
Balanced Offloading of Multiple Task Types in
Mobile Edge Computing

Ye Zhang, Xingyun He, Jin Xing, Wuyungerile Li∗∗
School of Computer Science

Inner Mongolia University
Hohhot, China

∗∗gerile@imu.edu.cn

Winston K.G. Seah
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

winston.seah@ecs.vuw.ac.nz

Abstract—The continuous development of mobile networks
poses new challenges for end devices with limited computing
power. Mobile or multi-access edge computing (MEC) has been
proposed for providing the computing resources close to the end
devices that need them. However, in real network environments,
MEC servers have limited computing resources that need to be
shared among many devices and efficient resource allocation is
critical to ensure that the limited resources are optimally used. In
view of this, we propose the Balanced Offload for Multi-type Tasks
(BOMT) algorithm. The tasks to be offloaded are first prioritised
according to their type, size and maximum tolerable delay; then
different offloading algorithms are executed for different priority
tasks according to the level of the priority and the current load on
the MEC server. Following which, the optimal offloading policy
is determined iteratively. Simulation results show that BOMT
can effectively reduce system latency, increase user coverage and
offload task completion rates.

Index Terms—MEC, compute offload, load balancing, multi-
class services.

I. INTRODUCTION

The massive growth of 5th generation and beyond (5G/B5G)
mobile networks has triggered a proliferation of Internet ser-
vices and applications, which increases the demand for data
storage and processing, posing even greater challenges to
smart mobile devices. This motivated the development of fog
computing (FC) and mobile edge computing (MEC) [1] to pro-
vide cloud computing resources close to the end devices. The
concept of Mobile Edge Computing emerged in 2013 and was
later officially launched by the European Telecommunications
Standards Institute (ETSI) in 2014 [2]. The basic idea is to
migrate the cloud computing resources from inside the mobile
core network to the edge of the mobile access network, so that
the network edge has the capability to process mobile terminal
applications. That is, MEC technology distributes computing
and storage resources near MTs, which can overcome their own
resource shortage by transferring functions such as computing
and storage to MEC servers.

As the variety of mobile devices increases, the types of
mobile applications also increase. Furthermore, real network
environments are often complex and diverse, with multiple
types of tasks, such as voice calls, video streaming, and file

∗∗Corresponding author

transfers. Moreover, the distances between different tasks and
their corresponding MEC servers are also different, giving rise
to a range of tasks with diverse service requirements.

Therefore, we focus on the problem of offloading multi-
ple types of tasks in mobile edge computing, and propose
an efficient Balanced Offload for Multi-type Tasks (BOMT)
algorithm to maximise the number of users served and to meet
the needs of different users, ensuring that high priority tasks
are able to reduce their task computation times, thus satisfying
their latency requirements, and ensuring that low priority tasks
also complete their computation within the latency allowed.
Our key contributions are:

• A prioritisation scheme that takes into account factors,
such as, task data size, maximum tolerated latency and
task type;

• An iterative method that computes the offloading schedule
based on the tasks’ priority level and server loads.

In the next section, we outline the work related to load
balancing and task prioritisation in MEC offloading. We then
build a real network environment based on an LTE network
with the aim of observing whether task type and size may have
an impact on offloading decisions. With the data measurements
in the real scenario, we can better understand the network
architecture of mobile edge computing, and thus design simu-
lation experiments that are closer to the real scenario to verify
the superiority of the proposed algorithm. This is followed by
a detailed discussion of our proposed BOMT algorithm and
related concepts. Then, we validate our BOTM algorithm and
compare it with different offloading algorithms. The analysis
of the results shows that the BOMT algorithm can balance the
load of MEC servers, improve user coverage, and reduce task
execution latency. Finally, we conclude this paper and discuss
future work.

II. RELATED WORK

Till recently, most previous research on mobile edge com-
puting stays in the network scenario of a single MEC server
and one generic type of task. As the network size increases and
the network environment becomes more complex, scenarios in-
volving multiple MEC servers being deployed around users at
the same time are increasingly common. Similarly, the variety

of tasks to be supported also increases. When MEC servers
work independently, the state of other MEC servers is not
considered, and there is no collaboration between the servers,
which can result in some uneven distribution of resources.
A single MEC server has limited resources, but MTs and
the number of task requests they generate are exploding [3].
When multiple users make requests to the same MEC server
concurrently, the server may be overloaded and cannot fulfill
all users’ requests.

Load balancing is used to dynamically adjust the load be-
tween MEC servers to avoid the above situation, maximise the
use of MEC server resources, enable servers to compute more
tasks, thus improving the overall system service performance,
enhancing the QoS for users and reducing system latency. In
line with the then prevailing trend, the concept of software-
defined networking has been used for offloading of tasks in an
ultra-dense network scenario with the aim of reducing latency
while extending the battery life of MTs [4]. Collaborative
information sharing between servers can help alleviate the
problem of unbalanced server loading. Chen et al. [5] propose
a new architecture for multiple MEC servers, called NeiMEC,
which can improve the hit rate of content cache replacement
by referring to the information of neighbouring MEC servers
when the content cache of a MEC server is full. ECOP [6]
is an energy-efficient computational offloading method which
considers energy consumption, privacy protection and load
balancing, by defining the problem as a multi-objective op-
timisation, and achieving optimisation of load balancing and
energy consumption by means of an improved strength Pareto
evolutionary algorithm.

As the traffic load increases, more effective ways to offload
tasks to and among different servers are needed. Zhang et
al. [7] propose a load balancing algorithm for redistributing
tasks among small base stations, which offloads tasks from
MTs to the best small base station based on the location of
the user and the current number of users on the MEC server.
Similarly, a game-based multitype task offloading scheme
has been proposed for offloading tasks to MEC-enabled base
stations [8].

The types of tasks that need to be offloaded in real life are
diverse, and when computing and processing these tasks, it is
not reasonable to allocate resources to tasks by relying only on
information of where the task is located and the time requested
to compute the offload [9]; the urgency of the task and the
current load of the network should also be considered. Like
the tasks, MEC servers vary in characteristics as well, such
as being static or mobile [10]. One approach is to adaptively
offload tasks based on their dwell time minimisation [11] by
first dividing users into high-priority and low-priority users.
The MEC server then uses a weighted polling scheduling
strategy with tasks of high-priority users given more machine
cycles than low-priority users, resulting in more efficient ser-
vices. Similarly, an optimization scheme for resource allocation
and task scheduling based on the urgency of task has been
proposed [12] that aims to minimise the delay of urgent high-

priority tasks and total system delay as a whole.
As expected, machine learning has been applied as the

network scenario becomes increasingly more complex [13]. A
multi-capability federated deep Q-network (M2FD) algorithm
has proposed to optimize the objectives of saving time and
energy in offloading tasks, as well as protect user data [14].
Another approach uses a deep reinforcement learning model
based on the Actor-Critic algorithm to adaptively offload
tasks to minimise the total penalty for time-bound and delay-
sensitive tasks [15].

Nowadays, network environments are often complex and
diverse, with multiple kinds of tasks, such as voice calls,
video streaming and file transfers. It should also be noted
that distance is an important factor in the performance of
the system, with different tasks being at different distances
from the MEC server and these different tasks having different
requirements. In this paper, we propose an efficient offloading
strategy to maximise the number of users served and to meet
the needs of different users, ensuring that some high-priority
tasks can be computed in less time while satisfying the latency,
and that low-priority tasks can be computed without significant
performance degradation.

III. LTE NETWORK-BASED DATA MEASUREMENT

To comprehensively understand the structural intricacies of
mobile edge computing networks and model a more authentic
operational environment conducive to the design of simulation
experiments that closely mirror real-world scenarios, a practi-
cal mobile edge computing network testbed was established for
empirical data collection. This was accomplished by utilizing
LTE base stations and sub-networks thereof. In this study,
an LTE-based mobile edge computing network testbed was
employed, as it aligns more closely with actual operational
circumstances. LTE, being a widely deployed mobile commu-
nication technology, closely emulates real network conditions.
In the context of mobile edge computing research, given the
prominence of existing network infrastructures, the adoption of
LTE-based testbeds enables a more precise emulation of actual
network conditions, encompassing signal propagation, network
congestion, latency, and other essential attributes. Furthermore,
LTE-based testbeds often adhere to standard LTE devices
and protocols, which have undergone extensive validation and
implementation, ensuring their efficacy in simulating genuine
communication scenarios within controlled laboratory settings.
This heightened level of confidence substantiates the reliability
and replicability of experimental findings.

The network structure of the experimental testbed was de-
signed for task migration between MEC servers, to separately
measure the different sizes and types of task transmission
delays in various traffic scenarios. Fig. 1 are physical images
of the experimental equipment, and the equipment used in the
testbed (Fig. 2) is shown in Table I.

The data types measured are file transfer, video and image
packets, with file sizes in the range of 1∼105MBytes, video
sizes ranging from 5MBytes to 105MBytes and images ranging

(a) Mobile Device (b) Mobile WIFI Access Point

Fig. 1: Equipment used in experimental testbed

Fig. 2: Network Testbed

from 1MBytes to 20MBytes. The findings shown in Fig. 3
depict an observable correlation between the size of transmitted
data and the corresponding latency, with this trend remaining
consistent across the spectrum of data types. This uniformity
in latency performance could potentially be attributed to the
influence of queueing and buffering mechanisms intrinsic to
network devices. These mechanisms contribute to latency
irrespective of data size, as their behavior is contingent on
variables such as network congestion, traffic prioritization,
and offloading determinations. Notably, differences in latency
between larger file transfers and video streaming can be
ascribed to the distinctive underlying transport layer protocol –
Transmission Control Protocol (TCP) for file transfers, which
entails reliable packet delivery through retransmission of lost
packets.

Analyzing the measurement results reveals that the transmis-
sion latency for diverse data types remains indistinguishable
for data sizes up to approximately 40 MBytes. Beyond this
threshold, the impact of the underlying transport protocols
becomes more pronounced, particularly in scenarios employing
TCP where congestion and flow control mechanisms elevate
latency. Consequently, file transfers of sizes exceeding 40
MBytes exhibit higher latency than equivalently sized video
streaming data using the User Datagram Protocol (UDP).
Although cloud-based offloading holds a more dominant role,
the impact of the distance between the MT and the MEC server
on transmission delay should not be underestimated. Longer
distances correspond to increased transmission delays.

To provide a comprehensive understanding of mobile edge
computing across various scenarios, a network testbed was
established to facilitate task migration between MEC servers
in real-world field conditions. This setup allowed for the

TABLE I: Equipment used in Experimental Testbed

Type of equipment Models
LTE Base Stations ZXTD-LTE R8968 RF System

Mobile WIFI BFI Series Portable LTE Router F7 MiFi
Mobile Devices GH820

PC1 (MEC Server) Dell Inspiron 5580
PC2 (MEC Server) Asus VM590Z

Fig. 3: Task migration latency between MEC servers

measurement of relevant data transfer latencies, contributing
to a more insightful understanding of mobile edge computing
dynamics. Notably, the collected data underscores the con-
vergence of transmission latencies across diverse data types,
despite variations in data sizes. This convergence suggests that
factors beyond data size, such as task type, may influence
offloading decisions. This observation sets the stage for the
introduction of the Balanced Offloading for Multiple Task
Types (BOMT) algorithm in the subsequent section.

IV. BALANCED OFFLOAD FOR MULTI-TYPE TASKS

In this section, we first describe the network model, the
task offloading model and the problem description, and finally
detail the BOMT algorithm.

A. Network Model

We consider a network consisting of macro base stations and
small base stations, as shown in Fig. 4. The macro base station
and small base stations are equipped with computing capability
to form an MEC server with the base station, denoted by the set
X = {X1, X2, ..., XM}, each capable of executing multiple
offloaded tasks simultaneously. For example, the service area
of the macro base station Xa covers the service area of the
smaller base stations Xc and Xd. In particular, the macro base
station Xa’s coverage area also overlaps with the coverage area
of the other neighbouring macro base station Xb, and similarly
all MEC servers have a certain overlaps in their service areas.
When an MT is within the service area of an MEC server, it

Fig. 4: Network example

can offload its computation tasks to the MEC server, which
will perform the task and return the results to the MT.

It is assumed that MTs are randomly located within the
coverage area of each MEC server and, for simplicity, each
MT has only one task to be offloaded. The number of tasks
in the entire network system varies with time, and tasks can
be offloaded to any MEC server when the MT is located
within the service area of the MEC server. Each MEC server
has different service coverage radius and computing resources
and the number of offloaded tasks, task types and data sizes
distributed within the service range of the MEC server also
varies with different quality of service (QoS) requirements.
MTs fall within the service coverage of at least one MEC
server, sometimes two or more, depending on their locations,
and they offload their computing tasks to an appropriate MEC
server via a wireless link.

Considering that the distance between the MT and the MEC
server affects the transmission delay of the task, the uplink
transmission rate of the wireless link for offloading task Ti to
the MEC server Mj is shown in Eqn. (1) [16],

Rij = Bij log2

(
1 +

Pihij ||pTi − pMj ||−θ

σ2

)
(1)

where Bij denotes the wireless bandwidth allocated for task
Ti, Pi denotes the power used by task Ti to transmit data over
the wireless link, hij denotes the channel gain between task
Ti, pTi

is the current location of task Ti, pMj
is the current

location of MEC server Mj , |pTi
− pMj

| denotes the distance
between task Ti and MEC server Mj , σ2 denotes the noise
power, and θ denotes the path loss index.

B. Task Offload Model

Suppose there are a total of N MTs randomly distributed
in the network, and that each MT has only one task to be
offloaded. Let T = {T1, T2, ..., Ti, ..., TN} denote the set of
tasks, Qc

i denote the CPU resources required for task Ti, ti max

denote the maximum latency tolerated by task Ti and Si denote
the data size of task Ti. As there are different task types
running on the MTs, q is used to indicate the task type of the
MT. For the purpose of illustration, we assume q ∈ {1, 2, 3}

is set to 1 for videos, 2 for pictures and 3 for files, indicating
high, medium and low latency requirements respectively.

When an MT intends to offload a task, it needs to send an
offload request containing basic information about the task to
the base station first, and the user can only offload the task
to the MEC server if executing the task at the MEC server
incurs lower processing delay than executing the task locally.
When the computational task is processed locally on the user’s
device, the processing delay includes only the computational
latency of the task, tli, and is calculated as shown in Eqn. (2),

tli =
Qc

i

fi
(2)

where fi denotes the computational power of the end device
containing the task Ti.

When the computation task is processed at the MEC server,
the processing delay consists of three components, which are
the latency of transmitting the task from the MT to the MEC
server, the computation latency of the task and the transmission
latency when the result of the task is returned. The user
offloads the task via the wireless link and the data transmission
latency, tci , is calculated as shown in Eqn. (3),

tci =
Si

Rij
(3)

where Si indicates the data size of the task Ti and Rij is
the transfer rate of the task Ti to the MEC server Mj . As
can be seen from Eqn. (3), the transmission delay of the data
is directly related to the size of the data. The returned result
of the task is much smaller than the task, so we assume the
transmission delay of the returned result to be negligible.

When the task Ti is offloaded to the MEC server Mj ,
the computational resources of the MEC server need to be
allocated to the task Ti and the computational latency, tkij , of
the task is calculated as shown in Eqn. (4),

tkij =
Qc

i

fij
(4)

where fij denotes the computing resources allocated to the
task Mj by the MEC serve Mj . Therefore, the total processing
delay for task Ti is calculated as shown below:

ti = tci + tkij . (5)

Considering that different types of tasks are offloaded,
having different QoS requirements, these tasks need to be
differentiated and prioritized in order to ensure high reliability
and low latency services can be provided to some specific high-
priority tasks while service levels that meet the basic needs are
provided to the rest. To achieve this, we consider the priority
of tasks in the offloading process, which is computed as shown
in Eqn. (6).

Pr =
Si

ti max × q
(6)

where ti max denotes the maximum tolerable delay of task
Ti. In Eqn. (6), it can be seen that the larger the size of

data transferred by task Ti, the smaller the maximum tolerable
delay, and the smaller the q value, the larger the Pr value of
task priority, indicating the higher priority of task Ti.

This model evaluates the processing latency when tasks are
executed locally and offloaded to the MEC server for execu-
tion. This includes consideration of factors such as network
transmission latency, the computational power of the MEC
server, and the computational power of the local terminal.
By comparing the latency of the two execution methods, the
model can select the optimal execution strategy. The model
also considers the urgency and importance of the tasks and
offloads high-priority tasks to the MEC server for execution
first to ensure that user requirements are met in a timely
manner. Most importantly, the model monitors the load of
the MEC servers and selects idle or lightly loaded servers to
execute the offloaded tasks. This helps to avoid overloading
the servers and thus ensures that the tasks are processed in a
shorter period of time.

C. Description of the problem

MTs are expected to be selfish by nature, i.e., they want
their tasks to be computed as fast as possible. However, in a
complex network, the uneven distribution of MTs and MEC
servers and the concentration of users in hotspot areas make
multiple MTs offload tasks to the same MEC server, which
causes the MEC server to be overloaded, which in turn leads
to an increase in the computation latency of the tasks, and
reduces the user experience. Since MTs offload different types
of tasks, and the size and maximum tolerable delay of each task
are different, the quality of service requirements of tasks for
MEC servers are also different, and different services should be
provided for different tasks. A reasonable offloading strategy
will improve the congestion of tasks on the MEC server and
provide corresponding services according to different tasks.

Maximising the number of users served, and thus ensuring
system load balancing, while providing different services for
different types of offload tasks at a given time is the problem
to be solved in this section. The resulting optimisation problem
is as follows:

max
∑
t

N∑
i=1

M∑
j=1

zti,j

s.t. i ∈ [1, N]
j ∈ [1,M]
N

′∑
i

φij < φj,Max

.

The objective of the optimisation problem is to maximise
the number of users served zti,j per time slot t. The constraint
on the number of users is N . The maximum number of MEC
servers in the current network is M and the number of users
that can be served by the MEC server is limited, while the
number of tasks calculated is less than the maximum number
of tasks that can be served by the MEC server, N

′
the number

of users being served by the MEC server, φij is Mj server’s

load due to Ti and φj,Max is the maximum load that Mj can
handle.

D. Algorithm Description

Given M MEC servers amd N MT, where each MT has
a task to be offloaded, the set of tasks is denoted as T =
{T1, T2, ..., Ti, ..., TN}. We assume that the MT is stationary
in the network for a short period of time when the offload
algorithm executes and its location does not change.

After the MEC server receives the information about the
tasks to be offloaded by the MT, it calculates the priority of
each task scheduled to be offloaded according to the Eqn. (6)
and sorts them in descending order, and classifies the tasks
into three levels according to their sizes, with the priority of
Pr1 being the highest, that of Pr2 being in the middle, and that
of Pr3 being the lowest.

The steps of the algorithm are as follows:

1) First initialise the MEC server and the information about
individual tasks;

2) Construct the set of tasks that need to be offloaded to
the MEC server;

3) Sort the tasks in each priority class in descending order
according to the priority value computed using Eqn (6);

4) Execute three different offloading algorithms (A, B and
C below) for tasks of different priorities according to a
certain ratio.

1) Algorithm A: Offload priority Pr1 tasks, i.e. q = 1, by
finding the MEC server MS

j that can process Ti with the
shortest delay, according to Eqn. (5). If the current load of
MEC server MS

j is less than 80% of its maximum load, offload
Ti to MS

j ; otherwise, find the server MM
j with the next shortest

processing latency for the task, and if the current load of MEC
server MM

j is less than 50% of its maximum load, offload the
task Ti to MEC server MM

j ; if Ti is still not offloaded at this
point, it must be offloaded to MEC server MS

j in order to
ensure the quality of Pr1 task completion.

When the network traffic reaches a peak of 80%, the network
will be in a high load state, and at this time, the response
speed of the system will be significantly reduced. In this
case, if other traffic comes in again, the network will be very
congested, which may lead to transmission interruption or
failure. Choosing a load threshold of 50% can also prevent
servers from overusing resources, thereby avoiding affecting
the normal operation of other servers due to excessive load on
some servers.

2) Algorithm B: Offload priority Pr2 tasks, i.e. q = 2; find
the MEC server MS

j that can process Ti with the shortest delay,
according to Eqn. (5). If the current load of MEC server MS

j

is less than 60% of its maximum load, offload; otherwise, find
the server MM

j with the next shortest processing latency for
the task, and if the offloading of task Ti to the MEC server
MM

j does not exceed its maximum load, offload it; if it is still
not possible to offload at this point, in order to ensure the QoS
of the Pr2 task and the tasks already offloaded on the MEC

server MS
j , reassign the lower priority task T

′

i on server MM
j

and then offload task Ti to server MM
j .

In order to maintain the resource surplus of the server,
so as to accommodate more tasks and ensure the stability
and performance of the system when the task load increases,
the MEC server load is selected to be less than 60% of its
maximum load.

3) Algorithm C: Offload priority Pr3 tasks, i.e. q = 3, locat-
ing the MEC server MM

j with the second shortest processing
delay, according to Eqn. (5). If the current load of MEC server
MM

j is less than 60% of its maximum load, offload the task;
otherwise, find the server ML

j with the longest processing
delay for task Ti. Assess the current load of server ML

j , and
if task Ti plus the current load of MEC server ML

j is less
than the maximum load of server ML

j then offload, otherwise
enqueue the task for the next time slot.

Considering that different types of tasks have different
requirements on network service quality, the BOMT algorithm
divides tasks into different priority levels according to task
type, task size and maximum tolerable delay of tasks. We
propose different offloading algorithms for tasks of different
priorities to provide services that meet the requirements of
different types of tasks. When the MEC server is full, the
lower priority tasks are handed over to other free MEC servers
for computation, thus providing better service to the higher
priority tasks. This improves resource utilization and achieves
a balanced load on the MEC servers.

V. VALIDATION AND PERFORMANCE

A. Simulation Environment and Parameter Settings

The MEC network was set up in a 200m diameter area, with
MEC server M1 located in position (0,0) in the coordinate
system and a service coverage radius of 100m; server M2’s
position is (-25,0) in the coordinate system with a service
coverage radius of 75m; and M3’s position is (0,50) in the
coordinate system and a service coverage radius of 25m. In
each time slot, several MTs enter the area at random and
remain in a stationary state.

Through simulation experiments, our BOMT algorithm is
compared with random offloading, nearest server offloading,
load balancing (LB) algorithm [7] and time-sensitive multi-
user (TSMU) algorithm [17] in terms of system execution
delay, task coverage, task completion rate and MEC server
load.

1) Random offloading: the task is offloaded to a randomly
selected MEC server whose signal range covers the task
and is not fully loaded.

2) Nearest server: offloads a task to the closest MEC server
that has coverage over the task and is not fully loaded.

3) LB algorithm: after offloading a task to an MEC server,
the task that is at the junction of the signal coverage of
multiple MEC servers is reassigned to the best available
MEC server.

4) TSMU algorithm: tasks to be offloaded are ordered
according to their priority, and the task with the highest

priority is offloaded to the MEC server with the highest
computing power, whose signal range covers the task
and is not fully loaded.

In order to study the effect of task offloading for several
algorithms, the resources allocated for task offloading are set
to a fixed value. The simulation parameters for this paper are
shown in Table I below.

TABLE II: Simulation Parameters

Description of parameters Parameter values
MEC servers number M 3

Sub-channel bandwidth Bij 0.8MHz
Wireless channel transmission power Pi 1W

Noise power σ2 2×10−13 W/Hz
Data task size dta 1M 10M

Number of CPU cycles Qc
i 0.1GHz 2GHz

M1 Computing power Qm
1 50GHz

M2 Computing power Qm
2 30GHz

M3 Computing power Qm
3 10GHz

Computing resources fij allocated to tasks Ti 2.5GHz,2GHz,1GHz
Mobile device computing power fi 0.5GHz

Channel power gain hi exp(1)
Maximum tolerable delay ti max for tasks 1∼4s

B. Simulation Results and Analysis

1) System Execution Time Delay: The four algorithms and
the BOMT algorithm are compared separately in terms of the
total delay in completing all tasks for a number of tasks ranging
from 45 to 225.

Fig. 5: Task execution times

The experimental results are shown in Fig. 5. When the
number of tasks is small, the MEC server is less likely to
be overloaded and the difference in total latency between the
algorithms is not significant. As the number of tasks increases,
the total latency to complete all tasks also increases.

With the same number of tasks, BOMT has lower system
latency compared to all algorithms. This is because BOMT
takes into account the task priority and the load of all servers
in the network, effectively reducing the total delay of all task
execution by making full use of the resources of the MEC

Fig. 6: Task coverage

servers. The Random and Nearest algorithms do not consider
load balancing in the MEC network and cannot cope with
overloaded / underloaded MEC servers. The LB algorithm
only considers the load situation of the MEC servers while
TSMU only prioritises high priority tasks. Both LB and TSMU
algorithms only consider the server with the shortest execution
time when unloading tasks, ignoring other servers.

2) Task Coverage: Fig. 6 shows the number of tasks exe-
cuted by the MEC servers as a proportion of the total number
of tasks, which is set at 255.

In the first few seconds when the algorithms start executing,
the coverage of several algorithms is relatively high as the
number of tasks is small and has not yet reached the maximum
number of tasks that can be served simultaneously within the
MEC system. As time increases, the total number of tasks
within the system increases, which can lead to individual MEC
servers being overloaded and unable to service some of the
newly arriving tasks within the service range. The most severe
drop in task coverage was seen with the Random algorithm. For
newly arriving tasks, the BOMT algorithm offloads according
to their priority and dynamically adjusts for fully loaded MEC
servers. As a result the BOMT algorithm is able to service
more tasks and maintain a higher task coverage when the
number of tasks is high.

3) Task Completion Rate: The task completion rate is the
proportion of tasks that can be completed within the maximum
tolerable time delay for the user to the total number of tasks
offloaded.

As shown in Fig. 7, when the number of tasks is small, the
system can handle a certain amount of tasks, so the completion
rates of several algorithms do not differ much per second,
but as the number of tasks increases, multiple tasks arrive
at each time slot. The comparison algorithms only consider
servers where current tasks can be offloaded, while the BOMT
algorithm prioritises offloading for newly arrived high priority
tasks and reallocates tasks with lower priority and higher
tolerated latency, making full use of the computing resources
of all MEC servers in the system to serve more tasks while

Fig. 7: Task completion rate

being able to maintain a high task completion rate.
4) MEC Server Load Profile: This section compares the

load on each MEC server for different offloading algorithms.
This is done by looking at the load ratio of each MEC
for a randomly selected period of three consecutive seconds
while the tasks are being offloaded. The load ratio of a MEC
system represents the ratio of the number of tasks being served
by each MEC server to the maximum number of tasks that
can be served. Sometimes we may be more concerned about
the performance of the system under transient load than the
average performance of the whole process. The response of
the system to a transient task or event can be evaluated by
randomising the results for three consecutive seconds. The
number of tasks is set to 100 for simplicity.

As shown in Fig. 8, for MEC server M1, although most
of the comparison algorithms result in a high load factor, for
all the offloading algorithms, the Random offloading algorithm
under utilises the computational resources of MEC server M2.
Both the LB and Nearest offloading algorithms over utilise the
computational resources of MEC server M1, which results in
under utilisation of the other MEC servers and wastes compu-
tational resources. Conversely, the TSMU offloading algorithm
overuses MEC server M2, which may lead to overloading
of M2 while under utilising other MEC servers. The BOMT
algorithm takes a holistic approach based on the differences in
the priorities of the offloaded tasks and the performance of all
the MEC servers in the system. The BOMT algorithm makes
better (but not over) use of the most powerful MEC server M1

and also utilises the other MEC servers M2 and M3 more to
provide better service for all offloading tasks as a whole.

VI. CONCLUSIONS

In this work, we proposed a balanced offloading algorithm
based on multiple types of tasks, referred to as Balanced Of-
fload for Multi-type Tasks (BOMT), in mobile edge computing
that considers multiple types of task, where different tasks
have different requirements for quality of service. Tasks are
prioritised based on their type, task data size and maximum

(a) BOMT (b) Random (c) Nearest

(d) TSMU (e) LB

Fig. 8: MEC server load profile

tolerable delay, and tasks with different priorities are offloaded
to MEC servers with different service capabilities to provide
services that meet their requirements, balancing the load on
MEC servers, thereby improving system resource utilisation
and enhancing user experience. Future work will consider user
mobility, i.e., the impact of changes in the location of MTs
on caching policies and offloading policies. More in-depth
research can also be carried out on the MT itself, and the
randomness and variability of the wireless channel, among
other aspects.

ACKNOWLEDGEMENT

This paper was supported by the Natural Science Foundation
of Inner Mongolia Autonomous Region 2021MS06003.

REFERENCES

[1] K. Dolui and S. K. Datta, “Comparison of edge computing imple-
mentations: Fog computing, cloudlet and mobile edge computing,” in
Proceedings of the Global Internet of Things Summit (GIoTS), Geneva,
Switzerland, 6-9 June 2017.

[2] F. Giust, X. Costa-Perez, and A. Reznik, “Multi-Access Edge Comput-
ing: An Overview of ETSI MEC ISG,” IEEE 5G Tech Focus, vol. 1,
no. 4, December 2017.

[3] P. Jonsson, Ed., Ericsson Mobility Report. Ericsson, June 2023.
[4] M. Chen and Y. Hao, “Task offloading for mobile edge computing in

software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[5] Y.-C. Chen, C.-C. Wang, and J.-C. Chen, “NeiMEC: Automatically build-
ing neighbor relationship between mobile edge platforms in multi-access
edge computing environment,” in Proceedings of the Third International
Conference on Fog and Mobile Edge Computing (FMEC), Barcelona,
Spain, 2018, pp. 20–25.

[6] X. Liu, X. Xu, Y. Yuan, X. Zhang, and W. Dou, “Energy-Efficient
Computation Offloading with Privacy Preservation for Edge Computing-
Enabled 5G Networks,” in Proceedings of the International Conference
on Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14-17
July 2019, pp. 176–181.

[7] W.-Z. Zhang, I. A. Elgendy, M. Hammad, A. M. Iliyasu, X. Du,
M. Guizani, and A. A. A. El-Latif, “Secure and Optimized Load
Balancing for Multitier IoT and Edge-Cloud Computing Systems,” IEEE
Internet of Things Journal, vol. 8, no. 10, pp. 8119–8132, 2021.

[8] W. Fan, L. Yao, J. Han, F. Wu, and Y. Liu, “Game-based multitype task
offloading among mobile-edge-computing-enabled base stations,” IEEE
Internet of Things Journal, vol. 8, no. 24, pp. 17 691–17 704, 2021.

[9] D. Song, L. Rui, S. Chen, and X. Qiu, “A Computational Offloading
Method Based on Resource Joint Optimization,” in Proceedings of the
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), Chengdu, China, 4-6 August 2021, pp. 1–7.

[10] R. Zhang, L. Wu, S. Cao, X. Hu, S. Xue, D. Wu, and Q. Li, “Task
Offloading with Task Classification and Offloading Nodes Selection for
MEC-Enabled IoV,” ACM Transactions on Internet Technology, vol. 22,
no. 2, oct 2021.

[11] K. Aliobory and M. A. Yazici, “An adaptive offloading decision scheme
in two-class mobile edge computing systems,” in Proceedings of the 41st
International Conference on Telecommunications and Signal Processing
(TSP), Athens, Greece, 4-6 July 2018, pp. 1–5.

[12] J. X. Liao and X. W. Wu, “Resource Allocation and Task Scheduling
Scheme in Priority-Based Hierarchical Edge Computing System,” in 19th
International Symposium on Distributed Computing and Applications for
Business Engineering and Science (DCABES), Xuzhou, China, 16-19
October 2020, pp. 46–49.

[13] X. Zhang and S. Debroy, “Resource management in mobile edge
computing: A comprehensive survey,” ACM Computing Surveys, vol. 55,
no. 13s, jul 2023.

[14] Z. Tong, J. Wang, J. Mei, K. Li, W. Li, and K. Li, “Multi-type task of-
floading for wireless Internet of Things by federated deep reinforcement
learning,” Future Generation Computer Systems, vol. 145, pp. 536–549,
2023.

[15] T. Zhang, Y.-H. Chiang, C. Borcea, and Y. Ji, “Learning-Based Offload-
ing of Tasks with Diverse Delay Sensitivities for Mobile Edge Comput-
ing,” in Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 9-13 December 2019, pp. 1–6.

[16] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Joint computation
offloading, resource allocation and content caching in cellular networks
with mobile edge computing,” in Proceedings of the IEEE International
Conference on Communications (ICC), Paris, France, 21-25 May 2017,
pp. 1–6.

[17] J. Zhang, B. Jiang, H. Zhao, and Y. Xu, “Time-Sensitive Multi-User
Oriented Mobile Edge Computing Task Scheduling Algorithm,” in
Proceedings of the 2nd International Conference on Computer Com-
munication and the Internet (ICCCI), Nagoya, Japan, 26-29 June 2020,
pp. 145–149.

