
Blockchain Network Platform for IoT Data Integrity
and Scalability

Chung Yup Kim1,†, Bryan C.K. Ng2, Jyoti Sahni2, Normalia Samian3,‡ and Winston K.G. Seah2
1Research and Business Foundation, Sungkyunkwan University, Seoul, KOREA

yup.kim@skku.edu
2Sch of Engineering & Computer Science, Victoria University of Wellington, Wellington, NEW ZEALAND

{bryan.ng, jyoti.sahni, winston.seah}@ecs.vuw.ac.nz
3Dept of Communication Technology & Networks, Universiti Putra Malaysia, UPM Serdang, Selangor, MALAYSIA

‡corresponding author, normalia@upm.edu.my

Abstract—Decentralised technology backed by blockchain has
gained a huge popularity in recent years as it secures autonomous
ecosystems without needing a central authority. The origin of
the blockchain concept began in the financial domain using
cryptocurrency, but over the last few years, blockchain has been
applied to a variety of industries. In the era of Industry 4.0,
most industries are leveraging automation by using Internet of
Things (IoT). Despite numerous applications of blockchain in the
industries, due to the significant latency in consensus algorithm
in blockchain, businesses using IoT technology are facing perfor-
mance issues in adopting blockchain. A number of studies address
the obstacles for transaction processing performance and system
scalability, mostly based on a public blockchain. However, they
still involve centralised components, and thus fail to fully utilise
decentralisation. Therefore, a private blockchain-based IoT data
integration platform is proposed to achieve data integrity and
system scalability. Along with the lightweight IoT gateway instead
of any other additional middleware, the process and the system
configuration are streamlined. By using Hyperledger Fabric, the
design is validated and it is shown that the proposed architecture
outperforms other conventional model in IoT data processing.

Index Terms—Private blockchains, Internet of Things, IoT,
scalability, data integrity, Industry 4.0.

I. INTRODUCTION

Technology solutions in the era of Industry 4.0 are geared
towards industrial automation [1]. When it comes to Internet
of Things (IoT) environments in particular, data volume, fault
tolerance, and generation frequency are key considerations.
Full automation can only be achieved when each process
is seamlessly integrated and any single component does not
affect the service downtime. Various forms of process automa-
tion in manufacturing are accelerated by IoT. The core part of
IoT is the processing of a huge volume of data gathered from
IoT sensors to obtain useful information. It is the foundation
for the autonomous control of equipment for production us-
ing IoT data without human intervention. Consequently, the
importance of data integrity increases significantly in IoT.

IoT data have become ubiquitous in diverse environments
nowadays, collected by a vast range of IoT devices (e.g.
sensors and actuators) and sent over communication links
to backend legacy systems in manufacturing, with cloud and

†C.Y. Kim was supported by a full international Masters by Research
scholarship from the Victoria Huawei NZ Research Programme.

distributed computing being the most commonly used system
architecture for processing the IoT data [2]. However, the cen-
tralized architecture of these approaches make them vulnerable
to security problems and single point of failure. Blockchain [3]
has been identified as an appropriate technology for process
automation along with high availability. However, blockchain
has its own weaknesses in performance and scalability mainly
caused by the consensus algorithm. These weaknesses hinder
blockchain adoption in IoT environments as data are gener-
ated continuously and voluminously by IoT devices. Despite
numerous studies on performance improvements, they do not
fully utilise blockchain features as these approaches include
additional centralised components.

In this paper, we propose a private blockchain network
platform for an IoT-based facility management system in the
smart factory environment that reinforces data integrity and
ensures seamless processing under IoT-specific constraints.
This platform does not include any centralized components
and assures high transaction processing performance. The rest
of the paper is organized as follows: in the next section, we
provide an overview of key blockchain features and limitations
of conventional blockchain architectures, as well as, related
efforts to address these issues. Following which, we present
the design of our approach and discuss how we validated our
design to achieve the desired goals. Lastly, we conclude with
a summary of our contributions and discuss potential future
enhancements.

II. RELATED WORK

A significant amount of research has emerged in recent
years on the adoption of blockchain technology in IoT ap-
plications [4]. Research on blockchain has previously focused
more on the public blockchain, but the private blockchain is
preferred in IoT environments due to their speed, lower costs
and better privacy [5].

Given the limited literature specifically dedicated to private
blockchain-based solutions, this section focuses on the related
work pertaining to the applicability of blockchains in IoT
environments for data integrity, resilience and scalability,
irrespective of whether the blockchain is private or public.
Further, we organize the discussion into two distinct



Fig. 1. Enterprise blockchain system architecture

categories: a) Cloud integrated blockchain solutions and b)
Distributed file system integrated blockchain solutions.

A. Cloud integrated blockchain solutions

Leveraging the Internet, cloud services have gained
widespread adoption for processing and storing vast volumes
of IoT data. Nevertheless, relying solely on cloud can expose
the hosted services to inherent vulnerabilities of the Internet
and may not ensure data integrity and availability, which is a
crucial requirement for IoT applications [6]. To address this
challenge, a cloud blockchain integration approach is many a
times utilized, where cloud facilitates distributed storage for
IoT applications, while blockchain ensures data integrity and
guards against data tampering.

Liu et al. [7] addressed IoT data integrity verification in
cloud environments and proposed a blockchain based data
integrity service framework for IoT data stored through a cloud
storage service. They made a number of assumptions such as
51% attack is rarely possible and blockchain consensus can
be reached within a short time which may not be currently
viable in all kinds of networks.

Liang et al. [8] proposed a blockchain-based IoT data
integration model for communication between drones, a good
example of wireless IoT devices and control systems for data
assurance and resilience. Cloud computing was used to store
and audit the data that was communicated between drones and
the control system, while blockchain networks were used to
ensure the integrity of the data.

Xiang et al. [9] proposed a blockchain-based decentral-
ized authentication and access control protocol that integrates
with edge and cloud computing to enhance e-health systems.
They employed a practical Byzantine fault-tolerant (PBFT)
negotiation mechanism to improve the negotiation process.
However they validated their approach using a set of BAN

rules, without any significant empirical evaluations that are
essential for testing scalability.

Pon and V [10] proposed SECure LearningChain (SEC-
LearningChain), a design that combines blockchain technol-
ogy, machine learning (ML), and cloud computing primitives
to facilitate secure data transactions in a Peer-to-Peer network
and efficient data sharing services.

Li et al. [11] proposed a blockchain-assisted secure storage
scheme for managing logistics records within a smart logistics
system, which is backed by IoT devices. Further they em-
ployed edge computing to alleviate the burden on the cloud
server.

While the above approaches may ensure data integrity, the
deployment of both blockchain and the cloud can lead to
unnecessary data replication, which may result in data process-
ing latency. Such architectures are not able to fully facilitate
decentralization as the cloud system and other centralized
controlling systems are vulnerable to a single point of failure.

B. Distributed file system integrated blockchain solutions

To overcome the challenges posed by cloud integrated
blockchain models, recent research has focused on creating
purely distributed solutions utilizing distributed file systems,
that ensure data integrity in IoT platforms.

Hang and Kim [12] proposed an IoT blockchain platform to
preserve IoT sensing data integrity. They used permissioned
private blockchain to validate the effectiveness and resilience
of their concept. However, they also deployed an additional
server to control IoT devices and to send transactions, negating
the benefits of the decentralised architecture.

Oktian et al. [13] proposed a general-purpose framework,
SIGNORA, for provisioning dataflow integrity in an untrusted
data pipeline. The proposed approach is versatile and appli-
cable across a wide range of data payload sizes. It however



suffers from performance and scalability issues as the payload
size and the number of chains increase.

Hanget al. [14] designed a blockchain based platform for
fish farmers to provide them with secure storage capabilities
and to safeguard agriculture data from any unauthorized tam-
pering. Although a proof-of-concept was demonstrated, the
simulation environment used for testing had limitations and
may not be entirely reliable for addressing scalability-related
issues.

Sharma et al. [15] proposed a blockchain-based IoT archi-
tecture incorporating the Identity-Based Encryption (IBE) al-
gorithm, to enhance the security of healthcare data. The model
however suffers from high computation time and significant
processing overheads.

Kumar et al. [16] proposed an integration of deep learning
with blockchain architecture to identify intrusions more ac-
curately in the IoT-enabled healthcare system network. Using
their proposed estimable Proof of Work (ePoW) consensus
algorithm, the detection achieves high accuracy percentage.
However, the work does not provide analysis on the proposed
ePoW in terms of computational power consumption and
energy efficiency which are salient weaknesses of PoW that
are not suitable for low-powered IoT devices.

Dorri et al. [17] proposed a lightweight blockchain pro-
cessing by releasing the memory burden of nodes based on the
cache system. It enables IoT users and service providers to put
an expiry time for the old transactions which could optimize
the memory usage in large-scale IoT networks. Although
memory usage has shown to be decreased by about 25%,
however, the trade-off is that the optimization may be suitably
deployed for limited types of non-crucial applications that
need not any future referencing or auditing at all. This work
still needs to consider an IoT-specific model that is highly
scalable for wider adoption.

In this work we propose a novel blockchain platform
tailored for IoT environments that is capable of providing
enhanced data integrity and scalability while minimizing com-
putation costs, outperforming existing solutions in the field.

III. BLOCKCHAIN-BASED NETWORK DESIGN

We now present the design of our enterprise blockchain
system for IoT-based production line in a manufacturing
industry.

A. System Architecture

The system architecture is as shown in Fig. 1. It includes IoT
devices to detect environmental state information and external
stakeholders such as hardware parts suppliers, distributors, and
logistics companies. Generic application of the blockchain
to the public is mostly permissionless, but in many IoT
enterprises, devices are deployed by administrators. Therefore,
it is reasonable that permissioned private network with an
administrator node is considered for our proposed blockchain-
based IoT network. All the entities interact with each other
and share information on the blockchain.

Fig. 2. Workflow of the proposed architecture

• A peer is a basic entity that participates in a blockchain.
Among peers, there exist special nodes, viz., anchor
peers, endorsers and orderers. Anchor peers are literally a
sort of representatives that propagate information of each
peer, such that at least one anchor peer exists in every
organisation. Endorsers perform transaction verification
whereas orderers execute transactions sequentially.

• Except the orderers, all the peers on the blockchain share
the ledger database. They replicate the transactions and
configuration data locally.

• An entity is designated as a client if it performs trans-
actions with the network but does not join the network.
Clients are IoT devices such as IoT sensors, IoT gate-
ways, actuators, and other devices with mobility to send
data frequently. IoT sensors acquire data related to envi-
ronmental states and send them to IoT gateways. Then,
the IoT gateways submit transactions to the blockchain,
the results of which invoke actuators’ action.

• Since it is a private blockchain, administrative tasks are
limited, such as, initial network configuration, member-
ship management, and network channel update.

B. Workflow

The workflow of the proposed system focuses on sensor data
processing to control corresponding actuators in a production
line, as depicted in Fig. 2.

1. IoT sensors gather environmental data, such as, temper-
ature, humidity, power levels, water volume, vibration,
and dust density. They are continuously transmitted to
geographically nearest IoT gateways or tightly coupled
IoT gateways.

2. IoT gateways collect and filter all the data from sensors,
and forward appropriate information in order to control
facilities for machinery. IoT gateways are authenticated
by Certificate Authority (CA) using X.509 certificate
issued when they are enrolled to the network, so that the
transactions from the gateways with the certificate can be
authorised to process transactions.

3. IoT gateways upload all the data to distributed and
clustered peer-to-peer storage systems to support the
accounting compliance and audit trail of an organisation.



Fig. 3. Transaction flow

4. IoT gateways also concurrently transmit sensed data to
the blockchain. The data are filtered by gateways accord-
ing to predefined thresholds. By filtering the data, the
workload on blockchain can be enormously eased. Only
anomaly data are processed further onto blockchain. The
data selection criteria can be changed to meet ongoing
requirements.

5. Once a transaction from the gateway has successfully
completed, the operational status of an associated actuator
will be updated on the blockchain and the result will be
sent to the actuator application.

6. Lastly, facility management systems take proper actions
to cope with environmental variation, based on the result
from the blockchain. The facilities are operated by actua-
tors, which are another form of IoT devices. Applications
on the actuators listen to the transaction results from the
blockchain at all times and respond promptly.

7. Data from gateways are processed and integrated onto the
blockchain, so that the transaction history may be traced
back in the future while immutability and transparency
are ensured.

C. Model System Design

To demonstrate the viability of the proposed architecture, we
developed a proof-of-concept (PoC) system which comprises
four key aspects. Firstly, the transaction flow more specifically
shows which component executes what tasks in sequence. In
the proposed flow, essential system components for the PoC
are illustrated. Secondly, a physical system architecture for
the PoC is outlined. In this subsection, how to deploy each
component physically is shown inclusive of applied technolo-
gies. Thirdly, processes that take place in the smart contract on
blockchain for the PoC is explained. This subsection deals with
the algorithm in the smart contract. Lastly, client application
and its integration with blockchain are described. There exist
two types of clients for the PoC. One is the IoT gateway and
the other is the actuator. These clients are not participants of
blockchain, so that they should interface with blockchain in a
certain way.

1) Transaction Flow: Figure 3 depicts the workflow in detail
by describing each task on each component with the executing
orders.

It is assumed that every IoT gateway is enrolled with CA
servers, as shown in Fig. 3 step (i). For this, an internal CA
server is used. For the enrollment, the CA server provides with
X.509 certificate, cf: Fig. 3 step (ii), which is stored in the file
system on each gateway in the form of cryptographic public
and private keys, in this architecture, a digital wallet. For the
processing of a transaction, it flows as follows:

1. IoT sensors transmit data periodically to IoT gateways.
2. IoT gateways upload the sensed data to the Inter-

Planetary File System (IPFS)1 for compliance and audit
purposes.

3. When an IoT gateway detects abnormal or unusual envi-
ronmental data, for instance, when the temperature goes
over the predefined upper threshold, the IoT gateway trig-
gers the relevant transaction which is defined in a smart
contract on the blockchain; to invoke the transaction, the
IoT gateway retrieves the certificate from its digital wallet
to be authorised by the blockchain.

4. The IoT Gateway, as a client on the blockchain, then
submits the transaction using the deployed Application
Module.

5. The Application Module sends a message for the transac-
tion to endorsing peers defined in the blockchain gateway
API’s connection profile through the gateway.

6. The endorsing peers execute the transaction using the
deployed smart contracts on the blockchain but the data
are not updated on the state database or the blockchain.

7. Based on the execution in the endorsing peers, they
send back the results and if the transaction is validated,
including their signature along with the results, to the
Application Module.

8. The Application Module forwards the results from the
endorsing peers to the IoT gateway. In case of data query

1https://ipfs.tech/



Fig. 4. Proof-of-Concept (PoC) system configuration

rather than the update in general usages of the blockchain,
the process will end at this step.

9. Once the Application Module has received the results and
the signature, it broadcasts the transaction to be ordered.

10. After the transaction has been ordered and a block has
been assembled by the ordering service, the block is sent
to committing peers.

11. The committing peers update the state database and
append the new block to the blockchain.

12. Finally, the committing peers notify the Application Mod-
ule that the transaction has been processed.

2) Physical System Configuration: As shown in Figure 4, the
Linux server represents the whole blockchain-based system of
an organisation based on the proposed architecture. The whole
system is streamlined with only essential components. For the
purpose of validation, IoT sensor data generation is simulated
as the design focuses on the data integration on blockchain
rather than on how to gather sensed data from sensors. It is
assumed that all the data from IoT sensors are transferred to
IoT gateways.

The IoT gateway uploads all the sensed data to a public
decentralised peer-to-peer (P2P) file system, namely, IPFS.
With minimum criteria, the IoT gateway separates the data that
need to be processed further on blockchain from the ordinary
data which are discarded. It should be noted that all the sensor
data are already stored in IPFS even though the normal data
with the usual state are discarded in the IoT gateway.

The most popular enterprise-grade private blockchain, Hy-
perledger Fabric2 is adopted to verify the proposed design. As
Hyperledger Fabric is available as Docker3 images, Docker
containers host each system component with relevant software

2https://www.hyperledger.org/use/fabric
3https://www.docker.com/

libraries respectively. Each Docker container is a set of running
software that includes application codes and all the dependen-
cies, so that developed applications can be deployed quickly
and reliably to other platform regardless of the environments
where the applications should run on. It is regarded to be
an enhanced and lightweight virtualisation concept. The set
of packages is distributed in the form of Docker images.
On top of the Docker container images, platform-dependent
executable binaries from Hyperledger Git repository will gen-
erate initial materials, such as channel artifacts for blockchain
network credentials and the genesis block at which blocks
begin to be appended.

For the consensus on transactions, there must be an ordering
service. Although there will be multiple orderers in practice,
the PoC deploys one orderer to model its ordering operation.
In the case of peer nodes, however, multiple nodes are running
on discrete Docker containers. The peer node represents a
medium on blockchain processing IoT sensor data that are
transmitted from IoT gateways. In order to receive data from
a considerable number of IoT gateways located in each sector,
multiple peer nodes exist. These peer nodes are the participants
of the blockchain while IoT devices are not. Peers elected as
an endorser among all verify transactions and decide whether
to acknowledge them or not. The multiple peers also enable
load balancing and fault tolerant processing.

Each peer hosts the ledger replica and smart contracts.
As the state database, a dedicated NoSQL key-value store
structure database (DB) will run on each peer node. The
block of the network is stored on the local file system of
each peer node, which is a disk volume of each container.
For the certificates to authenticate each IoT gateway on the
network, this is done by a central authority (CA) system
provided by Hyperledger running on an independent con-
tainer. Administrative tasks on the system console will be



Fig. 5. IoT sensor data processing algorithm flow chart

done through the command line interface container. The tasks
involve the network configuration setting, system operations,
such as manual update, and tracing logs.
3) Transaction Processing on Blockchain: Figure 5 shows the
actuator control procedure in the smart contract for PoC by
using state update function with IoT sensor data as an input.

1. IoT gateway sends the sensor data to blockchain by a
client application through the application module and
blockchain gateway. Then, the data are processed by a
smart contract which basically checks input variables.

2. Input data integrity is validated by SHA256 hash func-
tion. The hash value is appended to the data which
is composed of IoT gateway ID, actuator ID, sensed
timestamp, and sensed data signal. In the smart contract,
the hash value is calculated again with only data part and
compared with the hash in the received data packet. If
both values are equal, the next step will be executed, or
the transaction is revoked otherwise.

3. Next, the time at which sensor data were acquired, de-
noted as “sensed time” in Fig. 5, is assessed. Delayed data
with time difference beyond permissible time tolerance
compared with the current system time are discarded.
This returns an error and the transaction ends. Outdated
data do not need to be processed any further since they
are no more valid and the actuator should only react to
the current environment.

4. After the above data validation, the smart contract re-

trieves the current actuator status. Based on the prescribed
minimum and maximum threshold values, it determines
whether the actuator should be activated/enabled or not.
Since smart contract can only return the transaction ID
as a successful result of a transaction, it triggers an event
to associated application clients or actuators for further
processing. On the other hand, if no action is needed, the
actuator can also be deactivated/disabled.

4) Client Application Integration: Clients in the PoC are
IoT gateways and actuators. IoT gateways transmit sensed
environmental data to both IPFS and blockchain. Actuators are
the controllers in a facility, e.g. factory, acting appropriately
according to the result of blockchain processing. They are
not the participating peer nodes on blockchain, and require
an interface method in order to interact with the blockchain.

A client node is registered and enrolled with a CA a priori,
giving it the credentials to access the blockchain and submit
transactions with an authorised signature. These credentials
consist of a certificate, and a pair of public and private keys
in a cryptographic form, stored in a digital wallet.

The digital wallet can be implemented using several meth-
ods, such as, local filesystem, in-memory, hardware security
module (HSM), and local database system. The local filesys-
tem is chosen for the PoC as it is easy-to-use and can be
mounted anywhere on the network.

Hyperledger Fabric provides a Software Development Kit
(SDK) for building client applications that interact with
blockchain [18]. The blockchain gateway provided by Hyper-
ledger Fabric is an API module that enables client applications
to interact with blockchain. Once the client applications have
been connected with the gateway, the gateway manages all
the subsequent interactions on behalf of the client applications
based on the predefined configuration.

IV. VALIDATION

Blockchain has been adopted in many industries for the past
few years, most adoptions have faced challenges with perfor-
mance and scalability, with inherent drawbacks such as high
latency, high configuration complexity, etc. The blockchain
concept is based on decentralization, where all participants
(peer nodes) are expected to process transactions instead of
just one entity as in centralized systems. While deploying more
computing resources is expected to improve the performance
in traditional distributed systems, blockchains have a critical
component, the consensus procedure, which require peer nodes
to come to a consensus on each transaction. In this case, more
resources do not necessarily guarantee better performance.

The testbed set up for the validation is based on the
configuration shown in Figure 4. The Linux server is an
Intel i7-6700 @ 3.40Ghz CPU and 8GB main memory. The
operating system is Ubuntu 18.04.3 LTS. For the private
blockchain package, Hyperledger Fabric 1.4.4 LTS is used.
For the IoT gateway, which emulates a client application, a
Raspberry Pi 3 is used. It is widely used as an IoT device
since it is lightweight and versatile [19].



TABLE I
HARDWARE RESOURCE CONSUMPTION PER NODE CONTAINER (2 PEERS)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 17.70 14.09 15.03 6.98
PEER-1 135.30 108.64 27.14 14.95
PEER-2 136.50 119.86 27.39 15.23

SUM (MEM) 289.50 242.59
MAX (CPU) 27.39 15.23

In IoT environments, hundreds or thousands of devices are
connected to the network, and peer nodes should have enough
capacity to handle as many devices as possible. Otherwise,
the alternative is to deploy more peer nodes on the network.
However, the more IoT devices a peer node covers, the higher
the risk of failure in that group of devices becomes. On the
other hand, adding more peer nodes cause the performance
problem as mentioned above. Therefore, it is crucial to balance
the workload distribution. Our functional tests have verified
the proposed architecture. In this section, we focus on the test
that assess the performance (latency) and scalability.

A. System Resource Utilisation

In the experiments, Docker containers for each blockchain
node have been implemented on a single machine as they
represent virtually independent servers with many advan-
tages such as readiness to deployment without adjustment
of computational environments. In practice, those containers
can be distributed to multiple servers or each container can
be placed on a dedicated server separately. Containers also
can be replaced by the native installation without using
virtualisation techniques. The deployment method and the
resource assignment rely on business requirements and trans-
action volume in enterprise. To size and dimension hardware,
basic measurement of resource consumption in blockchain is
essential. Therefore, it is worthwhile to find hardware resource
utilisation for blockchain configuration.

Tables I, II, and III show computation resource (CPU) and
main memory consumption per a Docker container which
hosts each blockchain component node. The tests with two,
four, and six peer nodes with LevelDB were experimented,
each of which used one ordering service and one CA host
using state database update transaction. The host machine
is equipped with i7-6700 CPU @ 3.40GHz and 8GB main
memory.

When a chaincode (or “smart contract”) is instantiated on
a blockchain, it is launched by a new container for one
endorsing peer node, and if a transaction defined in the
chaincode is submitted, new containers are created dedicated
to each endorsing peer node. These containers for chaincode
instantiation consume very little system resources, and can be
ignored in the light of main components. The CA node which
controls membership and command line interaction node for
administrators can also be neglected in terms of resource
consumption as they are used only for a certain purpose

TABLE II
HARDWARE RESOURCE CONSUMPTION PER NODE CONTAINER (4 PEERS)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 18.60 14.46 14.33 6.67
PEER-1 129.00 113.21 22.00 12.88
PEER-2 127.00 103.47 22.13 12.88
PEER-3 139.00 109.67 21.82 12.73
PEER-4 128.90 121.09 22.15 12.96

SUM (MEM) 542.50 461.90
MAX (CPU) 22.15 12.96

TABLE III
HARDWARE RESOURCE CONSUMPTION PER NODE CONTAINER (6 PEERS)

COMPONENT MEM MEM CPU CPU
(Max. MB) (Avg. MB) (Max. %) (Avg. %)

ORDERER 19.60 15.58 15.41 7.24
PEER-1 148.30 111.82 19.60 11.85
PEER-2 145.40 109.56 20.32 11.99
PEER-3 145.60 111.67 19.05 11.82
PEER-4 148.10 115.94 18.74 10.63
PEER-5 143.50 122.92 19.09 10.79
PEER-6 139.30 122.06 19.31 10.43

SUM (MEM) 889.80 709.55
MAX (CPU) 20.32 11.99

occasionally. Therefore, only the usages of each peer node
and ordering service node are investigated.

However, in practice, there are a few more things to be con-
sidered. If CouchDB4 is used, it runs on a discrete container, so
that additional resources should be taken into account for the
ledger database implementation. The role of each peer node
influences the total resource consumption. Whether a peer is
an endorser or not, or which endorsement policy is applied to
the network affects the total performance, as it determines the
utilisation of the peer node.

All the three scenarios of different number of peer nodes
showed average memory consumption of 115 Mbytes and
around 15% CPU utilisation. Memory usage is related to the
application, which is a container in the experiment. When the
application starts, it reserves memory for use, which generally
is similar across all the cases.

In the case of CPU usage when the number of peers is
smaller, there is a slightly higher utilization, however, as the
number of peers increases, the CPU usage improves. It is
associated with the endorsement policy. It is set to ‘OR’ among
endorsers in the experiment based on the scenario, so that the
transaction will be processed in one peer node while all the
peer nodes interact with each other for the service discovery.
Thus, all the submitted transactions are eventually spread out
evenly to all peer nodes.

In contrast, in the case of ‘AND’ policy, since all the
endorsing peer nodes should process the proposed transaction
and verify it, the CPU usage in each peer node becomes higher.
Hence, in this case, it is evident that the more peers exists,

4https://couchdb.apache.org/



Fig. 6. Latency measurement in components

the worse the overall performance becomes as an inherent
downside of decentralisation.

In the case of six peers, as shown in Table III, each peer
node consumes up to 150 Mbytes of memory at its maximum
usage, which sums up to nearly 1 GBytes in total, whereas
around 700 Mbytes in total is used on average. In the case
of CPU utilisation, we show the maximum value among the
different peers as the utilisation expressed as a percentage
cannot exceed 100%. Besides, since each peer node may
discretely reach its own maximum CPU usage apart from
others’ behaviour.

Nevertheless, during the peak period of a particular peer
node, it may utilise CPU resources intensively, such that other
nodes are vulnerable to the shortage of the resources under
multi-threading environments. This increases the CPU wait
time, which in turn raises the likelihood of the contention
for CPU. Therefore, it is still crucial to consider each node’s
maximum usage for predictive monitoring. Furthermore, if
every node happens to utilise the CPU at its maximum
at the same time by any chance, the system will undergo
serious delay in processing any transactions. In particular, the
maximum CPU usage will be an important factor in hardware
sizing.

On the other hand, in the case of memory usage, the
accumulated value is correct compared with CPU usage. It is
simply because the resource utilisation methods are different.
In terms of memory usage, applications allocate physical mem-
ory addresses when they start to run. In the experiment, the
applications are the peer node containers. The applications are
always up and running, so that regardless of user transactions,
the reserved memory areas remain exclusively assigned.

Thus, under the similar environments with such hardware
resources as the experiment, it is recommended that fewer than
six peers are to be implemented on a single host. Otherwise,
an additional hardware resource should be deployed.

B. Latency

The time required to execute a transaction is related to
the size of blockchain, and the number of peer nodes in the
blockchain. If the number of participants grows, the latency
for reaching consensus will increase proportionally. Scaling up

the resources on a peer node will accelerate the processing,
but adding peers to a blockchain deteriorates the performance.

The overall latency comprises the components as shown in
Fig. 6. The total response time Lclient is composed of the la-
tency from a client application through blockchain processing
and back to the application as shown in Eqn. (1).

Lclient = (Lgateway + LgatewayNW + Lpeer + LpeerNW

+ Lblockchain) + (Lblockchain + LpeerNW

+ Lpeer + LgatewayNW + Lgateway) (1)

The latency in blockchain core section LBlockchain Core is deter-
mined as Eqn. (2).

LBlockchain Core = (Lpeer + LpeerNW + Lblockchain)

+ (Lblockchain + LpeerNW + Lpeer) (2)

Special attention is paid to Lgateway (latency in the client node)
and LBlockchain Core (latency in the blockchain) in the measure-
ments as they are affected by the proposed architecture.

The sensing time Lsensor is entirely dependent upon the
computational resources of the sensor. Similarly, the latency
components LsensorNW, LgatewayNW, and LpeerNW correspond
to the traversal times through the physical network sections
between nodes which are dependent on the network bandwidth
and the routing configuration. They are the same for different
blockchain-based approaches and, hence, we excluded them
in the measurements and focused on the blockchain-related
aspects.

In Fig. 6, the actuator, another client in the whole system
landscape, is not shown. The actuators access blockchain in
the same way as IoT gateways do as they are all external
clients of blockchain. The actuator application retrieves locally
stored private key to call the blockchain client gateway API to
access blockchain. Then, it waits for the event which is emitted
from blockchain whenever the ledger update transaction is
successfully processed.

Since the actuator is supposed to take immediate action
based on the messages from blockchain, an event listening
daemon process of the actuator should be constantly run.
Otherwise, the actuator is triggered after the event arrives at
every time, which causes a significant delay in the processing.
Therefore, when the application receives the response from
blockchain, it can be regarded that the client in other side, the
actuator, has already received the result.
LBlockchain Core, the blockchain transaction processing latency

was measured using Hyperledger Caliper and then compared
with the total round-trip processing time Lclient from the client
node. This enables the measurement of the latency LGateway
which is highly variable depending on the real environments.
This approach is quite significant as the latency of each
interval can be analysed respectively. Subsequently, the hot-
spot can be easily found, and based on the analysis, fine-
grained reconfiguration can be achieved.

Fig. 7 shows the average latencies for each case are around
0.1 seconds with a slight variation, whereas the maximum



Fig. 7. Update transaction latency in the blockchain segment

Fig. 8. Average update transaction latency comparison between client and
blockchain components

latency values grow as the client number increases. As the
number of concurrent transactions increases, the possibility of
contention naturally increases, so does the maximum latency.
However, these are outliers and have little effect on the average
calculation.

Fig. 8 compares LBlockchain Core and Lclient as shown in Fig. 6.
For the comparison, the average latency in the ledger data
update transaction was used. The difference between the left
column LBlockchain Core and the right column Lclient in each pair
becomes the processing time in the client node including the
network latency LgatewayNW between the client node and the
blockchain. Since LgatewayNW is less than 1 millisecond in the
simulation environment connected by a wired link, it can be
assumed to be negligible, but in practice if the network has
very low bandwidth or if a wide area network is used, the
latency in this component should be examined carefully so as
to avoid undesirable delay.

In scenarios with less than 150 clients, the difference
between LBlockchain Core and Lclient is small, but in the case of
150 and 200 clients, the gap increases to 0.043 seconds. In the
case of 250 clients, the difference becomes more significant.
As the number of clients increases, so does the average latency
in Lclient. The increase in Lclient is larger than in LBlockchain Core
as the network sessions need to be established in the client

Fig. 9. Average update transaction latency comparison between our Proposed
system and the Selected comparator [12]

node. Since the latency, Lclient in scenarios with fewer clients
is less affected by the delay in network connection, the gap
between LBlockchain Core and Lclient is small. On the contrary,
the larger number of clients makes a big difference in latency
caused by the network interface contention. However, the
latency LBlockchain Core in blockchain is stable. With more than
250 clients, Lclient soared and with 350 clients the simulation
environment became inconherent, but LBlockchain Core continued
to show only a little increase in both cases.

Among related works, the proposed system by Han and
Kim [12] is closest to this research. It is based on a pri-
vate blockchain. The differences are it is equipped with an
IoT server for device management and a REST API server
for interfaces. In comparison with their work, our proposed
architecture is faster up to 26 times in 50-client scenarios and
9.8 times in 250-client scenarios as shown in Fig. 9.

Our proposed streamlined architecture excludes any addi-
tional management servers for IoT devices and middleware
to relay IoT data. Instead, it only involves IoT gateways, on
which client applications and connection modules are imple-
mented. Multiple IoT sensors are coupled with the dedicated
IoT gateways by either wired or wireless connection, and IoT
gateways transmit the sensed data directly to the blockchain.
Our proposed architecture does not contain any centralised
system component, so that no single point of failure exists.
Therefore, the proposed architecture outperforms the existing
study [12] in terms of latency as well as robustness.

V. CONCLUSIONS

This paper has proposed a blockchain-based platform to
be utilised in an IoT environment to ensure data integrity
and scalability while ensuring high system performance. To
demonstrate the concept, a facility management system based
on IoT sensor data in manufacturing was selected as a use
case. Performance evaluation results showed that the mean
transaction latency is around 100 msecs. Compared with
a similar private blockchain-based approach, our proposed
system performs close to 10 times faster in scenarios of 250
clients, and even faster performance with fewer clients.



In our study, we have assumed a generally safe non-hostile
environment. One aspect for future research is the robustness
of the proposed architecture under possible attack scenarios
and what additional defense measures are needed. Another
future direction of this work would look into developing a
hierarchical and scalable blockchain-based trust management
protocol with mobility support in massively distributed IoT
systems, where mobile smart objects disseminate trust infor-
mation on service providers to the blockchain network to
ensure greater integrity and scalability.

ACKNOWLEDGMENT

This paper was supported by the Korea Institute of Design
Promotion (KIDP) grant funded by the Korea Government
(MOE, MOTIE) (Design and Emerging Technology Integrated
Education Program for Cultivating Innovative Talents).

REFERENCES

[1] S. Suuronen, J. Ukko, R. Eskola, R. S. Semken, and H. Rantanen,
“A systematic literature review for digital business ecosystems in the
manufacturing industry: Prerequisites, challenges, and benefits,” CIRP
Journal of Manufacturing Science and Technology, vol. 37, pp. 414–426,
2022.

[2] J. Mocnej, W. K. G. Seah, A. Pekar, and I. Zolotova, “Decentralised
IoT architecture for efficient resources utilisation,” IFAC-PapersOnLine,
vol. 51, no. 6, pp. 168–173, 2018.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Whitepa-
per, 2008.

[4] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things:
A Survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–
8094, 2019.

[5] M. Jo, K. Hu, R. Yu, L. Sun, M. Conti, and Q. Du, “Private Blockchain
in Industrial IoT,” IEEE Network, vol. 34, no. 5, pp. 76–77, 2020.

[6] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng,
“Survey on blockchain for Internet of Things,” Computer Communica-
tions, vol. 136, pp. 10–29, 2019.

[7] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain Based Data
Integrity Service Framework for IoT Data,” in Proceedings of the IEEE
International Conference on Web Services (ICWS), pp. 468–475, June
2017.

[8] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance and
resilience in IoT using blockchain,” in Proceedings of the IEEE Military
Communications Conference (MILCOM), pp. 261–266, Oct 2017.

[9] X. Xiang, J. Cao, and W. Fan, “Decentralized authentication and access
control protocol for blockchain-based e-health systems,” Journal of
network and computer applications, vol. 207, p. 103512, 2022.

[10] P. Pon and K. V, “Blockchain based cloud service security architecture
with distributed machine learning for smart device traffic record transac-
tion,” Concurrency and Computation: Practice and Experience, vol. 34,
no. 3, p. e683, 2022.

[11] H. Li, D. Han, and M. Tang, “A privacy-preserving storage scheme for
logistics data with assistance of blockchain,” IEEE Internet of Things
Journal, vol. 9, no. 6, pp. 4704–4720, 2021.

[12] L. Hang and D.-H. Kim, “Design and implementation of an integrated
IoT blockchain platform for sensing data integrity,” Sensors, vol. 19,
no. 10, p. 2228, 2019.

[13] Y. E. Oktian, S. Heo, and H. Kim, “SIGNORA: A Blockchain-Based
Framework for Dataflow Integrity Provisioning in an Untrusted Data
Pipeline,” IEEE Access, vol. 10, pp. 89714–89731, 2022.

[14] L. Hang, I. Ullah, and D.-H. Kim, “A secure fish farm platform based
on blockchain for agriculture data integrity,” Computers and Electronics
in Agriculture, vol. 170, p. 105251, 2020.

[15] P. Sharma, N. R. Moparthi, S. Namasudra, V. Shanmuganathan, and
C.-H. Hsu, “Blockchain-based IoT architecture to secure healthcare
system using identity-based encryption,” Expert Systems, vol. 39, no. 10,
p. e12915, 2022.

[16] P. Kumar, R. Kumar, G. P. Gupta, R. Tripathi, A. Jolfaei, and A. K.
M. N. Islam, “A blockchain-orchestrated deep learning approach for
secure data transmission in iot-enabled healthcare system,” Journal of
Parallel and Distributed Computing, vol. 172, pp. 69–83, 2023.

[17] A. Dorri, S. S. Kanhere, and R. Jurdak, “MOF-BC: A memory optimized
and flexible blockchain for large scale networks,” Future Generation
Computer Systems, vol. 92, pp. 357–373, 2019.

[18] “Hyperledger Fabric SDK for node.js Module.” Available from
https://hyperledger.github.io/fabric-sdk-node/release-1.4/module-fabric-
network.html (Accessed on 01/07/2023).

[19] D. Ryu, “Development of IoT Gateway based on Open Source H/W,”
The Journal of the Korea institute of electronic communication sciences,
vol. 10, no. 9, pp. 1065–1070, 2015.


