm

After selecting the destination and backup nodes, the mi-
gration begins. As shown in Fig. 3, in the first stage of
migration (A), the source node suspends the container3 and
sends the execution state to both destination and backup nodes
simultaneously. Both receivers send back an acknowledgement
message to the source node indicating that they have received
the execution state. From here on, a receiver sends back an
acknowledgement message to the sender every time it receives
a packet. With this mechanism, the sender will be aware that
the receiver has received the packet.

Fig. 3. Migration Scenario Where Destination Node Failed After Backup
Node Have Already Received All Memory Pages.

In the second stage (B), the container at the destination
node starts running and the user session is handed over to the
destination node. The source node then starts to send all of
the memory pages to the backup node. This part is similar
to cold migration, as the service is paused in both source
and backup nodes and the backup node receives memory
pages sequentially. Every time the destination node encounters
a page fault, it sends a page fault request to the source
node. In response, the source node sends the requested page

3In the algorithm description, we consider container migration but it must
be noted that the same algorithm can be applied to virtual machine migration
as well.

immediately, then actively pushes other pages close to the
requested page following the pre-paging technique [6].

One important but subtle characteristic of this approach is
that (assuming the bandwidths between the source to destina-
tion and source to backup are the same) the time required to
send all memory pages to the backup node will be less than
but close to the total migration time between the source and
destination. This surprising behaviour is due to the fact that the
transfer of the memory pages to the backup node is continuous,
whereas the transfer of memory pages to the destination node
is triggered by the occurrence of page faults.

To make the memory pages between the destination and
backup nodes consistent, the destination node sends updated
memory pages to the backup node. The memory pages from
the destination will overwrite any previously received pages
from either the source or destination nodes. The destination
node also periodically sends the processor state’s latest version
to the backup node. If the source node is able to send all
memory pages to the destination node, then the migration is
complete and the source and backup nodes should terminate
their respective containers.

The above discussion tackled the case where the destination
did not fail during the migration. In the following, we will
describe the algorithm used when the destination node fails.
For convenience, we have separated the discussion into two
cases: (i) when failure occurs after the backup node has
received all memory pages; and (ii) when failure occurs before
the backup node has received all memory pages.

1) Failure After Backup Node Received All Memory Pages:
As can be seen in Fig. 3, in the third stage (C), the backup node
has already received all memory pages from the source node as
well as the updated memory pages from the destination node.
Now, let us assume that the destination node failure occurs
in this stage. After the failure occurrs, the backup node will
resume the container and start working. The user session will
be handed over to the backup node as the new host. Because
the container at the new destination has all the memory pages
and most of these pages and execution state are up-to-date, the
user can run its service with less interruption. At this phase,
the migration is effectively complete and the user continues
running its service at the new host (D).

2) Failure Before Backup Received All Memory Pages: We
now discuss the second case when failure occurs before the
backup node receives all the memory pages from the source
node. As can be seen in Fig. 4, in stage (C) destination failure
has occurred. The failure may occur at any time from the start
of the migration close to the end of the migration. When the
failure occurs, the backup node will be assigned as the new
destination. First, the user session is handed over to it and the
container resumes. The main difference between this case and
the first case is that the backup node does not have all the
memory pages. Therefore, there is a need for the source node
to send the remaining memory pages to the backup node which
is now the new destination. The sending of the remaining
memory pages will be done using pre-paging migration [6]. As
shown in Fig. 4, in the last stage (D), post-copy migration with



Fig. 4. Migration Scenario Where Destination Node Failed Before Backup
Node Received All Memory Pages.

pre-paging is performed between the source node and new
destination node. After the last memory page has been received
by the latter, the former sends an acknowledgement message to
the new destination about the completion of sending memory
pages. Subsequently, the container at the source node will be
terminated and migration will end successfully.

3) Improving Robustness Further: It is possible to improve
the robustness of this algorithm by assigning a new backup
node whenever the designated destination node fails. For
this purpose, after the backup node is assigned as the new
destination node, the third ranked candidate node can be
assigned as the new backup to perform the robust algorithm
as described above. To achieve efficient performance there is
a need to consider the network conditions and also whether
there are other nodes in the candidate list that are suitable to
become the new backup.

IV. SIMULATION AND RESULTS

In this section, we present simulation results to validate the
effectiveness of our proposed algorithm in the presence of
failure at different points in the migration process.

A. Simulation Scenario

We considered a network slice at the fog layer consisting of
homogeneous nodes. Each node can contain several containers.
Each container hosts a service that is being utilized by a
user. The bandwidth between the fog nodes is 50 MB/s
(this is based on 5G network), and the container size is
512 MB. Furthermore, we assumed that destination candidate
nodes were already ranked based on geographical distance
and latency between the user and the candidate node, and
bandwidth between the source and the candidate nodes. The
highest ranked destination candidate has the lowest latency to
the user, and it is in the user trajectory. For our simulations,
we also considered different bandwidths between source to

destination and source to backup. This is because the highest
ranked candidate node may have the fastest bandwidth to the
source compared to the other nodes.

B. Algorithm Simulation Model

We implemented a simulation model of the proposed algo-
rithm in iFogSim2 Simulator [19], along with a non-robust
migration algorithm for performance comparison purposes.
Non-robust migration is essentially post-copy via pre-paging
migration while robust migration is the proposed algorithm
discussed in the previous section. The migration will transfer
a container from a source node to a destination node without
any backup node. When the destination node fails during the
migration, the source node recovers the service to the state
prior to migration. Hence, when the user reconnects to the
source node, as mentioned above, the memory pages and the
execution state are stale. After recovery, the source node starts
another migration to the second highest ranked destination
candidate node (new destination).

C. Simulation Parameters

We wanted to understand the performance of the proposed
algorithm in the presence of failure so we varied the time at
which the destination node failed during the migration process.
In particular, we measured the failure time as a function of the
fraction of memory pages that had been received by destination
node during the migration. Failure may occur when between
10%–90% of the total memory pages have been received by
destination node. We also varied the bandwidth between the
source and backup node from 10 MB/s to 50MB/s. We run
each scenario 30 times using the 9 different failure times and
5 different bandwidths, measuring the total migration time and
downtime.

Total Migration Time Downtime
0

20

40

60

80

100

Ti
m

e
(s

)

Without Failure
Failure After Backup Received All Memory Pages

Failure Before Backup Received All Memory Pages

Fig. 5. Average of Total Migration Time and Downtime for Robust Migration



10% 20% 30% 40% 50% 60% 70% 80% 90%
0

50

100

150

200

250

Total Memory Pages Received by Destination Node

Ti
m

e
(s

)

Non Robust Migration Downtime
Non Robust Migration Total Time

Robust Migration Downtime
Robust Migration Total Time

Fig. 6. Average of Total Migration Time and Downtime

Total migration time is the time from the start of migration
until its completion. Downtime is the total time the service is
paused due to handover and page fetching.

D. Robust Migration Performance

We investigated the performance of our scheme under
different situations. We considered three different scenarios:
(i) migration without failure; (ii) migration with failure after
the backup node received all memory pages and (iii) migration
with failure before the backup node received all memory
pages. Bandwidth between the nodes are similar at 50 MB/s,
and the container size is 512 MB. We ran each scenario
30 times and we computed the average of total migration
times and downtimes with and without destination failure. The
results are shown in Fig. 5.

It is noticeable that when the destination node fails, the
total migration time and downtime with failure is close to the
total migration time and downtime when there is no failure.
This indicates that the robust feature of the algorithm is not
adversely affecting its performance. These minimal differences
are due to the fact that copying of memory pages to the
backup node occurs simultaneously with the migration to the
destination node. We anticipate that if the bandwidth between
the source to destination and source to backup is shared, then
the migration will take longer when employing the backup
node.

E. Comparison with Non-Robust Migration

We computed the average of total migration time and down-
time for non-robust migration in the presence of destination

10% 20% 30% 40% 50% 60% 70% 80% 90%
0

200

400

600

800

1,000

Total Memory Pages Received by Destination Node

B
A

nd
w

id
th

U
tli

za
tio

n
(M

B
)

Non Robust Migration Bandwidth Utilisation
Robust Migration Bandwidth Utilisation

Fig. 7. Bandwidth Utilisation

failure. Fig. 6 shows that robust migration had lower total
migration time and downtime compared to non-robust migra-
tion. More significantly, the migration time and downtime of
robust migration increased at a much lower rate compared
to non-robust migration. When failure happens close to the
start of migration (i.e., 10%), robust migration has 10% lower
migration time and 2% lower downtime. When failure happens
close to the end of migration (i.e., 90%), robust migration
has 26% lower migration time and 23% lower downtime.
The better performance of robust migration is due to the
simultaneous transfer of memory pages from the source to the
backup node, and updated memory pages from the destination
to backup node.

To compare the cost incurred by robust migration and non-
robust migration, we calculated the bandwidth utilisation by
the two algorithms. As shown in Fig. 7, the bandwidth utili-
sation for both schemes are the same when there are failures.
This result is surprising, as we expected robust migration to
have higher utilisation due to the simultaneous transfer of
memory pages from source to destination node and source
to backup node. Note however that when failure occurs, non-
robust migration has to perform recovery, i.e., transfer memory
pages (from the start) to the new destination node. The
utilisation of this recovery is exactly the same as the utilisation
of the transfer of memory pages from source to backup node.
Of course, when no failure occurs, the utilisation of robust
migration is at most twice that of non-robust migration.



	

Ti
m

e 
(S

) 

Fraction of Memory Pages Received by Destination Node 

Fig. 8. Average of Total Migration Time for Robust Migration with Different
Bandwidth

F. Comparison with Non-Robust Migration with Different
Bandwidths

We also computed the same performance metrics in
Figs. 8, 9, 10 and 11 with different bandwidths between
the source to destination node and source to backup node.
We can see that in all scenarios, robust migration showed
significantly better performance than non-robust migration.
Moreover, when the difference between source to destination
and source to backup bandwidth is highest (i.e. the latter is at
10 MB/s), the performance difference is also at the highest.
This is a strong argument for the simultaneous transfer of
memory pages between source to destination and source to
backup. When the bandwidth of the latter is much smaller,
it is better to start the transfer as early as possible such that
when the destination node fails, the backup node would have
received a higher number of the memory pages.

The stable performance of robust migration is not surprising
as the backup node allows the migration process to continue
after the failure. The performance of non-robust migration is
adversely affected by the failure, and the effect is worse when
the failure occurs later in the migration. This is because when
the failure occurs at a later stage, the time spent on migrating
is wasted as the source has to start all over again. The use of a
backup node prevents this, although this comes at an additional
overhead.

	

Ti
m

e 
(S

) 

Fraction of Memory Pages Received by Destination Node 

Fig. 9. Average of Total Migration Time for Non-Robust Migration with
Different Bandwidth

V. CONCLUSION

In this paper, we proposed a robust post-copy migration al-
gorithm that is suitable for migrating latency-sensitive services
in the fog layer. To the best of our knowledge, this algorithm
is the first work that attempts to address the deficiencies
of post-copy with regards to robustness within the network
slice. Results show that the proposed algorithm does not
adversely affect downtime and total migration time. Moreover,
the proposed algorithm allows services to seamlessly continue
in the event of destination failure. Compared to non-robust mi-
gration, robust migration reduced total migration time between
10-26% and downtime between 2-23%. Furthermore, when
the bandwidth to the backup node is lower, robust migration
provides further improvement in both metrics. Though the
proposed algorithm may utilise more resources compared to
non-robust post-copy, it is necessary to employ such a robust
algorithm for scenarios where latency and robustness are
crucial. In the future, we will conduct thorough evaluation
of the algorithm using scenarios wherein node and network
resources (e.g. CPU and memory) are heterogeneous.

REFERENCES

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[2] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
slice mobility in next generation mobile systems: Challenges and poten-
tial solutions,” IEEE Network, vol. 34, no. 1, pp. 84–93, 2020.



	

Ti
m

e 
(S

) 

Fraction of Memory Pages Received by Destination Node 

Fig. 10. Average of Downtime for Robust Migration

[3] B. E. Mada, M. Bagaa, T. Tale, and H. Flinck, “Latency-aware service
placement and live migrations in 5g and beyond mobile systems,” in
ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), pp. 1–6, 2020.

[4] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “Move with me: Scalably
keeping virtual objects close to users on the move,” in 2018 IEEE
International Conference on Communications (ICC), pp. 1–6, IEEE,
2018.

[5] S. Filiposka, A. Mishev, and K. Gilly, “Community-based allocation
and migration strategies for fog computing,” in 2018 IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1–6, 2018.

[6] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” SIGOPS Oper. Syst. Rev., vol. 43, p. 14–26, July
2009.

[7] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,” IEEE
Communications Surveys Tutorials, vol. 20, no. 2, pp. 1206–1243, 2018.

[8] T. Le, “A survey of live virtual machine migration techniques,” Computer
Science Review, vol. 38, p. 100304, 2020.

[9] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration ate
my vm: Recovering a virtual machine after failure of post-copy live
migration,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 343–351, 2019.

[10] Z. Shan, J. Qiao, and S. Lin, “Fix page fault in post-copy live mi-
gration with remotepf page table assistant,” in 2018 17th International
Symposium on Distributed Computing and Applications for Business
Engineering and Science (DCABES), pp. 40–43, 2018.

[11] K. Su, W. Chen, G. Li, and Z. Wang, “Rpff: A remote page-fault filter
for post-copy live migration,” in 2015 IEEE International Conference
on Smart City/SocialCom/SustainCom (SmartCity), pp. 938–943, 2015.

[12] C. C. Chou, Y. Chen, D. Milojicic, N. Reddy, and P. Gratz, “Optimizing
post-copy live migration with system-level checkpoint using fabric-
attached memory,” in 2019 IEEE/ACM Workshop on Memory Centric
High Performance Computing (MCHPC), pp. 16–24, IEEE, 2019.

[13] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan, “Fast
server deprovisioning through scatter-gather live migration of virtual

	

Ti
m

e 
(S

) 

Fraction of Memory Pages Received by Destination Node 

Fig. 11. Average of Downtime for Non-Robust Migration

machines,” in 2014 IEEE 7th International Conference on Cloud Com-
puting, pp. 376–383, IEEE, 2014.

[14] U. Deshpande, D. Chan, S. Chan, K. Gopalan, and N. Bila, “Scatter-
gather live migration of virtual machines,” IEEE Transactions on Cloud
Computing, vol. 6, no. 1, pp. 196–208, 2015.

[15] D. Fernando, H. Bagdi, Y. Hu, P. Yang, K. Gopalan, C. Kamhoua, and
K. Kwiat, “Quick eviction of virtual machines through proactive snap-
shots,” in 2016 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 156–157, IEEE, 2016.

[16] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration ate
my vm: Recovering a virtual machine after failure of post-copy live
migration,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 343–351, IEEE, 2019.

[17] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5g network
slicing using sdn and nfv: A survey of taxonomy, architectures and future
challenges,” Computer Networks, vol. 167, p. 106984, 2020.

[18] H. Elazhary, “Internet of things (iot), mobile cloud, cloudlet, mobile iot,
iot cloud, fog, mobile edge, and edge emerging computing paradigms:
Disambiguation and research directions,” Journal of Network and Com-
puter Applications, vol. 128, pp. 105–140, 2019.

[19] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2: An
extended ifogsim simulator for mobility, clustering, and microservice
management in edge and fog computing environments,” Journal of
Systems and Software, vol. 190, p. 111351, 2022.


