
Encoding Ownership Types in Java

Nicholas Cameron and James Noble

Victoria University of Wellington, New Zealand

Abstract. Ownership type systems organise the heap into a hierarchy
which can be used to support encapsulation properties, effects, and in-
variants. Ownership types have many applications including paralleli-
sation, concurrency, memory management, and security. In this paper,
we show that several flavours and extensions of ownership types can be
entirely encoded using the standard Java type system.
Ownership types systems usually require a sizable effort to implement
and the relation of ownership types to standard type systems is poorly
understood. Our encoding demonstrates the connection between owner-
ship types and parametric and existential types. We formalise our en-
coding using a model for Java’s type system, and prove that it is sound
and enforces an ownership hierarchy. Finally, we leverage our encoding to
produce lightweight compilers for Ownership Types and Universe Types
— each compiler took only one day to implement.

1 Introduction

Ownership types describe the topology of the heap in a program’s source code.
They come in several varieties (context-parametric [16], Universes [17], Owner-
ship Domains [3], OGJ [26], and more) and have many practical applications,
including preventing data races [7,18], parallelisation [15,5], real-time memory
management [4], and enforcing architectural constraints [2].

Ownership types usually require large, complicated type systems and compil-
ers, and their relation to standard type theory is not well understood. We give a
simple encoding from ownership types to standard generic Java by extending the
previously identified relationship between ownership types and parametric types
[25,26]. Previous work encoded ownership parameters as type parameters, but
treated the the current object’s ownership context (the this or This context)
specially; we treat it as a standard type parameter, hidden externally by exis-
tential quantification [13]. With this technique we can encode ownership types
(with generics and existential quantification), Ownership Domains, and Generic
Universe Types. Furthermore, by unpacking the This parameter we can support
a range of extensions, including inner classes [6], dynamic aliases [15], fields as
contexts [12], and existential downcasting [30], within the same standard type
system.

Contributions and Organisation The contributions of this paper are: a thorough
discussion of how various flavours and extensions of ownership types can be

encoded in a standard type system, such as Java’s (Sect. 3); a formal type
system which captures these concepts (including variations and extensions) and
a soundness proof for this system which demonstrates that our encoding enforces
the ownership hierarchy (Sect. 4); and compilers for Generic Universe Types and
Ownership Types (Sect. 5).

Additionally, we give background on Java generics and ownership types in
Sect. 2 and conclude and describe future work in Sect. 6.

2 Background

In this section, we describe features of the Java type system used in our encoding
and ownership types.

2.1 Java Generics and Wildcards

Java has featured parametric and existential types since version 5.0, in the form
of generics and wildcards [20]. Java types consist of a class name and a (possibly
empty) list of actual type parameters. For example, we can describe a list of
books as List<Book>, given a class (or interface) such as, class List<X> {...}.
The formal type parameters (e.g., X) may be used in the body of the class; outside
the class they must be instantiated with actual parameters (such as Book).

Generic types must be invariant with respect to subtyping. However, it is
sometimes safe and desirable to make generic types co- or contravariant. To sup-
port this, Java has wildcards [27]: an object of type List<? extends Book> is a
covariant list of books, that is, a list of some subtype of book. To remain sound,
covariant lists must be ‘read-only’ and contravariant lists ‘write-only’; wildcards
enforce this. Formal models of Java typically use bounded existential types to
represent wildcards [11]: our covariant list is denoted ∃X→[⊥ Book].List<X>
(⊥, the bottom type, indicates no lower bound).

A wildcard hides a type parameter; for example, we can store (due to subtyp-
ing) an object of type List<Book> in a variable of type List<?>: the wildcard
hides the witness type Book. Java allows the type to be temporarily named, but
only as a fresh type variable, this is known as wildcard capture and corresponds
to unpacking an existential type1. For example, List<?> can be capture con-
verted to List<Z>, where Z is fresh; however, there is no relationship between Z
and Book.

2.2 Ownership Types

Ownership types [16] are a mechanism for organising the heap into a hierarchy
of contexts. The type system ensures that objects’ positions in the hierarchy
are reflected by their types. This property allows contexts to be used to specify
encapsulation properties (for which ownership types are well known), such as

1 Subsumption of concrete types to wildcard types corresponds to packing.

2

owners-as-dominators [16] and owners-as-modifiers [17], or to specify effects [15]
or invariants [23]. Several mechanisms for reflecting the ownership hierarchy in
types have been proposed, these can be separated into parameter-based systems,
where types are parameterised by contexts (such as ‘vanilla’ ownership types
[16,15], multiple ownership [12], and ownership domains [3]) and annotation-
based systems, where types are annotated to describe relative position in the
hierarchy (such as Universes [17]).

There have been several syntactic (but semantically equivalent) variations in
the way that ‘vanilla’ ownership types are denoted. In our source language we
prefix an object’s type with its owner and parameterise it with actual context
parameters. A class is declared without an explicit owner (only formal context
parameters) and the owner keyword is added to the language for use as an actual
context parameter (similarly to the this keyword); for example,

class List<d> {
this:Node<d> first;

}
class Node<d> {

owner:Node<d> next;
d:Object datum;

}
source

Here, a list object owns all of its nodes and the context parameter d owns
the data in the list. We will use this list as a running example.

Encapsulation and Effects Most ownership systems consist of a descriptive part
(describing the topology of the heap) and a ‘prescriptive’ part, which uses the
described topology to specify an encapsulation policy or effect system. Encap-
sulation properties can restrict aliasing (e.g., owners-as-dominators, associated
with ‘vanilla’ ownership types [16]) or access (e.g., owners-as-modifiers, from
Universes [17]). An effect system describes how objects are accessed, rather than
restricting access. In this paper we concentrate on the descriptive aspects of
ownership and so we will not describe these properties in detail.

2.3 OGJ

Ownership types and generics can be combined in an orthogonal fashion [19,10],
giving the benefits and flexibility of both systems. They can also be integrated,
as in Ownership Generic Java (OGJ [26]); the benefits of both systems are still
gained, but with only a single kind of parameter because type parameters are
used to represent context parameters. The only extra ingredient in OGJ (beyond
standard Java generics) is a This type parameter which represents not a type,
but the current context, it is treated specially by the formal type rules.

Our list example can be written in OGJ:

3

class List<D, Owner> {
Node<D, This> first;

}
class Node<D, Owner> {

Node<D, Owner> next;
Object<D> datum;

}
OGJ

The syntax is almost identical to the standard ownership types version, other
than that the owner of a type is specified as the last type parameter. The se-
mantics, however, are different: all parameters are treated as type parameters
by the type system, the usual rules for type checking Java are applied, rather
than special ownership types rules. The exception is in dealing with the This,
which is treated as a keyword, rather than a variable, and is thus a valid owner
for first even though it is not declared.

Featherweight Generic Confinement (FGC [25]) uses the same representation
of contexts as type parameters, but without any support for the This context.
The result is a ‘shallow ownership’ system which supports encapsulation by
package, but not on a per-object basis.

3 Encoding Ownership Types into Java

In this section we describe how we encode source ownership types programs into
Java. As in FGC [25] and OGJ [26], we represent the owner of a class and its
context parameters with type parameters. We create a formal type parameter
(This) to represent the this context [13], bounded above by Owner. The inside
relation (context ordering) is encoded by subtyping (as in OGJ). Since this can-
not be named outside its class declaration, we must hide the corresponding This
type parameter where it appears in types, using Java wildcards; conveniently,
the wildcard will inherit the bound declared on This. Our basic list example
(Sect. 2.2) is encoded as:

class List<D, Owner extends World, This extends Owner> {
Node<D, This, ?> first;

}
class Node<D, Owner extends World, This extends Owner> {

Node<D, Owner, ?> next;
Object<D, ?> datum;

}
Java

Actual context parameters are either World (a class or interface which rep-
resents the root context) or formal context variables (either quantified or with
class scope). The inherited or explicit bounds on these type variables produce a

4

partial ordering on type parameters corresponding to the ownership hierarchy2.
Because there are no concrete types representing contexts (other than World),
the hierarchy is an illusion: an omniscient type checker would know that all type
variables ultimately hold World. The ‘opaqueness’ of existential types ensures
that the illusory hierarchy is respected during type checking.

Type systems must treat existentially quantified variables as hiding unique
types; this gives the correct behaviour for ownership types in our encoding by
treating each This context as unique. If we did not always hide the This param-
eter, ownership typing would not be effective3:

List<World, World, X> l1 = new List<World, World, X>();
List<World, World, X> l2 = new List<World, World, X>();
l1.first = l2.first; //OK, but should be an error

Java

Universes Universes [17] are an annotation-based ownership system. Types
may be annotated with rep (denoting that objects of this type are owned by
this), peer (objects are in the same context as this), or any (objects are in an
unknown context). Generic Universe Types [19] integrate type parametricity and
universe modifiers; the programmer can write types such as rep List<peer Book>,
which represents a list (owned by the current object) of books in the current con-
text. Universe types and ownership types describe the same hierarchies [9].

Generic Universe Types can be encoded into ownership types [9], and then
into Java using the above scheme. The only obstacle is that the universe modifier
any corresponds to an existentially quantified owner (see below); any can be
encoded as an unbounded wildcard.

Ownership Domains Ownership domains [3] support more flexible topolo-
gies and a more flexible encapsulation property than ‘vanilla’ ownership types.
Topologically, ownership domains allow for multiple contexts (called domains)
per object; all contexts are nested within the object’s owner and other objects
can belong to any of these contexts.

To support multiple contexts per object in our encoding we allow multiple
parameters in place of the single This parameter. All these parameters are given
the upper bound of Owner and all must be hidden with wildcards to create the
phantom ownership hierarchy. Types are encoded in the same way as for ‘vanilla’
ownership types.

For example, the following class has two domains and a single domain pa-
rameter:

class C<domP> { domain dom1, dom2; }
ODs

2 There are effectively two subtype hierarchies: one of real objects with Object at its
root, and one of ownership contexts with World at its root.

3 In this section we will use wildcards in new expressions, this is not allowed in Java
and we describe how to avoid this in Sect. 5.

5

It is encoded as the Java class,

class C<DomP, Owner, Dom1 extends Owner, Dom2 extends Owner> {}
Java

3.1 Extensions to Ownership Types

There has been much work on making ownership type systems more descriptive
and more flexible. Generally, the underlying ownership hierarchy is unchanged,
but the language’s types can describe it more precisely, usually combined with a
relaxation of encapsulation properties in certain circumstances. In this section,
we describe several extensions to ownership types and how they can be encoded
in Java.

Bounds Context parameters may be given upper and lower bounds with re-
spect to the ownership hierarchy [15,10]. These are usually denoted inside and
outside, respectively. For example, class C<a outside owner, b inside a>.

Upper bounds on context parameters can easily be replicated using upper
bounds on the corresponding type parameters (e.g. B extends A). The encoded
bounds are with respect to the subtype hierarchy, within which the ownership
hierarchy is encoded. Lower bounds cannot be encoded in Java without changing
the type system to support lower bounds on type parameters.

Context Parametric Methods Methods may be parameterised by contexts
[14,29] in the same way as they can be parameterised by types in Java. This
allows for better code reuse. For example:

<a,b> a:Node next(a:Node n) {
return n.next;

}
source

The next method will work for all possible nodes; without context parametric
methods, such a method could not be written.

Context parametric methods are easily encoded as type parametric Java
methods, upper bounds on context parameters can be handled as above:

<A,B> Node<B, A, ?> next(Node<B, A, ?> n) {
return n.next;

}
Java

Inner Classes Ownership type systems can be made more flexible by giving in-
ner classes access to the this and owner parameters of the surrounding class [6].
This increases the descriptiveness of the type system because more contexts can
be named inside an inner class. Owners-as-dominators can be sensibly relaxed

6

to allow instantiations of inner classes to hold references to their surrounding
objects (e.g., the curNode field in the following example). This allows iterators
to be implemented in an ‘owners-as-dominators’ system, an early obstacle to
acceptance of ownership type systems. We extend our list example:

class List<d> {
...
class Iterator {

List.this:Node<d> curNode;
d:Object next() { return curNode = curNode.next() }

}
}

class Client {
void m(this:List<world> l) {

this:Iterator i = l.new this:Iterator()
world:Object first = i.next();

}
}

source

In the encoding, inner classes must be able to name the contexts of their
surrounding class; this happens naturally in Java: an inner class can name type
parameters of its surrounding class. However, we must be careful not to hide the
generated type parameter by adding This parameters for both inner and outer
classes. We accomplish this by appending the name of the class to the names of
the Owner and This parameters (we elide some bounds in the example):

class List<D, Owner, This extends Owner> {
...
class Iterator<It_Owner, It_This extends It_Owner> {

Node<D, This, ?> curNode;
Object<D, ?> next() { return curNode = curNode.next() }

}
}

class Client<Owner, This extends Owner> {
void m(List<World, This, ?> l) {

Iterator<This, ?> i = l.new Iterator<This, ?>();
Object<World, ?> first = i.next();

}
}

Java

Dynamic Aliases An alternative solution to the iterators under owners-as-
dominators problem is to allow dynamic aliases [15]; that is, allow variables on
the stack to reference objects which break owners-as-dominators, and only en-

7

force owners-as-dominators on the heap. Dynamic aliases achieve this by allowing
local variables to be used as contexts. Extending the original list example:

class Iterator<d> {
owner:Node<d> curNode;
d:Object next() { return curNode = curNode.next() }

}

class Client {
void m(final this:List<world> l) {

l:Iterator<world> i = new l:Iterator<world>();
world:Object first = i.next();

}
}

source

The variable l cannot be named outside of m, and so the dynamic alias to i
(owned by l) cannot be stored in the heap. It is only sound to use final variables
to name contexts.

An object’s context is represented by its hidden This argument; therefore,
encoding dynamic aliases in Java requires naming that argument using a fresh,
temporary type variable which is introduced as an extra type parameter to a
method. Unpacking the hidden This argument to the fresh variable is achieved
by wildcard capture:

class Iterator<D, Owner extends World, This extends Owner> {
Node<D, Owner, ?> curNode;
Object<D, ?> next() { return curNode = curNode.next() }

}

class Client<Owner extends World, This extends Owner> {
void m(List<World, This, ?> l) {

this.mAux(l)
}

<L> void mAux(List<World, This, L> l) {
Iterator<World, L, ?> i = new Iterator<World, L, ?>;
Object<World, ?> first = i.next();

}
}

Java

The wildcard which hides l’s This argument is capture converted to the fresh
type variable L when mAux is called. Using l as an owner in the source program
is encoded to using L (l’s This argument) as an owner. L can only be named
within the scope of mAux, and this corresponds to the scope of l.

Our example is simple because it does not require other state to be passed
to mAux. In a more realistic example, we would need to pass any data accessed

8

in m to mAux, and back again if it is not passed by reference. A simpler encoding
is to modify the original method so that the This argument of l is captured by
calling m (rather than when calling mAux). The simpler encoding only works if
the variable being used as a context is an argument rather than a local variable.
Note that the call-sites of m do not have to be modified, despite the extra type
parameter, due to Java’s type parameter inference. The simpler encoding of our
encoding is

class Client<Owner, This> {
<L> void m(List<World, This, L> l) { ... } //body as mAux

}
Java

Fields as Contexts Similarly to local variables, final fields can be used to name
contexts [12], this again improves flexibility. We can extend the list example:

class List<d> {
this:Node<d> first;
first:Object f2; //owned by a field

}
source

Paths of final fields may also be used as contexts [12], e.g., one could allow
the type f3.first:Object, where f3 is a final field of type List.

We encode fields used as contexts by adding their hidden This parameters
to the class’s parameter list:

class List<D, Owner extends World, This extends Owner, First> {
Node<D, This, ? extends First> first;
Object<First, ?> f2;

}
Java

Instantiating this class requires that the value of first is passed into the
constructor, wildcard capture is used to name First and then both this and
First are hidden by wildcards.

Existential Quantification Just as type variables may be quantified existen-
tially, so may context variables [10]. This allows for existential ownership types
such as ∃o.o:Object or ∃o.this:List<o>. Such quantification has two ben-
efits: context variance, that is subtyping which is variant with respect to the
ownership hierarchy, and expressing partial knowledge about contexts (i.e., an
unknown context or some unknown context within another known context). Ex-
istential quantification is the mechanism which underlies a number of proposals
involving some kind of variance annotations on contexts [22,8].

Existentially quantified contexts can be encoded as wildcards. Since wildcards
are syntactic sugar for existential types, this is not surprising. Both upper and
lower bounds can be straightforwardly encoded. The only difficulty is if quan-
tified contexts have both upper and lower bounds, which is not supported by

9

Java wildcards. However, because quantification is usually provided by variance
annotations or wildcard-like syntax, this should not be a problem.

Existential Downcasting Downcasting is a common feature in programs, es-
pecially those that do not use generics. When downcasting from type A to type
B, if B has context parameters which A does not, these must be synthesised.
Wrigstad and Clarke propose the use of “existential owners” to handle these
introduced context parameters [30]. For example:

void m(this:Object x) {
this:List<d> l = (this:List<d>) x;
d:Object first = l.first.datum;
l.first.datum = new d:Object();

}
source

Here x is cast from type this:Object to this:List<d>, the d context pa-
rameter is a fresh context (an “existential owner”) that can be named in the
scope of the method, and allows operations on l to take place. Objects owned
by d cannot be stored in the heap, outside of the original data structure, be-
cause d can only be named locally. Note that there is no explicit quantification,
“existential owners” correspond to unpacked context existential types [8].

We can cast x to a type where D (the encoding of d) is hidden by a wildcard.
We cannot cast directly to a type containing D because D is not in scope. We
must split the method in order to name D using capture conversion:

void m(Object<This, ?> x) {
this.mAux((List<?, This, ?>) x);

}
<D> void mAux(List<D, This, ?> l) {

Object<D, ?> first = l.first.datum;
l.first.datum = new Object<D, ?>();

}
Java

Owners-as-Dominators The owners-as-dominators property specifies that all
reference paths from the root of the ownership hierarchy to any object pass
through that object’s owner: owners dominate reference paths. The property is
enforced by restricting which contexts can be named: if only contexts outside
the current context can be named, then no references can exist into contexts
other than for the current this object.

We have previously sketched how owners-as-dominators can be supported in
an encoding of ownership into Java [13]. This approach can be duplicated here
with the same drawback: owners-as-dominators can only be guaranteed if the
Java compiler is modified, it cannot be supported as a pre-processor step like
the rest of the encodings discussed. The modifications are not major: a small
change to the well-formedness rules for classes and types to ensure that context

10

parameters are outside the declared owner (the usual requirement for ownership
types to support owners-as-dominators). The issue is that at intermediate steps
of computation the compiler might allow the This parameter to be named in
types: this is not a problem for descriptive ownership because is is only tempo-
rary, but can allow owners-as-dominators to be violated.

4 Formalisation

To show that our encoding does in fact demonstrate the behaviour of an own-
ership types system, we extend a model for the Java type system with elements
of our encoding and runtime ownership information. Our formalisation (Tame
FJOwn) follows the approach of OGJ [26], in representing context parameters
as type parameters, but, by supporting existential types, we do not need any
special machinery to deal with ownership issues.

The bulk of the formal system is relatively standard or follows Tame FJ
[11]. Differences from Tame FJ to model ownership are highlighted in grey .
We also add field assignment, null, a heap, and casting (to model dynamic
downcasts), and make some small improvements elsewhere, these changes are
not highlighted. For the sake of brevity, we do not describe the parts unchanged
from Tame FJ. Parts of the operational semantics, well-formed environments
and heaps, auxiliary functions, and rules for using the heap as an environment
are relegated to the appendix.

Syntax The syntax of Tame FJOwn is given in Fig. 1. For convenience, and fol-
lowing OGJ [26], we syntactically separate types and type parameters used to
represent contexts from regular types: we use τ to denote types which represent
contexts, T to denote regular types, and T to denote either type; likewise for
parameters, we use O to denote type parameters which represent context pa-
rameters, X for regular type parameters, and X for either kind. Importantly, the
two kinds of type are treated almost identically by the type system. We can do
without this convenience by examining the type’s top supertype: contexts will
be bounded by World, other types by Object.

We allow values (v, which are addresses and null; the latter corresponds to
World) to be context (and thus type) parameters at runtime so that we can prove
enforcement of the ownership hierarchy (see Sect. 4.1); values are not allowed as
parameters in source code.

We use a few shorthands for types: C for C<>, and R for ∃∅.R.

Well-formed Types Well-formed types are defined in Fig. 2. In F-Class and
F-Object, we do not check that the type parameter in the This position is
well-formed. Instead we check that it is in the environment and is bounded
below by bottom. This ensures that it is always an in-scope variable (in fact it
is usually a quantified variable, although this does not need to be enforced) and
that no other type can be derived to be a subtype of it (as would be the case if
it had a lower bound). This ensures that the This context cannot be named by
using subsumption.

11

e ::= γ | null | e.f | e.f = e | e.<P, P >m(e) expressions

| new C< T ,? > | (T)e

v ::= ι | null values

Q ::= class C<X¢ T, O¢ τ,Owner¢ T , This¢ T > ¢ N {T f; M}
M ::= <X¢ T, O¢ T > T m(T x) {return e;} method declarations

N ::= C<T, T > | Object< T , T > | World<> class types

R ::= N | X non-existential types

T , U ::= ∃∆.N | ∃∅.X | types

P ::= T | ? |method type parameters

X ,Y ::= X | O | v type parameters

∆ ::= X→[Bl Bu]type environments
B ::= T | ⊥ bounds

Γ ::= γ:T variable environments
γ ::= ι | x locations or variables

H ::= ι →{N; f→v} heaps

T ::= T | τ types and contexts

P ::= T | ? method parameters

τ ::= World | O | v contexts

x, this variables
X, Y type variables

O, Owner, This context variables

ι locations

C, Object, World class names
f, g field names
m method names

Fig. 1. Syntax of Tame FJOwn.

Well-formed types: ∆ ` B ok, ∆ ` P ok, ∆ ` R ok

X ∈ ∆

∆ ` X ok

(F-Var)

∆ ` World<> ok

(F-World)

∆ `⊥ ok

(F-Bottom)

∆ ` ? ok

(F-Star)

∆ ` ∆′ ok
∆, ∆′ ` N ok

∆ ` ∃∆′.N ok

(F-Exists)

∆ ` T , τ , τo ok

T = T , τ , τo, τt ∆(τt) = [⊥ T]
class C<X¢ T u> ¢ N{...}

∆ ` T <: [T /X]T u

∆ ` C<T > ok

(F-Class)

∆ ` τo ok

∆(τt) = [⊥ T]
∆ ` Object< τo,τ t > ok

(F-Object)

Fig. 2. Tame FJOwn well-formed types, type environments, and heaps.

Type Checking Selected type rules are given in Fig. 3. Object creation (T-New)
does not take any (value) parameters (i.e., we don’t have constructors, at run-

12

Expression typing: ∆; Γ ` e : T

∆ ` T ok

∆; Γ ` null : T

(T-Null)

∆; Γ ` e : ∃∆′.N fType(f, N) = T ′

∆; Γ ` e′ : T ∆, ∆′ ` T <: T ′

∆; Γ ` e.f = e′ : T

(T-Assign)

∆ ` T , T ok

∆ ` ∃O→ [⊥ T].C<T ,T ,O> ok

∆; Γ ` new C<T ,T ,? > : ∃O→ [⊥ T].C<T ,T ,O>
(T-New)

Class typing: ` Q ok

∆ = X→[⊥ T u], Owner→[⊥ τo],This→[⊥ Owner],O→[⊥ τu]

∅ ` ∆ ok ∆ ` N, T ok

X = X, O, Owner, This ∆; this:C<X> ` M ok in C

N = D<T ,Owner,This> ∆ ` N <: Object<Owner,This>

` class C<X¢ T u, O¢ τu,Owner¢ τo,This¢ Owner > ¢ N{T f; M} ok

(T-Class)

Fig. 3. Selected Tame FJOwn expression and class typing rules.

time all fields are initialised to null). This requires null and the T-Null rule.
Initialising objects in this way is necessary so that fields owned by This can be
initialised. The actual type parameter in the This position of new expressions
must always be ?, so no actual parameter is named at initialisation. New ob-
jects are given existential types, with the This parameter existentially quantified
(bounded above by the Owner parameter), which ensures that the actual This
parameter can never be named directly. The extra well-formedness premise in
T-New is stricter than the usual well-formedness premise and ensures that the
type parameters are well-formed without the extra, quantified parameter in the
environment.

We add a rule for casting (T-Cast), which is standard. Unlike in Feather-
weight Java, we do not distinguish between up-, down-, and stupid casts.

In T-Class we enforce that the declared upper bound of This is Owner4. The
last two premises ensure that declared classes fall under the Object hierarchy
and are not subtypes of World, which means they cannot be used as context
parameters, and that the Owner and This parameters are invariant with respect
to inheritance. The latter is an important sanity condition of our encoding of
ownership and corresponds to the well-known condition on inheritance and own-
4 The re-ordering of type parameters is a hangover from supporting owners-as-

dominators, where the lower bound of each O is Owner.

13

ership [15]. We assume that Object is declared with parameters Owner and This
with the usual bounds.

Operational Semantics Operational semantics are mostly defined in the ap-
pendix; the most interesting change from Tame FJ is in object creation:

ι 6∈ dom(H) fields(C) = f
H′ = H, ι → {C<T,T ,ι>; f→null}

new C<T ,T ,? >;H ; ι;H′
(R-New)

A new object’s runtime type (stored in the heap) is formed by replacing the ?
used in the program source by the new object’s address. Together with the usual
rules of substitution (in method invocation), occurrences of both this and This
in class declarations are replaced by the instantiation’s address (ι), unifying the
two representations of the object. Together with the quantification in T-New,
objects are, in effect, packed into existential types, with the object’s address as
witness ‘type’.

4.1 Discussion

Ownership types are intrinsically dependent because they reflect objects’ po-
sitions in the heap. We have shown that ownership types can be encoded as
parametric types in a Java-like type system, reminiscent of phantom types [21].
Phantom types are parametric types where type parameters are never used as
types5. Phantom types are used in Haskell to simulate values in types, without
the complexity and decidability issues of full dependent types [21]. This is exactly
what our system is doing with respect to ownership information. We conclude
then, that ownership type systems are, in some sense, no more complex than
standard parametric type systems such as Java’s. Despite their dependent char-
acter, the full power of dependent types is not required to support ownership
type systems. However, we should not overstep the mark and assume that type
parametricity is the only, or even the best, foundational model for ownership
types.

Most of the ownership features described in Sect. 3 can be accommodated in
Tame FJOwn. Inner classes require encoding and are discussed below. Paths of fi-
nal fields cannot easily by encoded in our formal system. Generic Universe Types
[19] can be accommodated after encoding. Ownership domains would require a
small extension to the formal system, which we have avoided for the sake of
simplicity: each class has a list of This type parameters rather than a single pa-
rameter. Each parameter represents a domain. Since this change merely changes
This to This, we expect very few changes to be necessary to accommodate it.

The extensions to support ownership domains and inner classes (below) are
fairly superficial changes, modifying only the restrictions on type parameters
and which type parameters are hidden in T-New.
5 More precisely, phantom type parameters are not used on the right hand side of the

definition of a type constructor.

14

Inner Classes Encoding inner classes in Tame FJOwn would require a small
extension to our formalisation. References to the surrounding object and the
type parameters of the surrounding object must be made available to objects of
the inner class. Extending Tame FJOwn could be done by adopting a nesting of
classes and objects in the class table and heap or by adding a field to each class
pointing to the surrounding object, and type parameters for the surrounding
classes’ type parameters; object creation becomes more complex, but otherwise
the calculus is not changed too much. The iterator as inner class example from
Sect. 3.1 is encoded as (we elide bounds):

class Iterator<D, L_Owner, L_This, It_Owner, It_This> {
List<D, L_Owner, L_This> out;
Node<D, L_This, ?> curNode;
Object<It_This, ?> privField;

Object<D, ?> next() {...}
}

class Client<Owner, This> {
<LT> void m(List<World, This, LT> l) {

Iterator<World, This, LT, This, ?> i
= new Iterator<World, This, LT, This, ?>();

i.out = l;
Object<World, ?> first = i.next();

}
}

Java

We must use (a presumably capture converted) type variable (LT) for the
This parameter of l, provide l’s type parameters to i, and must instantiate the
out field of i.

Type Soundness We have proved type soundness for Tame FJOwn in the usual
way [28] by proving progress and preservation theorems. For the most part, our
proofs follow those of Tame FJ [11]; they can be downloaded from [1].

In standard existential type systems, witness types are known at runtime,
and type soundness guarantees that no type errors involving witness types occur,
even though the type system has only partial knowledge of these types during
type checking. Taking this approach with Tame FJOwn would not be very in-
formative, since all witness types (according to T-New) will be ?. Our static
types hold more information (the ownership hierarchy) than is represented by the
‘witness types’. Our soundness result proves that Tame FJOwn does enforce the
ownership hierarchy, i.e., Tame FJOwn enforces not only strict type soundness
(well-typed programs won’t access non-existent fields or methods), but also that
objects reside in the context described by their type. Ownership information is
represented at runtime by storing the object’s address into it’s This position (in

15

R-New), the address propagates into other ownership positions by substitution
(in R-Invk).

In proving type soundness for Tame FJOwn, we have proved that a one-
stage type checker (corresponding to an integration of our pre-processor and the
Java type checker) is sound, rather than proving that a two-stage type checker
(corresponding to pre-processing and then Java type checking, as in our imple-
mentation) is sound. Our approach is theoretically more direct and reflects what
we envision to be the long term use of our techniques.

5 Implementation

We have implemented compilers for Java with ownership types and Generic
Universe Types by using the techniques described in this paper. Our implemen-
tations are simple source to source translators which pre-process source code to
plain Java; the Java compiler is then used to type check and compile the code.
Most type errors are caught by the Java compiler, only a few are handled by
our translators. Our translators are extensions to the parser and AST elements
of the JKit Java compiler [24]. We encode one class at a time and do not need
to be aware of the whole program. Generated classes will behave well together,
but are incompatible with plain Java classes6.

Our approach supports ownership and universe types on top of nearly the
entire Java Language, including generics, arrays (including the various kinds of
array initialisers), interfaces, inner classes (but not anonymous classes), statics,
and wildcards.

Our implementations are very much prototypes, an industrial strength com-
piler would integrate the encoding with Java type checking, as opposed to our
two-stage process. Integration would allow for meaningful error messages and
support for effects and encapsulation properties. Furthermore, to be usable, a
language requires more than a compiler, libraries must be supported, either by
support for non-ownership aware classes (currently, all classes must be written
with ownership types) or by producing a set of ownership annotated libraries
(or a combination of the two approaches).

Our compilers can be downloaded from [1].

5.1 Ownership Types

Our source syntax is mostly similar to that used throughout this paper. We
support ownership, context parameters, orthogonal generics, context- and type-
parametric methods, final method parameters as contexts (for dynamic aliases),
existential quantification in the form of context wildcards, and inner classes with
access to the contexts and context parameters of the surrounding object. We do
not support local variables (other than method parameters) or fields as contexts.

6 Strictly, since we generate plain Java, one could write classes which behave well with
the generated classes, but not in a way which behaves nicely with the source classes.

16

We support standard casting, including to wildcard owners, but do not directly
support “existential owners”.

Our compiler strips owners and context parameters and replaces them with
type parameters, in both class declarations and in types; in the latter case, using
wildcards in the This position.

The Java compiler does not permit wildcard parameters when objects are in-
stantiated. To get around this, we use the Owner type parameter in the This po-
sition (because it is the only type parameter which satisfies the declared bound)
and immediately cast to the required wildcard type (which inherits the upper
bound):

new world:Object() //source syntax
new Object<World, ?>() //pseudo-Java
(OwnedObject<World, ?>) new OwnedObject<World, World>() //Java

Note also that, as in OGJ, we have to add an OwnedObject which extends
Object at the root of our class hierarchy to take the encoded ownership pa-
rameters. All classes must extend OwnedObject (rather than Object, which may
happen implicitly) and all uses of Object changed to OwnedObject. In the source
syntax, the object’s owner is implicit in the extends clause, and so translation
of the superclass type must be treated differently from other types. Because we
add OwnedObject and World to our runtime, we must import these classes into
each encoded class file.

5.2 Generic Universe Types

The source syntax is pretty standard for generic universes, e.g., rep List<any Object>.
The translation is much simpler than for ownership types since we do not have
to translate context parameters, only types. Most of the issues faced are simi-
lar, and simpler, than in the ownership types case: we must check for universe
modifiers on all types (but not in extends clauses), Object is translated to
OwnedObject, and care must be taken with array types.

6 Conclusion and Future Work

In this paper we have shown how ownership types, Generic Universe Types,
Ownership Domains, and a range of extensions to ownership type systems can
be encoded using Java Generics and wildcards. The key concepts are the rep-
resentation of context parameters as type parameters, the reification of this
as a type parameter, the hiding of that type parameter using wildcards, and
the phantom ownership hierarchy thus created. Our developments shed light on
the type-theoretic foundations of ownership types and offer a route for practical
compilers constructed upon existing technology.

17

Future Work The main thrust of future work will be in supporting owners-
as-dominators, and other encapsulation polices and effects, in our formal work
and compilers. This will require integrating our translating compiler with an
existing Java compiler, which will also allow for better error messages and more
efficient type checking. We would also like to encode libraries with ownership
type information for use with our compilers.

References

1. Accompanying webpage. https://ecs.victoria.ac.nz/Main/Encoding.
2. Marwan Abi-Antoun and Jonathan Aldrich. Ownership Domains in the Real

World. In International Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2008.

3. Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating Aliasing
Policy from Mechanism. In European Conference on Object Oriented Programming
(ECOOP), 2004.

4. Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes,
Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A Real-Time Java Vir-
tual Machine with Applications in Avionics. Transactions on Embedded Computing
Systems, 7(1):1–49, 2007.

5. Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A type and effect system for deterministic parallel java. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2009.

6. Boyapati, Liskov, and Shrira. Ownership Types for Object Encapsulation. In
Principles of Programming Languages (POPL), 2003.

7. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership Types
for Safe Programming: Preventing Data Races and Deadlocks. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2002.

8. Nicholas Cameron. Existential Types for Variance — Java Wildcards and Owner-
ship Types. PhD thesis, Imperial College London, 2009.

9. Nicholas Cameron and Werner Dietl. Comparing Universes and Existential Own-
ership Types. In International Workshop on Aliasing, Confinement and Ownership
in object-oriented programming (IWACO), 2009.

10. Nicholas Cameron and Sophia Drossopoulou. Existential Quantification for Variant
Ownership. In European Symposium on Programming Languages and Systems
(ESOP), 2009.

11. Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A Model for Java with
Wildcards. In European Conference on Object Oriented Programming (ECOOP),
2008.

12. Nicholas Cameron, Sophia Drossopoulou, James Noble, and Matthew Smith. Mul-
tiple Ownership. In Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 2007.

13. Nicholas Cameron and James Noble. OGJ Gone Wild. In International Work-
shop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO), 2009.

14. David G. Clarke. Object Ownership and Containment. PhD thesis, School of
Computer Science and Engineering, The University of New South Wales, Sydney,
Australia, 2001.

18

15. David G. Clarke and Sophia Drossopoulou. Ownership, Encapsulation and the
Disjointness of Type and Effect. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2002.

16. David G. Clarke, John M. Potter, and James Noble. Ownership Types for Flex-
ible Alias Protection. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1998.

17. David Cunningham, Werner Dietl, Sophia Drossopoulou, Adrian Francalanza, Pe-
ter Müller, and Alexander J. Summers. Universe Types for Topology and Encap-
sulation. In Formal Methods for Components and Objects (FMCO), 2008.

18. David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe Types
for Race Safety. In Verification and Analysis of Multi-threaded Java-like Programs
(VAMP), 2007.

19. Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types.
In European Conference on Object Oriented Programming (ECOOP), 2007.

20. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification Third Edition. Addison-Wesley, Boston, Mass., 2005.

21. Ralf Hinze. The Fun of Programming, pages 245–262. Palgrave Macmillan, 2003.
Fun with phantom types.

22. Yi Lu and John Potter. On Ownership and Accessibility. In European Conference
on Object Oriented Programming (ECOOP), 2006.

23. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular Invariants
for Layered Object Structures. Science of Computer Programming, 62(3):253–286,
October 2006.

24. David Pearce. Jkit compiler. http://www.ecs.vuw.ac.nz/˜djp/jkit.
25. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Featherweight generic

confinement. J. Funct. Program., 16(6):793–811, 2006.
26. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic Owner-

ship for Generic Java. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2006.

27. Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad
Bracha, and Neal Gafter. Adding Wildcards to the Java Programming Language.
Journal of Object Technology, 3(11):97–116, 2004. Special issue: OOPS track at
SAC 2004, Nicosia/Cyprus.

28. Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-
ness. Information and Computation, 115(1):38–94, 1994.

29. Tobias Wrigstad. Ownership-Based Alias Managemant. PhD thesis, KTH, Sweden,
2006.

30. Tobias Wrigstad and David G. Clarke. Existential Owners for Ownership Types.
Journal of Object Technology, 6(4), 2007.

19

A Elided Figures

These sections will be provided in an accompanying technical report if the paper
is accepted.

Lookup Functions

fields(Object) = ∅
class C<X¢ T u> ¢ D<...> {U f; M}

fields(C) = fields(D), f

class C<X¢ T u> ¢ N{U f; M}
f 6∈ f

fType(f, C<T >) = fType(f, [T /X]N)

class C<X¢ T u> ¢ N{U f; M}
fType(fi, C<T >) = [T /X]U i

class C<X¢ T u> ¢ N{U f; M}
m 6∈ M

mBody(m, C<T >) = mBody(m, [T /X]N)

class C<X¢ T u> ¢ N{U ′ f; M}
<Y¢ T ′u> U m(U x) {return e0;} ∈ M

mBody(m, C<T >) = (x, [T /X]e0)

class C<X¢ T u> ¢ N{U f; M}
m 6∈ M

mType(m, C<T >) = mType(m, [T /X]N)

class C<X¢ T u> ¢ N{U ′ f; M}
<Y¢ T ′u> U m(U x) {return e0;} ∈ M

mType(m, C<T >) = [T /X](<Y¢ T ′u>U → U)

Fig. 4. Method and field lookup functions for Tame FJOwn.

20

Auxiliary Functions: uBound∆(B) match(〈R, U〉, P ,Y, T) sift(R, T ,X) ⇓∆ T

uBound∆(B) =

{
uBound∆(Bu), if B = X and ∆(X) = [Bl Bu]

B, if B 6= X

∀j where Pj = ? : Yj ∈ fv(R′) ∀i where Pi 6= ? : Ti = Pi

` R @@: [T /Y,T ′/X]R′

dom(∆) = X fv(T , T ′) ∩ Y,X = ∅
match(〈R, ∃∆.R′〉,P,Y, T)

X ∈ Y
sift((R, R), (X , U), Y) = sift(R, U, Y)

X 6∈ Y sift(R, U, Y) = (R′, U ′)

sift((R, R), (X , U), Y) = 〈(R, R′), (X , U ′)〉

sift(∅, ∅, Y) = 〈∅, ∅〉
sift(R, U, Y) = (R′, U ′)

sift((R, R), (∃∆.N, U), Y) = 〈(R, R′), (∃∆.N, U ′)〉

X 6∈ dom(∆)

⇓∆ X = X
∆(X) = [Bl Bu]

⇓∆ X =⇓∆ Bu ⇓∆ ∃∆′.N = ∃∆, ∆′.N

Fig. 5. Auxiliary functions for Tame FJOwn.

21

Subclasses: ` R @@: R

class C<X¢ T u> ¢ N{...}
` C<T > @@: [T /X]N

(SC-Sub-Class)

` R @@: R

(SC-Reflex)

` R @@: R′′ ` R′′ @@: R′

` R @@: R′

(SC-Trans)

Extended subclasses: ∆ ` B @: B

class C<X¢ T u> ¢ N{...}
∆ ` ∃∆′.C<T > @: ∃∆′.[T /X]N

(XS-Sub-Class)

∆ `⊥@: B

(XS-Bottom)

∆ ` B @: B

(XS-Reflex)

∆ ` B @: B′′

∆ ` B′′ @: B′

∆ ` B @: B′

(XS-Trans)

dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅ fv(T) ⊆ dom(∆, ∆′)

∆, ∆′ ` [T /X]Bl <: T ∆, ∆′ ` T <: [T /X]Bu

∆ ` ∃∆′.[T /X]N @: ∃X→[Bl Bu].N

(XS-Env)

Subtypes: ∆ ` B <: B

∆ ` B @: B′

∆ ` B <: B′

(S-SC)

∆ ` B <: B′′ ∆ ` B′′ <: B′

∆ ` B <: B′

(S-Trans)

∆(X) = [Bl Bu]

∆ ` X <: Bu

∆ ` Bl <: X
(S-Bound)

Fig. 6. Tame FJOwn subclasses, extended subclasses, and subtypes.

Well-formed type environments: ∆ ` ∆ ok

∆ ` ∅ ok

(F-Env-Empty)

∆,X→[Bl Bu], ∆
′ ` Bl ok ∆,X→[Bl Bu], ∆

′ ` Bu ok
∆ ` uBound∆(Bl) @: uBound∆(Bu)

∆ ` Bl <: Bu ∆,X→[Bl Bu] ` ∆′ ok

∆ ` X→[Bl Bu], ∆
′ ok

(F-Env)

Well-formed heaps: ∆ ` H ok

∀ι →{N; f→v} ∈ H :
∅ ` N ok

fType(f, N) = T ∅,H ` v : T

` H ok

(F-Heap)

Fig. 7. Tame FJOwn well-formed type environments and heaps.

22

Expression typing: ∆; Γ ` e : T

∆; Γ ` γ : Γ (γ)

(T-Var)

∆ ` T ok

∆; Γ ` null : T

(T-Null)

∆; Γ ` e : ∃∆′.N
fType(f, N) = T

∆; Γ ` e.f : ⇓∆′ T

(T-Field)

∆; Γ ` e : ∃∆′.N fType(f, N) = T ′

∆; Γ ` e′ : T ∆, ∆′ ` T <: T ′

∆; Γ ` e.f = e′ : T

(T-Assign)

∆; Γ ` e : U
∆ ` T <: U ∆ ` T ok

∆; Γ ` (T)e : T

(T-Cast)

∆; Γ ` e : U
∆ ` U <: T ∆ ` T ok

∆; Γ ` e : T

(T-Subs)

∆ ` T , T ok

∆ ` ∃O→ [⊥ T].C<T ,T ,O> ok

∆; Γ ` new C<T ,T ,? > : ∃O→ [⊥ T].C<T ,T ,O>
(T-New)

∆; Γ ` e : ∃∆′.N mType(m, N) = <X¢ B>U → U

∆ ` P ok ∆; Γ ` e : ∃∆.R

match(sift(R, U,X),P,X , T)

∆, ∆′, ∆ ` T <: [T /X]B ∆, ∆′, ∆ ` R <: [T /X]U

∆; Γ ` e.<P>m(e) : ⇓∆′,∆ [T /X]U

(T-Invk)

Fig. 8. Tame FJOwn expression typing rules.

Method typing: ∆ ` M ok in C

∆′ = X→[⊥ T u] ∆ ` ∆′ ok ∆, ∆′ ` T , T ok
class C<...> ¢ N{...}

∆, ∆′; Γ, x:T ` e : T

override(m, N, <X¢ T u>T→ T)

∆; Γ ` <X¢ T u>Tm(T x) {return e} ok in C

(T-Method)

mType(m, N) = <X¢ T >T → T

override(m, N, <X¢ T >T → T)

(T-Override)

mType(m, N) undefined

override(m, N, <X¢ T >T → T)

(T-OverrideUndef)

Fig. 9. Tame FJOwn method typing rules.

23

Computation: e;H ; e;H

H(ι) = {N ; f→v}
ι.fi;H ; vi;H

(R-Field)

H(ι) = {N ; f→v}
H′ = H[ι 7→ {N ; v′; f→v[fi 7→ v]}]

ι.fi = v;H ; v;H′
(R-Assign)

ι 6∈ dom(H) fields(C) = f

H′ = H, ι → {C<T,T ,ι>; f→null}
new C<T ,T ,? >;H ; ι;H′

(R-New)

H(ι) = {N ; v; ...} H(ι) = {N...}
mBody(m, N) = (x, e0)

mType(m, N) = <X¢ B>U → U

match(sift(N, U,X),P,X , T)

ι.<P>m(ι);H ; [ι/x, ι/this, T /X]e0;H
(R-Invk)

H(ι) = {N...} ∅ ` N <: T

(T)ι;H ;; ι;H
(R-Cast)

(T)null;H ;; null;H
(R-Cast-Null)

Fig. 10. Tame FJOwn reduction rules.

Congruence: e;H ; e;H

e;H ; e′;H′ e′ 6= err

e.f;H ; e′.f;H′
(RC-Field)

e1;H ; e′1;H′ e′1 6= err

H; e1.f = e2 ; H′; e′1.f = e2

(RC-Assign-1)

e2;H ; e′2;H′ e′2 6= err

ι.f = e2;H ; ι.f = e′2;H′
(RC-Assign-2)

e;H ; e′;H′ e′ 6= err

e.<P>m(e);H ; e′.<P>m(e);H′
(RC-Inv-Recv)

e;H ; e′;H′ e′ 6= err

ι.<P>m(v,e,e);H ; ι.<P>m(v,e′,e);H′
(RC-Inv-Arg)

e;H ; e′;H′ e′ 6= err

(T)e;H ; (T)e′;H′

(RC-Cast)

Fig. 11. Tame FJOwn reduction rules.

24

Exceptional Computation and Error Propogation: e;H ; e;H

null.f;H ; err;H
(R-Field-Null)

null.f = e;H ; err;H
(R-Assign-Null)

null.<P>m(e);H ; err;H
(R-Invk-Null)

H(ι) = {N...} ∅ 6` N <: T

(T)ι;H ;; err;H
(R-Bad-Cast)

e;H ; err;H′
e.f;H ; err;H′

(RC-Field-Err)

e1;H ; err;H′
e1.f = e2;H ; err;H′

(RC-Assign-1-Err)

e2;H ; err;H′
e1.f = e2;H ; err;H′

(RC-Assign-2-Err)

e;H ; err;H′
e.<P>m(e);H ; err;H′

(RC-Invk-Recv-Err)

e;H ; err;H′
ι.<P>m(v,e,e);H ; err;H′

(RC-Invk-Arg-Err)

e;H ; err;H′
(T)e;H ; err;H′

(RC-Cast-Err)

Fig. 12. Tame FJOwn reduction rules.

H = ι →{C<T ,T ,ι′>; ...}
ι → [⊥ T] , ∆; ι:N.C<T ,T ,ι′> ` e : T

∆;H ` e : T

(H-T)

H = ι →{C<T ,T ,ι′>; ...}
ι → [⊥ T], ∆ ` T <: T ′

H, ∆ ` T <: T ′

(H-S)

H = ι →{C<T ,T ,ι′>; ...}
ι → [⊥ T], ∆ ` T ok

H, ∆ ` T ok

(H-F)

Fig. 13. Using the heap as an environment in Tame FJOwn.

25

B Proofs in Detail

For all lemmas and theorems we require the additional premise that the pro-
gram is well-formed, i.e., for all class declarations, Q, in the program, ` Q ok.
Throughout, we assume the Barendregt convention, i.e., bound and free variables
are distinct.

To use the premises of a judgement in a proof where we have the conclusion
an inversion lemma is required. However, where a judgement is syntax directed
we reduce trivial overhead by using the inversion of the judgment directly in the
proof.

Lemma 1 (Substitution preserves subclassing).

If:
a. ` R @@: R′

then:
` [T/X]R @@: [T/X]R

′

Proof by structural induction on the derivation of ` R @@: R′ with a case analysis
on the last step:

Case 1 (SC-Trans)

1

1. ` R @@: R′′

2

2. ` R′′ @@: R′

}
by premises of SC-Trans

3

3. ` [T/X]R @@: [T/X]R
′′

by ind hyp, 1

4

4. ` [T/X]R
′′ @@: [T/X]R

′
by ind hyp, 2

5

5. ` [T/X]R @@: [T/X]R
′

by 3, 4, SC-Trans

Case 2 (SC-Reflex)

trivial

Case 3 (SC-Sub-Class)

1

1. R = C<U>

2

2. R′ = [U/Y]N

}
by def SC-Sub-Class

3

3. class C<Y...> ¢ N... by premise SC-Sub-Class

4

4. [T/X]R = C<[T/X]U> by 1, def subst

5

5. ` C<[T/X]U> @@: [[T/X]U/Y]N by 3, SC-Sub-Class

6

6. ` class C<Y...> ¢ N... ok by 3, wf-prog

7

7. Y... ` N ok by 6, def T-Class

8

8. [T/X][U/Y]N = [[T/X]U/Y]N by 7

9

9. ` [T/X]R @@: [T/X]R
′

by 5, 8, 2, 4

26

2

Lemma 2 (Subsititution preserves matching).

If:
a. match(〈R,∃∆.R′〉, P, Y, U)
b. (X ∪ fv(T)) ∩ Y) = ∅

then:
match(〈[T/X]R, [T/X]∃∆.R′〉, [T/X]P, Y, [T/X]U)

Proof

1

1. ∀i where Pi 6= ? : Ui = Pi

2

2. ∀j where Pj = ? : Yj ∈ fv(R′)

3

3. ` R @@: [U/Y,U′/Z]R′

4

4. dom(∆) = Z

5

5. fv(U, U′) ∩ Y, Z = ∅





by premises of match

6

6. Z are fresh by 4, Barendregt

7

7. ` [T/X]R @@: [T/X][U/Y,U′/Z]R′ by 3, lemma 1

8

8. ` [T/X]R @@: [[T/X]U/Y,[T/X]U′/Z][T/X]R′ by 7, 6, b

9

9. ∀i where [T/X]Pi 6= ? : [T/X]Ui = [T/X]Pi by 1, def subst

10

10. ∀j where [T/X]Pj = ? : Yj ∈ fv([T/X]R′) by 2, b, def subst

11

11. fv([T/X]U, [T/X]U′) ∩ Y, Z = ∅ by 5, 6, b

12

12. match(〈[T/X]R, [T/X]∃∆.R′〉, [T/X]P, Y, [T/X]U)by 9, 10, 8, 4, 11

2

Lemma 3 (Substitution on U preserves sift).

If:
a. sift(R, U, Y) = 〈Rr, Tr〉
b. (fv(T) ∪ X) ∩ Y = ∅

then:
sift(R, [T/X]U, Y) = 〈Rr, [T/X]Tr〉

Proof by structural induction on the derivation of sift(R, U, Y) = 〈Rr, Tr〉 with a
case analysis on the last step:

Case 1 U = ∅
trivial

Case 2 U = ∃∆.N, U′

27

1

1. R = R, R′

2

2. 〈Rr, Tr〉 = 〈R, R′′, ∃∆.N, U′′〉

}
by def sift

3

3. sift(R′, U′, Y) = 〈R′′, U′′〉 by premise sift

4

4. [T/X]U = ∃[T/X]∆.[T/X]N, [T/X]U′ by def subst

5

5. sift(R′, [T/X]U′, Y) = 〈R′′, [T/X]U′′〉 by 3, b, ind hyp

6

6. sift(R, [T/X]U, Y) = by 5, 4, 1, sift
〈R, R′′, ∃[T/X]∆.[T/X]N, [T/X]U′′〉

7

7. sift(R, [T/X]U, Y) = 〈Rr, [T/X]Tr〉 by 6, 2

Case 3 U = ∃∅.Z, U′ ∧ Z 6∈ Y

1

1. R = R, R′

2

2. 〈Rr, Tr〉 = 〈R, R′′, ∃∅.Z, U′′〉

}
by def sift

3

3. sift(R′, U′, Y) = 〈R′′, U′′〉 by premise sift

4

4. [T/X]U = [T/X]∃∅.Z, [T/X]U′ by def subst

5

5. sift(R′, [T/X]U′, Y) = 〈R′′, [T/X]U′′〉 by 3, b, ind hyp

Case analysis on Z:

Case 1 Z 6∈ X

1

1.1. [T/X]U = ∃∅.Z, [T/X]U′ by 4

2

1.2. sift(R, [T/X]U, Y) = by 5, 1.1, 1, sift
〈R, R′′, ∃∅.Z, [T/X]U′′〉

3

1.3. sift(R, [T/X]U, Y) = 〈Rr, [T/X]Tr〉 by 1.2, 2

Case 2 Z ∈ X

1

2.1. Z = Xi

2

2.2. [T/X]∃∅.Z = Ti by 2.1, def subst

3

2.3. Ti = ∃∅.Z′ ∧ Z′ 6∈ Y ∨ Ti = ∃∆.N by b

4

2.4. sift(R, [T/X]U, Y) = by 5, 2.3, 2.2, 4, 1, sift
〈R, R′′, Ti, [T/X]U′′〉

5

2.5. sift(R, [T/X]U, Y) = 〈Rr, [T/X]Tr〉 by 2.3, 2.2, 2

Case 4 U = ∃∅.Z, U′ ∧ Z ∈ Y

1

1. R = R, R′

2

2. 〈Rr, Tr〉 = 〈R′′, U′′〉

}
by def sift

28

3

3. [T/X]U = [T/X]∃∅.Z, [T/X]U′ by def subst

4

4. [T/X]U = ∃∅.Z, [T/X]U′ by 3, b

5

5. sift(R, [T/X]U, Y) = 〈R′′, [T/X]U′′〉 by 4, 1, sift

6

6. done by 5, 2

2

Lemma 4 (Substitution on R preserves sift).

If:
a. sift(R, U, Y) = 〈Rr, Tr〉
b. f is a mapping from and to types in the syntactic category R.

then:
sift(f(R), U, Y) = 〈f(Rr), Tr〉

Proof by structural induction on the derivation of sift(R, U, Y) = 〈Rr, Tr〉 with a
case analysis on the last step:

Case 1 U = ∅
trivial

Case 2 U = ∃∆.N, U′

1

1. R = R, R′

2

2. (Rr, Tr) = (R, R′′, ∃∆.N, U′′)

}
by def sift

3

3. sift(R′, U′, Y) = 〈R′′, U′′〉 by premise sift

4

4. f(R) = f(R), f(R′) by 1, c

5

5. sift(f(R′), U′, Y) = 〈f(R′′), U′′〉 by 3, ind hyp

6

6. sift(f(R), U, Y) = by 5, 4, sift
〈f(R), f(R′′), ∃∆.N, U′′〉

7

7. sift(f(R), U, Y) = 〈f(Rr), Tr〉 by 6, 2

Case 3 U = ∃∅.Z, U′ ∧ Z 6∈ Y

1

1. R = R, R′

2

2. 〈Rr, Tr〉 = 〈R, R′′, ∃∅.Z, U′′〉

}
by def sift

3

3. sift(R′, U′, Y) = 〈R′′, U′′〉 by premise sift

4

4. f(R) = f(R), f(R′) by 1, c

5

5. sift(f(R′), U′, Y) = 〈f(R′′), U′′〉 by 3, b, ind hyp

6

6. sift(f(R), U, Y) = by 5, 4, sift
〈f(R), f(R′′), ∃∅.Z, U′′〉

7

7. sift(f(R), U, Y) = 〈f(Rr), Tr〉 by 6, 2

29

Case 4 U = ∃∅.Z, U′ ∧ Z ∈ Y

1

1. R = R, R′

2

2. 〈Rr, Tr〉 = 〈R′′, U′′〉

}
by def sift

3

3. f(R) = f(R), f(R′) by 1, c

4

4. sift(f(R), U, Y) = 〈f(R′′), U′′〉 by 3, sift

5

5. done by 4, 2

2

Lemma 5 (Substitution preserves field type).

If:
a. fType(f, C<U>) = U

then:
fType(f, [T/X]C<U>) = [T/X]U

Proof by induction on the derivation of fType(f, C<U>) = U with a case analysis
on the last step:

Case 1 base case

1

1. f = fi

2

2. U = [U/Y]U
′
i

}
by def fType

3

3. class C<Y¢ Bu> ¢ N {U′ f; M} by premise of fType

4

4. fType(fi, C<[T/X]U>) = [[T/X]U/Y]U
′
i by 3, def fType

5

5. Y¢ Bu ` U′i ok by 3, wf prog, T-Class

6

6. [T/X]U
′
i = U′i by 5

7

7. fType(fi, C<[T/X]U>) = [T/X]([U/Y]U′i) by 4, 6, def subst

8

8. fType(f, C<[T/X]U>) = [T/X]U by 7, 1, 2

Case 2 inductive case

1

1. U = fType(f, [U/Y]N) by def fType

2

2. class C<Y¢ Bu> ¢ N {U′ f; M}

3

3. f 6∈ f

}
by premises of fType

4

4. [T/X]U = fType(f, [T/X][U/Y]N) by 1, ind hyp

5

5. fType(f, C<[T/X]U>) = by 2, 3, def fType

fType(f, [[T/X]U/Y]N)

6

6. Y¢ Bu ` N ok by 2, wf prog, T-Class

7

7. [T/X]N = N by 6

8

8. fType(f, C<[T/X]U>) = by 5, 7
fType(f, [T/X][U/Y]N)

9

9. fType(f, C<[T/X]U>) = [T/X]U by 8, 4

30

2

Lemma 6 (Substitution preserves method type).

If:
a. mType(m, C<U>) = <X′¢ T′>U′ → U

then:
mType(m, C<[T/X]U>) = [T/X](<X′¢ T′>U′ → U)

Proof by induction on the derivation of mType(m, C<U>) = <X′¢ T′>U′ → U with
a case analysis on the last step:

Case 1 base case

1

1. <X′¢ T′>U′ → U = [U/Y](<X′′¢ T′>U′′ → U′) by def mType

2

2. class C<Y¢ Bu> ¢ N {U′ f; M}

3

3. <X′′¢ T′>U′ m(U′′ x) {return e;} ∈ M

}
by premises of mType

4

4. let S = <X′′¢ T′>U′′ → U′

5

5. mType(m, C<[T/X]U>) = [[T/X]U/Y]S by 2, 3 def mType

6

6. Y¢ Bu ` S ok by 2, wf prog, T-Class

7

7. [T/X]S = S by 6

8

8. mType(m, C<[T/X]U>) = [T/X]([U/Y]S) by 5, 7, def subst

9

9. mType(m, C<[T/X]U>) = by 8, 1, 4
[T/X](<X′¢ T′>U′ → U))

Case 2 inductive case

1

1. <X′¢ T′>U′ → U = mType(m, [U/Y]N) by def mType

2

2. class C<Y¢ Bu> ¢ N {U′ f; M}

3

3. m 6∈ M

}
by premises of mType

4

4. [T/X](<X′¢ T′>U′ → U) = by 1, ind hyp
mType(m, [T/X][U/Y]N)

5

5. mType(m, C<[T/X]U>) = by 2, 3, def mType

mType(m, [[T/X]U/Y]N)

6

6. Y¢ Bu ` N ok by 2, wf prog, T-Class

7

7. [T/X]N = N by 6

8

8. mType(m, C<[T/X]U>) = by 5, 7
mType(m, [T/X][U/Y]N)

9

9. mType(m, C<[T/X]U>) = by 8, 4
[T/X](<X′¢ T′>U′ → U)

2

Lemma 7 (Weakening of uBound).

31

If:
a. uBound∆,∆′(B) = B′

b. dom(∆,∆′) ∩ dom(∆′′) = ∅
then:

uBound∆,∆′′,∆′(B) = B′

Proof by structural induction on the derivation of uBound∆,∆′(B) = B′ with a
case analysis on the last step:

Case 1 B = ∃∅.X

1

1. uBound∆,∆′(B) = uBound∆,∆′(B)u

2

2. ∆,∆′(X) = [Bl Bu]

}
by def uBound

3

3. ∆,∆′′,∆′(X) = [Bl Bu] by 2, b

4

4. uBound∆,∆′(B)u = uBound∆,∆′′,∆′(B)u by 1, b, ind hyp

5

5. uBound∆,∆′′,∆′(B) = B′ by 3, 4

Case 2 otherwise

1

1. B′ = B by def uBound

2

Lemma 8 (Weakening of subtyping).

If:
a. dom(∆,∆′) ∩ dom(∆′′) = ∅

and if:
b. ∆,∆′ ` B @: B′

then:
c. ∆,∆′′, ∆′ ` B @: B′

and if:
d. ∆,∆′ ` B <: B′

then:
∆,∆′′,∆′ ` B <: B′

Proof by structural induction on ∆,∆′ ` B ¿ B′ where ∆ ` B ¿ B′ is defined
to hold if either ∆ ` B @: B′ or ∆ ` B <: B′ holds. There is a case analysis on
the last step:

Case 1 (XS-Reflex, XS-Sub-Class, XS-Bottom, XS-Empty)

trivial
Case 2 (XS-Trans, S-SC, S-Trans)

easy, by ind hyp
Case 3 (XS-Env)

32

1

1. B = ∃∆′′′.[T/X]N

2

2. B′ = ∃X→[Bl Bu].N

}
by def XS-Env

3

3. ∆,∆′,∆′′′ ` [T/X]Bl <: T

4

4. ∆,∆′,∆′′′ ` T <: [T/X]Bu

5

5. dom(∆′′′) ∩ fv(∃X→[Bl Bu].N) = ∅

6

6. fv(T) ⊆ dom(∆, ∆′,∆′′′)





by premises of XS-Env

7

7. dom(∆,∆′) ∩ dom(∆′′′) = ∅

8

8. dom(∆′′′) ∩ dom(∆′′) = ∅
}

by Barendregt convention

9

9. dom(∆,∆′,∆′′′) ∩ dom(∆′′) = ∅ by a, 7, 8

10

10. ∆,∆′′,∆′,∆′′′ ` [T/X]Bl <: T by 3, 9, ind hyp

11

11. ∆,∆′′,∆′,∆′′′ ` T <: [T/X]Bu by 4, 9, ind hyp

12

12. fv(T) ⊆ dom(∆, ∆′′,∆′,∆′′′) by 6, def ⊆

13

13. ∆,∆′′,∆′ ` B <: B′ by 1, 2, 5, 10, 11, 12, XS-Env

Case 4 (S-Bound)

1

1. (∆,∆′)(X) = [Bl Bu] by premise of S-Bound

2

2. (∆,∆′′,∆′)(X) = [Bl Bu] by 1, a

3

3. done by 2, S-Bound

2

Lemma 9 (Weakening of well-formedness).

If:
a. dom(∆,∆′) ∩ dom(∆′′) = ∅
b. ∆,∆′ ` ψ ok

where:
c. ψ = ∆′′′ or B or R or ?

and if:
d. ψ = ∆′′′ then dom(∆,∆′,∆′′′) ∩ dom(∆′′) = ∅

then:
∆,∆′′,∆′ ` ψ ok

Proof. structural induction on the derivation of ∆, ∆′ ` ψ ok with a case anal-
ysis on the last step:

Case 1 (F-Bottom, F-Env-Empty, F-World)

Trivial
Case 2 (F-Var, F-Var-O)

easy by a
Case 3 (F-Exist)

33

1

1. ψ = ∃∆′′′.N by def F-Exist

2

2. ∆,∆′ ` ∆′′′ ok

3

3. ∆,∆′,∆′′′ ` N ok

}
by premises of F-Exist

4

4. dom(∆,∆′,∆′′′) ∩ dom(∆′′) = ∅ by a, Barendregt

5

5. ∆,∆′′,∆′ ` ∆′′′ ok by 2, 4, ind hyp

6

6. ∆,∆′′,∆′,∆′′′ ` N ok by 3, 4, ind hyp

7

7. ∆,∆′′,∆′ ` ∃∆′′′.N ok by 5, 6, F-Exist

Case 4 (F-Class)

1

1. ψ = C<T > by def F-Class

2

2. T = T, τ , τo, τt

3

3. ∆,∆(τt) = [⊥ T]

4

4. class C<X¢ τu>...

5

5. ∆,∆′ ` T, τ , τo ok

6

6. ∆,∆′ ` T <: [T /X]Tu

7

7. ∀τ ∈ τ . ∆, ∆′ ` τo <: τ





by premises of F-Class

8

8. ∆,∆′′,∆(τt) = [⊥ T] by 3, a

9

9. ∆,∆′′,∆′ ` T, τ , τo ok by 5, a, ind hyp

10

10. ∆,∆′′,∆′ ` T <: [T /X]Tu by 6, a, lemma 8

11

11. ∀τ ∈ τ . ∆,∆′′,∆′ ` τo <: τ by 7, a, ind hyp

12

12. ∆,∆′′,∆′ ` ψ ok by 2, 1, 8, 4, 9, 10, 11, F-Class

Case 5 (F-Object)

1

1. ψ = Object<τo, τt> by def F-Object

2

2. ∆,∆′ ` τo ok

3

3. ∆,∆(τt) = [⊥ T]
}

by premises of F-Object

4

4. ∆,∆′′,∆(τt) = [⊥ T] by 3, a

5

5. ∆,∆′′,∆′ ` τo ok by 2, a, ind hyp

6

6. ∆,∆′′,∆′ ` ψ ok by 1, 4, 5, F-Object

Case 6 (F-Env)

1

1. ψ = X→[Bl Bu],∆′′′ by def F-Env

2

2. ∆,∆′,X→[Bl Bu],∆′′′ ` Bl, Bu ok

3

3. ∆,∆′ ` uBound∆,∆′(Bl) @: uBound∆,∆′(Bu)

4

4. ∆,∆′ ` Bl <: Bu

5

5. ∆,∆′,X→[Bl Bu] ` ∆′′′ ok

6

6. ∆,∆′ `X Bu sc





by premises of F-Env

7

7. ∆,∆′′,∆′,X→[Bl Bu],∆′′′ ` Bl, Bu ok by 2, d, ind hyp

8

8. ∆,∆′′,∆′ ` uBound∆,∆′(Bl) @: by 3, a, lemma 8
uBound∆,∆′(Bu)

9

9. ∆,∆′′,∆′ ` uBound∆,∆′′,∆′(Bl) @: by 8, a, lemma 7

34

uBound∆,∆′′,∆′(Bu)

10

10. ∆,∆′′,∆′ ` Bl <: Bu by 4, a, lemma 8

11

11. ∆,∆′′,∆′,X→[Bl Bu] ` ∆′′′ ok by 5, d, ind hyp

12

12. ∆,∆′′,∆′ `X Bu sc by 6, a, lemma 8

13

13. ∆,∆′′,∆′ ` X→[Bl Bu], ∆′′′ ok by 7, 9, 10, 11, F-Env

2

Lemma 10 (Weakening of Typing).

If:
a. dom(∆,∆′) ∩ dom(∆′′) = ∅
b. dom(Γ, Γ ′′) ∩ dom(Γ ′) = ∅
c. ∆,∆′;Γ, Γ ′′ ` e : T

then:
∆,∆′′,∆′;Γ, Γ ′, Γ ′′ ` e : T

Proof by structural induction on the derivation of ∆,∆′; Γ, Γ ′′ ` e : T with a
case analysis on the last step:

Case 1 (T-Null)

trivial
Case 2 (T-Cast)

1

1. e = (T)e′ by def T-Cast

2

2. ∆,∆′;Γ, Γ ′′ ` e′ : U

3

3. ∆,∆′ ` T <: U

4

4. ∆,∆′ ` T ok



 by premises of T-Cast

5

5. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e′ : U by 2, a, b, ind hyp

6

6. ∆,∆′′,∆′ ` T <: U by 3, a, b, ind hyp

7

7. ∆,∆′′,∆′ ` T ok by 4, a, b, ind hyp

8

8. done by 1, 5, 6, 7, T-Cast

Case 3 (T-Var)

1

1. e = x

2

2. T = (Γ, Γ ′′)(x)

}
by def T-Var

3

3. (Γ, Γ ′, Γ ′′)(x) = T by 2, b

4

4. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` x : T by 3, T-Var

Case 4 (T-New)

1

1. e = new C<T , T , ? >

2

2. T = ∃O→[⊥ T].C<T , T , O>

}
by def T-New

35

3

3. ∆,∆′ ` T , T ok

4

4. ∆,∆′ ` ∃O→[⊥ T].C<T , T , O> ok

}
by premises of T-New

5

5. ∆,∆′′,∆′ ` T , T ok by 3, lemma 9

6

6. ∆,∆′′,∆′ ` ∃O→[⊥ T].C<T , T , ? > ok by 4, lemma 9

7

7. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : T by 5, 6, 1, 2, T-New

Case 5 (T-Field)

1

1. e = e′.f

2

2. T =⇓∆′′′ U

}
by def T-Field

3

3. ∆,∆′;Γ, Γ ′′ ` e′ : ∃∆′′′.N

4

4. fType(f, N) = U

}
by premises of T-Field

5

5. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e′ : ∃∆′′′.N by 3, a, b, ind hyp

6

6. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : T by 5, 4, 2, T-Field

Case 6 (T-Assign)

1

1. e = e′.f = e′′ by def T-Assign

2

2. ∆,∆′;Γ, Γ ′′ ` e′ : ∃∆′′′.N

3

3. fType(f, N) = U

4

4. ∆,∆′;Γ, Γ ′′ ` e′′ : T

5

5. ∆,∆′,∆′′′ ` T <: U





by premises of T-Assign

6

6. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e′ : ∃∆′′′.N by 2, a, b, ind hyp

7

7. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e′′ : T by 4, a, b, ind hyp

8

8. ∆,∆′′,∆′,∆′′′ ` T <: U by 5, a, lemma 8

9

9. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : T by 6, 3, 7, 8, 1, T-Field

Case 7 (T-Subs)

1

1. ∆,∆′;Γ, Γ ′′ ` e : U

2

2. ∆,∆′ ` U <: T

3

3. ∆,∆′ ` T ok



 by premises of T-Subs

4

4. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : U by 1, a, b, ind hyp

5

5. ∆,∆′′,∆′ ` U <: T by 2, a, lemma 8

6

6. ∆,∆′′,∆′ ` T ok by 3, a, lemma 9

7

7. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : T by 4, 5, 6, T-Subs

Case 8 (T-Invk)

1

1. e = e′.<P>m(e)

2

2. ∆′′′ = ∆′′′′,∆

3

3. T =⇓∆′′′′,∆ [T/Y]U



 by def T-Invk

36

4

4. ∆,∆′;Γ, Γ ′′ ` e′ : ∃∆′′′′.N

5

5. mType(m, N) = <Y¢ B>U→U

6

6. ∆,∆′;Γ, Γ ′′ ` e : ∃∆.R

7

7. match(sift(R, U, Y), P, Y, T)

8

8. ∆,∆′ ` P ok

9

9. ∆,∆′,∆′′′′,∆ ` T <: [T/Y]B

10

10. ∆,∆′,∆′′′′,∆ ` R <: [T/Y]U





by premises of T-Invk

11

11. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e′ : ∃∆′′′′.N by 4, a, b, ind hyp

12

12. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : ∃∆.R by 6, a, b, ind hyp

13

13. ∆,∆′′,∆′ ` P ok by 8, a, lemma 9

14

14. ∆,∆′′,∆′,∆′′′′, ∆ ` T <: [T/Y]B by 9, a, lemma 8

15

15. ∆,∆′′,∆′,∆′′′′, ∆ ` R <: [T/Y]U by 10, a, lemma 8

16

16. ∆,∆′′,∆′; Γ, Γ ′, Γ ′′ ` e :⇓∆′′′′,∆ [T/Y]U by 11, 5, 12, 7,
13, 14, 15, T-Invk

2

Lemma 11 (Well-formed type environments are disjoint).

If:
a. ∆ ` ∆′ ok

then:
dom(∆) ∩ dom(∆′) = ∅

Proof by structural induction on the derivation of ∆ ` ∆′ ok with a case anal-
ysis on the last step:

Case 1 (F-Env-Empty)

trivial

Case 2 (F-Env)

1

1. ∆′ = X→[Bl Bu],∆′′′ by def F-Env

2

2. ∆,X→[Bl Bu] ` ∆′′′ ok by premises of F-Env

3

3. X 6∈ dom(∆) by 2, def concatenation

4

4. dom(∆,X→[Bl Bu]) ∩ dom(∆′′′) = ∅ by 2, ind hyp

5

5. dom(∆) ∩ dom(∆′′′) = ∅ by 4

6

6. dom(∆) ∩ dom(X→[Bl Bu],∆′′′) = ∅ by 5,3

7

7. dom(∆) ∩ dom(∆′) = ∅ by 6,1

2

Lemma 12 (Extension of type environments preserves well-formedness).

37

If:
a. ∆ ` ∆′ ok
b. ∆,∆′ ` ∆′′ ok

then:
∆ ` ∆′, ∆′′ ok

Proof by structural induction on the derivation of ∆ ` ∆′ ok with a case anal-
ysis on the last step:

Case 1 (F-Env-Empty)

1

1. ∆′ = ∅ by def F-Env-Empty

2

2. ∆ ` ∆′′ ok by 1, b

3

3. ∆ ` ∆′,∆′′ ok by 1, 2

Case 2 (F-Env)

1

1. ∆′ = X→[Bl Bu],∆′′′ by def F-Env-Empty

2

2. ∆,X→[Bl Bu],∆′′′ ` Bl, Bu ok

3

3. ∆ ` uBound∆(Bl) @: uBound∆(Bu)

4

4. ∆ ` Bl <: Bu

5

5. ∆,X→[Bl Bu] ` ∆′′′ ok





by premises of F-Env

6

6. dom(∆,∆′) ∩ dom(∆′′) = ∅ by b, lemma 11

7

7. ∆,X→[Bl Bu], ∆′′′,∆′′ ` Bl, Bu ok by 2, 6, lemma 9

8

8. ∆,X→[Bl Bu] ` ∆′′′,∆′′ ok by 5, b, 1, ind hyp

9

9. ∆ ` ∆′,∆′′ ok by 7, 3, 4, 8, def F-Env

2

Lemma 13 (Concatenation of type environments preserves well-formedness).

If:
a. ∆ ` ∆′ ok
b. ∆ ` ∆′′ ok
c. dom(∆′) ∩ dom(∆′′) = ∅

then:
∆ ` ∆′, ∆′′ ok

Proof by induction on the size of ∆′

Case 1 ∆′ = ∅
trivial
Case 2 ∆′ 6= ∅

1

1. let ∆′ = X→[Bl Bu],∆′′′

38

2

2. ∆, X→[Bl Bu],∆′′′ ` Bl ok

3

3. ∆, X→[Bl Bu],∆′′′ ` Bu ok

4

4. ∆ ` uBound∆(Bl) @: uBound∆(Bu)

5

5. ∆ ` Bl <: Bu

6

6. ∆, X→[Bl Bu] ` ∆′′′ ok





by 1, a, premises F-Env

7

7. ∆, X→[Bl Bu],∆′′′,∆′′ ` Bl ok by 2, c, lemma 9

8

8. ∆, X→[Bl Bu],∆′′′,∆′′ ` Bu ok by 3, c, lemma 9

9

9. dom(∆′′′) ∩ dom(∆′′) = ∅ by c, 1

10

10. ∆, X→[Bl Bu] ` ∆′′′,∆′′ ok by 6, b, 9, ind hyp

11

11. ∆ ` X→[Bl Bu],∆′′′,∆′′ ok by 7, 8, 4, 5, 10, F-Env

12

12. ∆ ` ∆′,∆′′ ok by 11, 1

2

Lemma 14 (Limited commutativity of substitution).

If:
a. [U/X][U′/X′]T = T′

b. X ∩ fv(U′) = ∅
c. X′ ∩ fv(U) = ∅
d. X ∩ X′ = ∅

then:
[U′/X′][U/X]T = T′

Proof by structural induction on the form of T:

Case 1 T = ∃∆.R

1

1. T′ = ∃[U/X][U′/X′]∆.[U/X][U′/X′]R by def subst

2

2. T′ = ∃[U′/X′][U/X]∆.[U′/X′][U/X]R by 1, b, c, d, ind hyp

3

3. T′ = [U′/X′][U/X]T by 2, def subst

Case 2 T = C<T>

1

1. T′ = C<[U/X][U′/X′]T> by def subst

2

2. T′ = C<[U′/X′][U/X]T> by 1, b, c, d, ind hyp

3

3. T′ = [U′/X′][U/X]T by 2, def subst

Case 3 T = Y

Case analysis on Y:

Case 1 Y ∈ X

39

1

1.1. [U′/X′]Y = Y by def subst

2

1.2. [U/X][U′/X′]Y = Ui by 1.1, def subst

3

1.3. [U/X]Y = Ui by def subst

4

1.4. [U′/X′][U/X]Y = Ui by 1.3, c

5

1.5. done with T′ = Ui by 1.2, 1.4

Case 2 Y ∈ X′

1

2.1. [U′/X′]Y = U
′
i by def subst

2

2.2. [U/X][U′/X′]Y = U
′
i by 2.1, b

3

2.3. [U/X]Y = Y by def subst

4

2.4. [U′/X′][U/X]Y = U
′
i by 2.3

5

2.5. done with T′ = Ui by 2.2, 2.4

Case 3 Y 6∈ (X, X′)

1

3.1. T′ = Y by def subst

2

3.2. [U′/X′][U/X]T = Y by b, c, d

2

Lemma 15 (Subclassing preserves class type).

If:
a. ` R @@: N

then:
R = N′

Proof by structural induction on the derivation of ` R @@: N with a case analysis
on the last step:

Case 1 (SC-Sub-Class, SC-Reflex)

trivial
Case 2 (SC-Trans)

1

1. ` R @@: R′

2

2. ` R′ @@: N

}
by premises of SC-Trans

3

3. R′ = N′′ by 2, ind hyp

4

4. R = N′ by 1, 3, ind hyp

2

Lemma 16 (uBound refines subtyping).

40

If:
a. ` ∆ ok

and if:
b. ∆ ` T @: T′

or:
c. ∆ ` T <: T′

then:
∆ ` uBound∆(T) @: uBound∆(T′)

Proof by structural induction on ∆ ` T ¿ T′ where ∆ ` T ¿ T′ is defined to
hold if either ∆ ` T @: T′ or ∆ ` T <: T′ holds. There is a case analysis on the
last step:

Case 1 (XS-Reflex)

trivial
Case 2 (XS-Sub-Class, XS-Env)

easy since T = ∃∆′.N and T′ = ∃∆′′.N′ and ∀∃∆′.N : uBound∆(∃∆′.N) = ∃∆′.N

Case 3 (XS-Bottom)

N/A
Case 4 (S-SC)

easy, by ind hyp.
Case 5 S-Bound upper bound

1

1. T = ∃∅.X

2

2. T′ = Bu

}
by def S-Bound

3

3. ∆(X) = X→[Bl Bu] by premise of S-Bound

4

4. uBound∆(X) = uBound∆(Bu) by def uBound, 3

5

5. done by 4, XS-Reflex

Case 6 S-Bound lower bound

1

1. T = Bl

2

2. T′ = ∃∅.X
}

by def S-Bound

3

3. ∆(X) = X→[Bl Bu] by premise of S-Bound

4

4. uBound∆(X) = uBound∆(Bu) by def uBound, 3

5

5. ∆ ` uBound∆(Bl) @: uBound∆(Bu) by 3, a, def F-Env

6

6. done by 5, 4, 2, 1 SC-Reflex

Case 7 (XS-Trans)

1

1. ∆ ` T @: T′′

2

2. ∆ ` T′′ @: T′

}
by premises of XS-Trans/S-Trans

41

3

3. ∆ ` uBound∆(T) @: uBound∆(T′′) by 1, a, ind hyp

4

4. ∆ ` uBound∆(T′′) @: uBound∆(T′) by 2, a, ind hyp

5

5. ∆ ` uBound∆(T) @: uBound∆(T′) by 3, 4, XS-Trans

Case 8 (S-Trans)

similar to case XS-Trans
Corollary If ∆ ` ∃∆′.N <: ∃∆′′.N′ and ` ∆ ok then ∆ ` ∃∆′.N @: ∃∆′′.N′.

2

Lemma 17 (Subsititution preserves subtyping).

If:
a. ∆1 ` T <: [T/X]Bu

b. ∆1 ` [T/X]Bl <: T
c. ∆ = ∆1, X→[Bl Bu],∆2

d. ∆′ = ∆1, [T/X]∆2

e. X ∩ fv(∆1) = ∅
f. fv(T) ⊆ dom(∆′)

and if:
g. ∆ ` B <: B′

then:
∆′ ` [T/X]B <: [T/X]B′

and if:
h. ∆ ` B @: B′

then:
∆′ ` [T/X]B @: [T/X]B′

Proof by structural induction on ∆ ` B ¿ B′ where ∆ ` B ¿ B′ is defined to
hold if either ∆ ` B @: B′ or ∆ ` B <: B′ holds. There is a case analysis on the
last step:

Case 1 (XS-Reflex, XS-Bottom)

trivial
Case 2 (XS-Sub-Class)

1

1. B = ∃∆′′.C<U>

2

2. B′ = ∃∆′′.[U/Y]N

}
by def XS-Sub-Class

3

3. class C<Y¢ Tu> ¢ N {...} by premise of XS-Sub-Class

4

4. [T/X]B = ∃[T/X]∆′′.C<[T/X]U> by 1, def subst

5

5. [T/X]B
′
= ∃[T/X]∆′′.[T/X][U/Y]N by 2, def subst

6

6. Y→[⊥ Tu] ` N ok by 3, wf prog, T-Class

7

7. [T/X][U/Y]N = [[T/X]U/Y]N by 6

8

8. [T/X]B
′
= ∃[T/X]∆′′.[[T/X]U/Y]N by 5, 7

9

9. ∆′ ` [T/X]B @: [T/X]B
′

by 3, 4, 8, XS-Sub-Class

42

Case 3 (XS-Trans, S-SC, S-Trans)

easy, by ind hyp
Case 4 (XS-Env)

1

1. B = ∃∆′′.[U/Y]N

2

2. B′ = ∃Y→[B′l B′u].N

}
by def XS-Env

3

3. ∆,∆′′ ` [U/Y]B
′
l <: U

4

4. ∆,∆′′ ` U <: [U/Y]B
′
u

5

5. dom(∆′′) ∩ fv(∃Y→[B′l B′u].N) = ∅

6

6. fv(U) ⊆ dom(∆, ∆′′)





by premises of XS-Env

7

7. ∆′, [T/X]∆′′ ` [T/X][U/Y]B
′
l <: [T/X]U by 3, b–g, ind hyp

8

8. ∆′, [T/X]∆′′ ` [T/X]U <: [T/X][U/Y]B
′
u by 4, b–g, ind hyp

9

9. Y ∩ fv(T) = ∅

10

10. Y ∩ X = ∅
}

by 2, Barendregt’s convention

11

11. X ∩ dom(∆′′) = ∅ by 1, Barendregt’s convention

12

12. ∆′, [T/X]∆′′ ` [[T/X]U/Y][T/X]B
′
l <: [T/X]U by 7, 9

13

13. ∆′, [T/X]∆′′ ` [T/X]U <: [[T/X]U/Y][T/X]B
′
u by 7, 9

14

14. fv([T/X]U) ⊆ dom(∆′, [T/X]∆′′) by 6, f

15

15. ∆′ ` ∃[T/X]∆′′.[[T/X]U/Y][T/X]N @: by 12, 13, 5, 14, XS-Env

∃Y→[[T/X]B′l [T/X]B′u].[T/X]N

16

16. ∆′ ` [T/X]∃∆′′.[U/Y]N @: by 15, 9, 10, 11, def subst
[T/X]∃Y→[B′l B′u].N

17

17. ∆′ ` [T/X]B @: [T/X]B′ by 16, 1, 2

Case 5 S-Bound lower bound

1

1. B = Bl

2

2. B′ = Y

}
by def S-Bound

3

3. ∆(Y) = [Bl Bu] by premise of S-Bound

Case analysis on Y:

Case 1 Y ∈ dom(∆1)

1

1.1. ∆′(Y) = [Bl Bu] by 3, e, Y ∈ dom(∆1)

2

1.2. ∆′ ` Bl <: Y by 1.1, S-bound

3

1.3. [T/X]B = Bl by 1, 3, e, Y ∈ dom(∆1)

4

1.4. [T/X]B
′
= Y by 2, e, Y ∈ dom(∆1)

5

1.5. ∆′ ` [T/X]B <: [T/X]B
′

by 1.2, 1.4, 1.3

Case 2 Y ∈ dom(∆2)

43

1

2.1. ∆′(Y) = [[T/X]Bl [T/X]Bu] by 3, e, Y ∈ dom(∆2)

2

2.2. ∆′ ` [T/X]Bl <: Y by 2.1, S-bound

3

2.3. [T/X]B = [T/X]Bl by 1, 3, Y ∈ dom(∆2)

4

2.4. [T/X]B
′
= Y by 2, e, Y ∈ dom(∆2)

5

2.5. ∆′ ` [T/X]B <: [T/X]B
′

by 2.2, 2.4, 2.3

Case 3 Y ∈ X

1

3.1. let Y = Xi

2

3.2. [T/X]B = Ti by 1, 3.1

3

3.3. ∆1 ` [T/X]Bl <: Ti by b, 3, 3.1

4

3.4. ∆′ ` [T/X]Bl <: Ti by 3.3, d, lemma 8

5

3.5. ∆′ ` [T/X]B <: [T/X]B
′

by 3.4, 3.2, 2

Case 6 S-Bound upper bound

1

1. B = Y

2

2. B′ = Bu

}
by def S-Bound

3

3. ∆(Y) = [Bl Bu] by premise of S-Bound

Case analysis on Y:

Case 1 Y ∈ dom(∆1)

1

1.1. ∆′(Y) = [Bl Bu] by 3, e, Y ∈ dom(∆1)

2

1.2. ∆′ ` Y <: Bu by 1.1, S-bound

3

1.3. [T/X]B = Y by 1, e, Y ∈ dom(∆1)

4

1.4. [T/X]B
′
= Bu by 2, 3, e, Y ∈ dom(∆1)

5

1.5. ∆′ ` [T/X]B <: [T/X]B
′

by 1.2, 1.3, 1.4

Case 2 Y ∈ dom(∆2)

1

2.1. ∆′(Y) = [[T/X]Bl [T/X]Bu] by 3, e, Y ∈ dom(∆2)

2

2.2. ∆′ ` Y <: [T/X]Bu by 2.1, S-bound

3

2.3. [T/X]B = Y by 1, e, Y ∈ dom(∆2)

4

2.4. [T/X]B
′
= [T/X]Bu by 2, 3, Y ∈ dom(∆2)

5

2.5. ∆′ ` [T/X]B <: [T/X]B
′

by 2.2, 2.3, 2.4

Case 3 Y ∈ X

1

3.1. let Y = Xi

2

3.2. [T/X]B = Ti by 1, 3.1

3

3.3. ∆1 ` Ti <: [T/X]Bu by a, 3, 3.1

4

3.4. ∆′ ` Ti <: [T/X]Bu by 3.3, d, lemma 8

5

3.5. ∆′ ` [T/X]B <: [T/X]B
′

by 3.4, 3.2, 2

44

2

Lemma 18 (Subsititution preserves well-formedness).

If:
a. ∆ ` ψ ok

b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T
d. ∆ = ∆1, X→[Bl Bu],∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆′ ok

where:
i. ψ ::= ∆p | B | R | ?

then:
∆′ ` [T/X]ψ ok

Proof by structural induction on the derivation of ∆ ` ψ ok with a case analysis
on the last step:

Case 1 (F-Bottom, F-Env-Empty, F-Star, F-World)

trivial

Case 2 (F-Var, F-Var-O)

1

1. ψ = Y by def F-Var

2

2. Y ∈ dom(∆) by premise of F-Var

Case analysis on Y:

Case 1 Y ∈ X

1

1.1. let Y = Xi

2

1.2. [T/X]ψ = Ti by 1.1

3

1.3. ∆′ ` Ti ok by g, d, lemma 9

4

1.4. done by 1.2, 1.3

Case 2 Y ∈ dom(∆1,∆2)

1

2.1. Y ∈ dom∆′ by 2, Y 6∈ X

2

2.2. ∆′ ` [T/X]ψ ok by 2.1, 1

Case 3 (F-Exist)

45

1

1. ψ = ∃∆′′.N by def F-Exist

2

2. ∆ ` ∆′′ ok

3

3. ∆,∆′′ ` N ok

}
by premises of F-Exist

4

4. ∆′ ` [T/X]∆′′ ok by 2, b–g, ind hyp

5

5. ∆′[T/X]∆′′ ` [T/X]N ok by 3, b–h, ind hyp

6

6. dom(∆′′) ∩ T = ∅ by h, Barendregt

7

7. ∆′ ` [T/X]ψ ok by 4, 5, 6, F-Exist, 1

Case 4 (F-Class)

1

1. ψ = C<T > by def F-Class

2

2. T = T , τ , τo, τt

3

3. ∆(τt) = [⊥ T]

4

4. class C<Y¢ T u>...

5

5. ∆ ` T, τ , τo ok

6

6. ∆ ` T <: [T /X]Tu

7

7. ∀τ ∈ τ . ∆ ` τo <: τ





by premises of F-Class

8

8. ∆′([T/X]τt) = [⊥ [T/X]T] by 3, 1

9

9. ∆′ ` [T/X]T , τ , τo ok by 5, b–h, ind hyp

10

10. ∆′ ` [T/X]T <: [[T/X]T /X][T/X]Tu by 6, b–g, lemma 17

11

11. Y→[...] ` T u ok by 4, wf prog, T-Class

12

12. ∆′ ` [T/X]T <: [[T/X]T /X]Tu by 10, 11

13

13. ∀τ ′ ∈ [T/X]τ . ∆′ ` [T/X]τo <: τ ′ by 7, b–h, ind hyp

14

14. ∆′ ` [T/X]ψ ok by 8, 4, 9, 12, 13, F-Class, 1

Case 5 (F-Object)

1

1. ψ = Object<τo, τt> by def F-Object

2

2. ∆ ` τo ok

3

3. ∆(τt) = [⊥ T]
}

by premises of F-Object

4

4. ∆′([T/X]τt) = [⊥ [T/X]T] by 3, 1

5

5. ∆′ ` [T/X]T, [T/X]τo ok by 2, b–h, ind hyp

6

6. ∆′ ` [T/X]ψ ok by 4, 5, F-Object, 1

Case 6 (F-Env)

1

1. ψ = Y→[Bl Bu],∆′′ by def F-Env

2

2. ∆, Y→[Bl Bu],∆′′ ` Bl, Bu ok

3

3. ∆ ` uBound∆(Bl) @: uBound∆(Bu)

4

4. ∆ ` Bl <: Bu

5

5. ∆, Y→[Bl Bu] ` ∆′′ ok

6

6. ∆ `X Bu sc





by premises of F-Env

46

7

7. ∆′, Y→[[T/X]Bl [T/X]Bu], [T/X]∆′′ ` by 2, b–h, ind hyp
[T/X]Bl, [T/X]Bu ok

8

8. ∆′ ` [T/X]Bl <: [T/X]Bu by 4, b–g, lemma 17

9

9. ∆′ ` uBound∆′([T/X]Bl) @: uBound∆′([T/X]Bu)by 8, h, lemma 16

10

10. ∆′, Y→[[T/X]Bl [T/X]Bu] ` [T/X]∆′′ ok by 5, b–h, ind hyp

11

11. ∆ `X [T/X]Bu sc by 6, b–g, lemma 17

12

12. ∆′ ` [T/X]ψ ok by 7, 9, 8, 10, F-Env, 1

2

Lemma 19 (Corrolorary to lemma 18).

If:
a. ∆ ` ψ ok

b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T
d. ∆ = ∆1, X→[Bl Bu],∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆1 ok

i. ∆1, X→[Bl Bu] ` ∆2 ok
where:

j. ψ ::= ∆p | B | R | ?
then:

∆′ ` [T/X]ψ ok

Proof

1

1. ∆1 ` [T/X]∆2 ok by b–i, lemma 18

2

2. ∅ ` ∆1, [T/X]∆2 ok by h, 1, lemma 12

3

3. ∆′ ` [T/X]ψ ok by a–g, 2, lemma 18

2

Lemma 20 (Substitution preserves close).

If:
a. ⇓∆ T = U
b. fv(T) ∩ dom(∆) = ∅
c. X ∩ dom(∆) = ∅

then:
⇓[T/X]∆ [T/X]T = [T/X]U

Proof by structural induction on the derivation of ⇓∆ T with a case analysis on
the last step:

47

Case 1

1

1. T = ∃∅.X

2

2. U = ∃∅.X

3

3. X 6∈ dom(∆)



 by def close

Case analysis on X:

Case 1 X 6∈ X

1

1.1. [T/X]U = U by 2, def subcase

2

1.2. ⇓[T/X]∆ [T/X]T =⇓[T/X]∆ T by 1, def subcase

3

1.3. ⇓[T/X]∆ T =⇓∆ T by 1.2, def close

4

1.4. done by 1.1, 1.3, a

Case 2 X = X1

1

2.1. [T/X]T = Ti by def subcase, 1

2

2.2. [T/X]U = Ti by def subcase, 2

3

2.3. ⇓∆ Ti = Ti by b, def close

4

2.4. ⇓[T/X]∆ Ti = Ti by 2.3, irrelevance of range of ∆ in cases 1 and 3 of close

5

2.5. done by 2.4, 2.1, 2.2

Case 2

1

1. T = ∃∅.X

2

2. U =⇓∆ Bu

3

3. ∆(X) = [Bl Bu]



 by def close

4

4. X 6∈ X by c, 3

5

5. [T/X]T = T by 1, 4

6

6. ⇓∆ [T/X]T =⇓∆ T by 5

7

7. ⇓∆ [T/X]T =⇓∆ Bu by 6, 2, a

8

8. ⇓[T/X]∆ [T/X]T =⇓[T/X]∆ [T/X]Bu by 7, 3

9

9. ⇓[T/X]∆ [T/X]T = [T/X] ⇓∆ Bu by 8, b, c, ind hyp

10

10. done by 9, 2

Case 3

1

1. T = ∃∆′.N

2

2. U = ∃∆,∆′.N

}
by def close

3

3. [T/X]T = ∃[T/X]∆′.[T/X]N by 1

4

4. ⇓[T/X]∆ [T/X]T = ∃[T/X]∆, [T/X]∆′.[T/X]N by 3, def close

5

5. ⇓[T/X]∆ [T/X]T = [T/X]∃∆,∆′.N by 4

6

6. done by 5, 2

2

Lemma 21 (Subsititution preserves typing).

48

If:
a. ∆;Γ ` e : T
b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T
d. ∆ = ∆1, X→[Bl Bu],∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆1 ok

i. ∆1, X→[Bl Bu] ` ∆2 ok
then:

∆′; [T/X]Γ ` [T/X]e : [T/X]T

Proof by structural induction on the derivation of ∆; Γ ` e : T with a case
analysis on the last step:

Case 1 (T-Var)

1

1. e = γ

2

2. T = Γ (γ)

}
by def T-Var

3

3. [T/X]e = γ by 1

4

4. ([T/X]Γ)(γ) = [T/X](Γ (γ)) by def subst

5

5. ∆′; [T/X]Γ ` [T/X]e : [T/X]T by 3, 4, T-Var, 1, 2

Case 2 (T-Null)

by lemma 19
Case 3 (T-Cast)

1

1. e = (T)e′ by def T-Cast

2

2. ∆;Γ ` e′ : U

3

3. ∆ ` T <: U

4

4. ∆ ` T ok



 by premises of T-Cast

5

5. ∆′; [T/X]Γ ` [T/X]e
′
: [T/X]U by 2, b–i, ind hyp

6

6. ∆ ` [T/X]T <: [T/X]U by 3, b–g, lemma 17

7

7. ∆′ ` [T/X]T ok by 4,b–i,lemma 19

8

8. done by 5, 6, 7, T-Cast

Case 4 (T-New)

1

1. e = new C<T , T , ? >

2

2. T = ∃O→[⊥ T].C<T , T , O>

}
by def T-New

3

3. ∆ ` T , T ok

4

4. ∆ ` ∃O→[⊥ T].C<T , T , O> ok

}
by premise of T-New

49

5

5. ∆′ ` [T/X]T , [T/X]T ok by 3, b–i, lemma 19

6

6. ∆′ ` [T/X]∃O→[⊥ T].C<T , T , O> ok by 4, b–i, lemma 19

7

7. done by 5, 6, T-New

Case 5 (T-Field)

1

1. e = e′.f

2

2. T =⇓∆′′ U

}
by def T-Field

3

3. ∆;Γ ` e′ : ∃∆′′.N

4

4. fType(f, N) = U

}
by premises of T-Field

5

5. ∆′; [T/X]Γ ` [T/X]e
′
: [T/X]∃∆′′.N by 3, b–i, ind hyp

6

6. ∆′; [T/X]Γ ` [T/X]e
′
: ∃[T/X]∆′′.[T/X]N by 5, Barendregt

7

7. fType(f, [T/X]N) = [T/X]U by 4, lemma 5

8

8. ∆′; [T/X]Γ ` [T/X]e :⇓[T/X]∆′′ [T/X]U by 1, 6, 7, T-Field

9

9. ∆′; [T/X]Γ ` [T/X]e : [T/X] ⇓∆′′ U by 8, lemma 20, g, Barendregt

10

10. done by 9, 2

Case 6 (T-Assign)

1

1. e = e′.f = e′′ by def T-Assign

2

2. ∆;Γ ` e′ : ∃∆′′.N

3

3. fType(f, N) = U

4

4. ∆;Γ ` e′′ : T

5

5. ∆,∆′′ ` T <: U





by premises of T-Assign

6

6. ∆′; [T/X]Γ ` [T/X]e
′
: [T/X]∃∆′′.N by 2, b–i, ind hyp

7

7. ∆′; [T/X]Γ ` [T/X]e
′
: ∃[T/X]∆′′.[T/X]N by 6, Barendregt

8

8. fType(f, [T/X]N) = [T/X]U by 3, lemma 5

9

9. ∆′; [T/X]Γ ` [T/X]e
′′

: [T/X]T by 4, b–i, ind hyp

10

10. ∆′, [T/X]∆′′; [T/X]Γ ` [T/X]T <: [T/X]U by 5, b–i, ind hyp

11

11. ∆′; [T/X]Γ ` [T/X]e : [T/X]T by 1, 7, 8, 9, 10, T-Assign

Case 7 (T-Subs)

1

1. ∆;Γ ` e : U

2

2. ∆ ` U <: T

3

3. ∆ ` T ok



 by premises of T-Subs

4

4. ∆′; [T/X]Γ ` [T/X]e : [T/X]U by 1, b–i, ind hyp

5

5. ∆ ` [T/X]U <: [T/X]T by 2, b–g, lemma 17

6

6. ∆′ ` [T/X]T ok by 3,b–i,lemma 19

7

7. done by 4, 5, 6, T-Subs

Case 8 (T-Invk)

50

1

1. e = e′.<P>m(e)

2

2. T =⇓∆′′′,∆ [T′/Y]U

}
by def T-Invk

3

3. ∆;Γ ` e′ : ∃∆′′′.N

4

4. mType(m, N) = <Y→[Bl Bu]>U→U

5

5. ∆;Γ ` e : ∃∆.R

6

6. match(sift(R, U, Y), P, Y, T′)

7

7. ∆ ` P ok

8

8. ∆,∆′′′, ∆ ` T′ <: [T′/Y]B

9

9. ∆,∆′′′, ∆ ` R <: [T′/Y]U





by premises of T-Invk

10

10. ∆′; [T/X]Γ ` [T/X]e
′
: [T/X]∃∆′′′.N by 3, b–i, ind hyp

11

11. ∆′; [T/X]Γ ` [T/X]e
′
: ∃[T/X]∆′′′.[T/X]N by 10, def subst, Barendregt, g

12

12. mType(m, [T/X]N) = by 4, lemma 6
<Y→[[T/X]Bl [T/X]Bu]>[T/X]U→[T/X]U

13

13. ∆; [T/X]Γ ` [T/X]e : [T/X]∃∆.R by 5, b–i, ind hyp

14

14. ∆; [T/X]Γ ` [T/X]e : ∃[T/X]∆.[T/X]R by 13, def subst, Barendregt, g

15

15. (X ∪ fv(T)) ∩ Y) = ∅ by 4, disjointness of formal variables, g

16

16. match(sift([T/X]R, [T/X]U, Y), [T/X]P, Y, [T/X]T′)
by 6, 15, lemma 2, lemma 3, lemma 4

17

17. ∆′, [T/X]∆j ` [T/X]T
′
i ok by 7, b–i, lemma 19

18

18. ∆′, [T/X]∆′′′, [T/X]∆ ` [T/X]T
′
i <: [T/X][T′/Y]Bi

by 8, b–g, lemma 17

19

19. Y→[Bl Bu] ` Bu ok by def mType, wf prog, T-Class, T-Method

20

20. ∆′, [T/X]∆′′′, [T/X]∆ ` [T/X]T
′
i <: [[T/X]T′/Y]Bi

by 18, 19

21

21. ∆′, [T/X]∆′′′, [T/X]∆ ` [T/X]R <: [T/X][T′/Y]U
by 9, b–g, lemma 17

22

22. ∆′; [T/X]Γ ` [T/X]e′.<[T/X]P>m([T/X]e) :⇓[T/X](∆′′′,∆) [[T/X]T
′/Y][T/X]U

by 11, 12, 14, 16, 17, 20, 21, T-Invk

23

23. [T/X][T′/Y]U = [[T/X]T′/Y][T/X]U by g

24

24. ∆′; [T/X]Γ ` [T/X]e′.<[T/X]P>m([T/X]e) : [T/X] ⇓∆′′′,∆ [T′/Y]U
by 22, lemma 20, g, Barendregt, 23

25

25. done by 24, 1, 2

2

Lemma 22 (Superclasses are well-formed).

If:
a. ` R @@: R′

b. ∆ ` R ok
c. ∅ ` ∆ ok

51

then:
∆ ` R′ ok

Proof by structural induction on the derivation of ` R @@: R′ with a case analysis
on the last step:

Case 1 (SC-Reflex)

trivial
Case 2 (SC-Trans)

1

1. ` R @@: R′′

2

2. ` R′′ @@: R′

}
by premises SC-Trans

3

3. ∆ ` R′′ ok by 1, b, c, ind hyp

4

4. ∆ ` R′ ok by 2, 3, c, ind hyp

Case 3 (SC-Sub-Class)

1

1. R = C<T >

2

2. R′ = [T /X]N

}
by def SC-Sub-Class

3

3. letX = Y, O, Oo, Ot

4

4. letT = U, τ , τo, τt

5

5. class C<X¢ Tu> ¢ N... by premise SC-Sub-Class

6

6. ` class C<X¢ Tu> ¢ N... ok by 5, wf-prog

7

7. Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N ok

8

8. N = D<T ′,Oo,Ot>

}
by 6, def T-Class

9

9. ∆ ` T <: [T /X]Tu

10

10. ∆ ` T ok

11

11. ∀τ ∈ τ . ∆ ` τo <: τ



 by 1, b, def F-Class, 5

12

12. [T /X]Oo = τo by 3, 4

13

13. ∆ ` [T /X]Oo <: τ by 11, 12

14

14. X ∩ dom(∆) = ∅ by 5, distinctness of formal variables

15

15. ∆, Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N okby 7, 14, lemma 9

16

16. ∆ ` [T /X]N ok by 15, 10, 9, XS-Bttm, 13, c, 14, lemma 18

17

17. ∆ ` R′ ok by 16, 2

2

Lemma 23 (Subclassing preserves field types).

If:
a. ` N @@: N′

b. fType(f, N′) = T
then:

fType(f, N) = T

52

Proof by structural induction on the derivation of ` N @@: N′ with a case analysis
on the last step:

Case 1 (SC-Reflex)

trivial
Case 2 (SC-Sub-Class)

1

1. N = C<U>

2

2. N′ = [U/X]N
′′

}
by def SC-Sub-Class

3

3. class C<X...> ¢ N′′ {T f; M} by premise of SC-Sub-Class

Case analysis on f ∈ f:

Case 1 f = fi

1

1.1. f 6∈ fields(N′′) by distinctness of field names

2

1.2. fType(f, N′) not defined by 1.1, def fType, def fields

3

1.3. contradiction by 1.2, b

Case 2 f 6∈ f

1

2.1. f ∈ fields(N′′) by distinctness of field names

2

2.2. fType(f, N) = fType(f, [U/X]N
′′
) by 2.1, deffType, def fields

3

2.3. fType(f, N) = T by 2.2, 2, b

Case 3 (SC-Trans)

1

1. ` N @@: R

2

2. ` R @@: N′

}
by premises of SC-Trans

3

3. R = N′′ by 2, lemma 15

4

4. fType(m, N′′) = T by b, 2, 3m ind hyp

5

5. fType(m, N) = T by 4, 1, ind hyp

2

Lemma 24 (Subclassing preserves method return type).

If:
a. ` N1 @@: N2

b. mType(m, N2) = <Y¢ Tu>T→T
then:

mType(m, N1) = <Y¢ Tu>T→T

Proof by structural induction on the derivation of ` N1 @@: N2 with a case
analysis on the last step:

53

Case 1 (SC-Reflex)

trivial
Case 2 (SC-Sub-Class)

1

1. N1 = C<U>

2

2. N2 = [U/X]N

}
by def SC-Sub-Class

3

3. class C<X...> ¢ N {T′ f; M} by premise of SC-Sub-Class

Case analysis on m ∈ M:

Case 1 m ∈ M

1

1.1. mType(m, N1) = [U/X]<Y′¢ T′u>T
′→T

′
by def mType

2

1.2. <Y′¢ T′u> T′ m(T′ x) {...} ∈ M by premise of mType

3

1.3. X... ` <Y′¢ T′u> T′ m(T′ x) {...} ok by wf prog, 3, premises of T-Class

4

1.4. overrride(m, N, <Y′¢ T′u>T
′→T

′
) by premise T-Method, 1.3

5

1.5. <Y′¢ T′u>T
′→T

′
= mType(m, N) by 1.4, b, 2

6

1.6. [U/X]<Y′¢ T′u>T
′→T

′
= mType(m, [U/X]N) by 1.5, lemma 6

7

1.7. done by 2, 1.6, 1.1

Case 2 m 6∈ M

1

2.1. mType(m, N1) = mType(m, [U/X]N) by def mType

2

2.2. done by 2.1, 2

Case 3 (SC-Trans)

1

1. ` N1 @@: R

2

2. ` R @@: N2

}
by premises of SC-Trans

3

3. R = N3 by 2, lemma 15

4

4. mType(m, N3) = <Y¢ Tu>T→T by b, 2, ind hyp

5

5. mType(m, N1) = <Y¢ Tu>T→T by 4, 1, ind hyp

2

Lemma 25 (Expression substitution preserves typing).

If:
a. ∆;Γ, γ:U ` e : T
b. ∆;Γ ` e′ : U′

c. ∆ ` U′ <: U
d. ∆ ` U ok

then:
∆; Γ ` [e′/γ]e : T

54

Proof by structural induction on the derivation of ∆;Γ, γ:U ` e : T with a case
analysis on the last step:

Case 1 (T-Var)

1

1. e = γ′

2

2. T = Γ (γ′)

}
by def T-Var

Case analysis on γ′:

Case 1 γ′ = γ

1

1.1. T = U by a, 2

2

1.2. [e′/γ]e = e′ by def subst

3

1.3. ∆;Γ ` [e′/γ]e : U′ by 1.2, b

4

1.4. ∆;Γ ` [e′/γ]e : U by 1.3, c, d, F-Env-Empty, T-Subs

5

1.5. ∆;Γ ` [e′/γ]e : T by 1.4, 1.1

Case 2 γ′ 6= γ

1

2.1. [e′/γ]e = e by def subst

2

2.2. ∆;Γ ` [e′/γ]e : T by 2.1, 2, 1, a

Case 2 (T-Null)

trivial

Case 3 (T-Cast)

1

1. e = (T)e′ by def T-Cast

2

2. ∆;Γ, γ:U ` e′ : T′

3

3. ∆ ` T <: T′

4

4. ∆ ` T ok



 by premises T-Cast

5

5. ∆; Γ ` [e′/γ]e′ : T′ by 2, b, c, d, ind hyp

6

6. ∆; Γ ` e : T by 1, 5, 3, 4, T-Cast

Case 4 (T-New)

trivial

Case 5 (T-Field)

1

1. e = e.′′f

2

2. T =⇓∆′ T′

}
by def T-Field

3

3. ∆;Γ, γ:U ` e′′ : ∃∆′.N

4

4. fType(f, N) = T′

}
by premises T-Field

55

5

5. ∆; Γ ` [e′/γ]e′′ : ∃∆′.N by 3, b, c, d, ind hyp

6

6. ∆; Γ ` [e′/γ]e′′.f :⇓∆′ T′ by 5, 4, T-Field

7

7. [e′/γ]e = [e′/γ]e′′.f by def subst, 1

8

8. ∆; Γ ` [e′/γ]e : T by 6, 7, 2

Case 6 (T-Assign)

1

1. e = e.′′f = e3 by def T-Assign

2

2. ∆;Γ, γ:U ` e′′ : ∃∆′.N

3

3. fType(f, N) = T′

4

4. ∆;Γ, γ:U ` e3 : T

5

5. ∆,∆′ ` T <: T′





by premises T-Assign

6

6. ∆; Γ ` [e′/γ]e′′ : ∃∆′.N by 2, b, c, d, ind hyp

7

7. ∆; Γ ` [e′/γ]e3 : T by 4, b, c, d, ind hyp

8

8. ∆; Γ ` [e′/γ]e′′.f = [e′/γ]e3 : T by 6, 3, 7, 5, T-Assign

9

9. [e′/γ]e = [e′/γ]e′′.f = [e′/γ]e3 by def subst, 1

10

10. ∆; Γ ` [e′/γ]e : T by 8, 9

Case 7 (T-Invk)

1

1. e = e′′.<P>m(e)

2

2. T =⇓∆′′,∆ [T/Y]Um

}
by def T-Invk

3

3. ∆;Γ, γ:U ` e′′ : ∃∆′′.N

4

4. mType(m, N) = <Y¢ Bm>Um → Um

5

5. ∆;Γ, γ:U ` e : ∃∆.R

6

6. match(sift(R, Um, Y), P, Y, T)

7

7. ∆,∆ ` T ok

8

8. ∆,∆′′, ∆ ` T <: [T/Y]Bm

9

9. ∆,∆′′, ∆ ` ∃∅.R <: [T/Y]Um





by premises T-Invk

10

10. ∆; Γ ` [e′/γ]e′′ : ∃∆′′.N by 3, b, c, d, ind hyp

11

11. ∆; Γ ` [e′/γ]e : ∃∆.R by 5, b, c, d, ind hyp

12

12. ∆; Γ ` [e′/γ]e′′.<P>m([e′/γ]e) :⇓∆′′,∆ [T/Y]Um

by 10, 4, 11, 6, 7, 8, 9, T-Invk

13

13. [e′/γ]e = [e′/γ]e′′.<P>m([e′/γ]e) by def subst, 1

14

14. ∆; Γ ` e : T by 12, 13, 2

Case 8 (T-Subs)

1

1. ∆;Γ, γ:U ` e : T′

2

2. ∆ ` T′ <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆; Γ ` [e′/γ]e : T′ by 1, b, c, d, ind hyp

5

5. ∆; Γ ` e : T by 4, 2, 3, T-Subs

56

2

Lemma 26 (Corrolary to lemma 25).

a. ∆;Γ, γ:U ` e : T
b. ∆ ` U′ <: U
c. ∆ ` U ok

then:
∆; Γ, γ:U′ ` e : T

Proof

1

1. ∆;Γ, γ′:U′, γ:U ` e : T by a, x′ is fresh, lemma 10

2

2. ∆;Γ, γ′:U′ ` γ′ : U′ by T-Var

3

3. ∆;Γ, γ′:U′ ` [γ′/γ]e : T by 1, 2, b, c, lemma 25

4

4. ∆;Γ, γ:U′ ` e : T by renaming 3

2

Lemma 27 (fType gives well-formed types).

If:
a. fType(f, C<T >) = T
b. ∅ ` ∆ ok
c. ∆ ` ∃∆′.C<T > ok

then:
∆,∆′ ` T ok

Proof by induction on the derivation of fType(f, C<T >) = T with a case analysis
on the last step:

Case 1 base case

1

1. class C<X¢ Tu>...T f;... by premise fType

2

2. f = fi

3

3. T = [T /X]Ti

}
by def fType

4

4. letX = Y, O, Oo, Ot

5

5. letT = U, τ , τo, τt

6

6. ` class C<X¢ Tu>...T f;... ok by 1, wf-prog

7

7. Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` Ti okby 6, def T-Class

8

8. ∆,∆′, Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` Ti okby 7, 1, distinctness of formal variables,
lemma 9

9

9. ∆,∆′ ` C<T > ok

10

10. ∆ ` ∆′ ok

}
by c, def F-Exists

57

11

11. ∆,∆′ ` T ok

12

12. ∆,∆′ ` T <: [T /X]Tu

13

13. ∀τ ∈ τ . ∆ ` τo <: τ



 by 9, def F-Class

14

14. ∅ ` ∆, ∆′ ok by 10, b, lemma 12

15

15. [T /X]Oo = τo by 4, 5

16

16. ∆ ` [T /X]Oo <: τ by 13, 15

17

17. ∆,∆′ ` [T /X]Ti ok by 8, 11, 12, XS-Bttm, 16, 14, lemma 18

18

18. ∆,∆′ ` T ok by 17, 3

Case 2 inductive case

1

1. class C<X¢ Tu> ¢ N ...T f;...

2

2. f 6∈ f

}
by premises fType

3

3. T = fType(f, [T /X]N) by def fType

4

4. letX = Y, O, Oo, Ot

5

5. letT = U, τ , τo, τt

6

6. ` class C<X¢ Tu> ¢ N ...T f;... ok by 1, wf-prog

7

7. Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N okby 6, def T-Class

8

8. ∆,∆′, Y→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N okby 7, 1, distinctness of formal variables,
lemma 9

9

9. ∆,∆′ ` C<T > ok

10

10. ∆ ` ∆′ ok

}
by c, def F-Exists

11

11. ∆,∆′ ` T ok

12

12. ∆,∆′ ` T <: [T /X]Tu

13

13. ∀τ ∈ τ . ∆ ` τo <: τ



 by 9, def F-Class

14

14. ∅ ` ∆, ∆′ ok by 10, b, lemma 12

15

15. [T /X]Oo = τo by 4, 5

16

16. ∆ ` [T /X]Oo <: τ by 13, 15

17

17. ∆,∆′ ` [T /X]N ok by 8, 11, 12, XS-Bttm, 16, 14, lemma 18

18

18. ∆,∆′ ` T ok by 3, 17, 14, ind hyp

2

Lemma 28 (mType gives well-formed types).

If:
a. mType(m, C<T >) = <Y¢ Tu>T→T
b. ∅ ` ∆ ok
c. ∆ ` ∃∆′.C<T > ok

then:
∆,∆′, Y→[⊥ Tu] ` T ok

∆,∆′, Y→[⊥ Tu] ` T ok

∆,∆′, Y→[⊥ Tu] ` Tu ok

58

Proof by induction on the derivation of mType(m, C<T >) = <Y¢ Tu>T→T with
a case analysis on the last step:

Case 1 base case

1

1. class C<X¢ Uu> ¢ N ...M...

2

2. <Y′¢ T′u>T
′ m(T′ x) ... ∈ M

}
by premises mType

3

3. <Y¢ Tu>T→T = [T /X]<Y′¢ T′u>T
′→T′ by def mType

4

4. letX = Y, O, Oo, Ot

5

5. letT = U, τ , τo, τt

6

6. ` class C<X¢ Uu>...M... ok by 1, wf-prog

7

7. O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu] ` <Y′¢ T′u>T
′ m(T′ x) ... okby 6, def T-Class

8

8. O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu], Y′ →[⊥ T′u] ` T′, T′ okby 7, def T-Method

9

9. ∆,∆′, O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu], Y′ →[⊥ T′u] ` T′, T′ okby 8, 1, 2, distinctness of formal variables,
lemma 9

10

10. O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu] ` Y′ →[⊥ T′u] okby 7, def T-Method

11

11. ∆,∆′, O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu] ` Y′ →[⊥ T′u] okby 10, 1, distinctness of formal variables,
lemma 9

12

12. O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu], Y′ →[⊥ T′u] ` T′u okby 10, def F-Env

13

13. ∆,∆′, O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu], Y′ →[⊥ T′u] ` T′u okby 12, 1, 2, distinctness of formal variables,
lemma 9

14

14. ∆,∆′ ` C<T > ok

15

15. ∆ ` ∆′ ok

}
by c, def F-Exists

16

16. ∆,∆′ ` T ok

17

17. ∆,∆′ ` T <: [T /X]Uu

18

18. ∀τ ∈ τ . ∆ ` τo <: τ



 by 14, def F-Class

19

19. ∅ ` ∆, ∆′ ok by 15, b, lemma 12

20

20. [T /X]Oo = τo by 4, 5

21

21. ∆ ` [T /X]Oo <: τ by 18, 20

22

22. ∆,∆′, Y′ →[⊥ [T /X]T′u] ` [T /X]T′u, [T /X]T′, [T /X]T ok
by 9, 13, 16, 17, XS-Bttm, 21
19, 11, lemma 19

23

23. ∆,∆′, Y→[⊥ Tu] ` Tu, T, T ok by 22, 3

Case 2 inductive case

1

1. class C<X¢ Uu> ¢ N ...M...

2

2. m 6∈ M

}
by premises mType

3

3. <Y¢ Tu>T→T = mType(m, [T /X]N) by def mType

4

4. letX = Y, O, Oo, Ot

5

5. letT = U, τ , τo, τt

59

6

6. ` class C<X¢ Uu> ¢ N ...M... ok by 1, wf-prog

7

7. Y→[⊥ Tu], O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu] ` N okby 6, def T-Class

8

8. ∆,∆′, Y→[⊥ Tu], O→[Oo Uu], Oo →[⊥ Uu], Ot →[⊥ Uu] ` N okby 7, 1,
distinctness of formal variables, lemma 9

9

9. ∆,∆′ ` C<T > ok

10

10. ∆ ` ∆′ ok

}
by c, def F-Exists

11

11. ∆,∆′ ` T ok

12

12. ∆,∆′ ` T <: [T /X]Uu

13

13. ∀τ ∈ τ . ∆ ` τo <: τ



 by 9, def F-Class

14

14. ∅ ` ∆, ∆′ ok by 10, b, lemma 12

15

15. [T /X]Oo = τo by 4, 5

16

16. ∆ ` [T /X]Oo <: τ by 13, 15

17

17. ∆,∆′ ` [T /X]N ok by 8, 11, 12, XS-Bttm, 16, 14, lemma 18

18

18. ∆,∆′, Y→[⊥ Tu] ` T ok

19

19. ∆,∆′, Y→[⊥ Tu] ` T ok

20

20. ∆,∆′, Y→[⊥ Tu] ` Tu ok



 by 3, 17, 14, ind hyp

2

Lemma 29 (match gives well-formed types).

If:
a. ∆ ` P ok

b. ∆ ` ∃∆.R ok
c. ∅ ` ∆ ok

d. match(〈R,∃∆′.R′〉, P, Y, T)
then:

∆, ∆ ` T ok

Proof

1

1. ∀i where Pi 6= ? : Ti = Pi

2

2. ∀j where Pj = ? : Yj ∈ fv(R′)

3

3. ` R @@: [T/Y,T′/X]R′

4

4. dom(∆) = X

5

5. fv(T, T′) ∩ Y, X = ∅





by d, def match

6

6. ∆,∆ ` R ok

7

7. ∆ ` ∆ ok

}
by b, def F-Exist

8

8. ∅ ` ∆, ∆ ok by 7, c, lemma 12

9

9. ∆,∆ ` [T/Y,T′/X]R′ ok by 3, 6, 8, lemma 22

Case analysis on each Ti ∈ T:

60

Case 1 Pi 6= ?

1

1.1. ∆ ` Pi ok by a

2

1.2. ∆,∆ ` Pi ok by 1.1, 8, lemma 9

3

1.3. ∆,∆ ` Ti ok by 1.2, 1

Case 2 Pi = ?

1

2.1. Yi ∈ fv(N′) by 2

2

2.2. let N′ = C<U>

3

2.3. [T/Y,T′/X]N′ = C<[T/Y,T′/X]U> by 2.2, def subst

4

2.4. ∃N′j such that[T/Y,T′/X]N
′
j = Cj<...,Ti,...> by 2.1, 2.3

5

2.5. ∆,∆ ` Ti ok by 2.4, 9, def F-Class

2

Lemma 30 (Close gives well-formed types).

If:
a. ∆,∆′ ` T ok
b. ∆ ` ∆′ ok

then:
∆ `⇓∆′ T ok

Proof by structural induction on the derivation of ⇓∆ T with a case analysis on
the last step:

Case 1 1

1

1. T = ∃∅.X

2

2. ⇓∆′ T = ∃∅.X
}

by def close

3

3. X 6∈ dom(∆′) by premise of close

4

4. ∆ ` ∃∅.X ok by 3, a, def F-Var

5

5. done by 4, 1, 2

Case 2 2

1

1. T = ∃∅.X

2

2. ⇓∆′ T =⇓∆ Bu

}
by def close

3

3. ∆′(X) = [Bl Bu] by premise of close

4

4. ∆,∆′ ` Bu ok by b, def F-Env

5

5. ∆ `⇓∆′ Bu ok by 4, b, ind hyp

6

6. done by 5, 2

Case 3 3

61

1

1. T = ∃∆′′.N

2

2. ⇓∆′ T = ∃∆′,∆′′.N

}
by def close

3

3. ∆,∆′ ` ∆′′ ok

4

4. ∆,∆′,∆′′ ` N ok

}
by a, 1, def F-Exists

5

5. ∆ ` ∆′′,∆′ ok by 3, a, lemma 12

6

6. ∆ ` ∃∆′,∆′′.N ok by 5, 4, F-Exists

7

7. done by 6, 2

2

Lemma 31 (Typing gives well-formed types).

If:
a. ∆;Γ ` e : T
b. ∅ ` ∆ ok
c. ∀x ∈ dom(Γ) : ∆ ` Γ (x) ok

then:
∆ ` T ok

Proof by structural induction on the derivation of ∆; Γ ` e : T with a case
analysis on the last step:

Case 1 (T-Var)

1

1. ∆′ = ∅ by def T-Var

2

2. T = Γ (x) by def T-Var

3

3. done by 2, 1, c

Case 2 (T-Subs, T-Cast, T-Null, T-New)

trivial
Case 3 (T-Field)

1

1. e = e′.f

2

2. T =⇓∆′ U

}
by def T-Field

3

3. ∆;Γ ` e′ : ∃∆′N

4

4. fType(f, N) = U

}
by premises T-Field

5

5. ∆ ` ∃∆′.N ok by 3, b, c, ind hyp

6

6. ∆,∆′ ` U ok by 4, 5, b, lemma 27

7

7. ∆ ` ∆′ ok by 5, def F-Exists

8

8. ∆ `⇓∆′ U ok by 6, 7, lemma 30

9

9. done by 8, 2

Case 4 (T-Assign)

62

1

1. e = e′.f = e′′ by def T-Assign

2

2. ∆;Γ ` e′′ : T by premise T-Assign

3

3. ∆ ` T ok by 2, b, c, ind hyp

Case 5 (T-Invk)

1

1. e = e′<P>m(e)

2

2. T =⇓∆′′,∆ [T/Y]U

}
by def T-Invk

3

3. ∆;Γ ` e′ : ∃∆′′.N

4

4. mType(m, N) = <Y¢ Tu>U→U

5

5. ∆;Γ ` e : ∃∆.R

6

6. ∆ ` P ok

7

7. ∆,∆′′, ∆ ` T <: [T/Y]Tu

8

8. match(sift(R, U, Y), P, Y, T)





by premises T-Invk

9

9. ∆ ` ∃∆′′.N ok by 3, b, c, ind hyp

10

10. ∆,∆′′, Y→[⊥ Tu] ` U ok by 4, 9, b, lemma 28

11

11. ∆ ` ∃∆.R ok by 5, b, c, ind hyp

12

12. ∆,∆ ` T ok by 6, 11, b, 8, def sift, lemma 29

13

13. ∆,∆′′, ∆ ` T ok by 12, 7, lemma 9

14

14. ∆,∆′′, ∆, Y→[⊥ Tu] ` U ok by 10, 7, lemma 9

15

15. ∆ ` ∆′′ ok by 9, def F-Exists

16

16. ∆ ` ∆ ok by 11, def F-Exists

17

17. ∆ ` ∆′′,∆ ok by 15, 16, Barendregt, lemma 13

18

18. ∅ ` ∆, ∆′′, ∆ ok by b, 17, lemma 12

19

19. ∆,∆′′, ∆ ` [T/Y]U ok by 14, 13, 7, XS-Bttm, 18,
F-Env-Empty, lemma 19

20

20. ∆ `⇓∆′′,∆ [T/Y]U ok by 19, 17, lemma 30

21

21. ∆ ` T ok by 20, 2

2

Lemma 32 (Inversion Lemma (object creation)).

If:
a. ∆;Γ ` new C<T , T , ? > : T

then:
∆ ` T , T ok
∆ ` ∃O→[⊥ T].C<T , T , O> ok
∆ ` ∃O→[⊥ T].C<T , T , O> <: T

Proof by structural induction on the derivation of ∆; Γ ` new C<T , T , ? > : T
with a case analysis on the last step:

Case 1 (T-New)

63

1

1. T = ∃O→[⊥ T].C<T , T , O> by def T-New

2

2. ∆ ` T , T ok

3

3. ∆ ` ∃O→[⊥ T].C<T , T , O> ok

}
by premises T-New

4

4. done by 3, 2, 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` new C<T , T , ? > : U

2

2. ∆ ` U <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆ ` T , T ok

5

5. ∆ ` ∃O→[⊥ T].C<T , T , O> ok

6

6. ∆ ` ∃O→[⊥ T].C<T , T , O> <: U



 by 1, ind hyp

7

7. ∆ ` ∃O→[⊥ T].C<T , T , O> <: T by 6, 2, S-Trans

8

8. done by 4, 5, 7

2

Lemma 33 (Inversion Lemma (field access)).

If:
a. ∆;Γ ` e.f = e′ : T

then:
∆; Γ ` e : ∃∆′.N
∆ `⇓∆′ fType(f, N) <: T

Proof by structural induction on the derivation of ∆; Γ ` e.f : T with a case
analysis on the last step:

Case 1 (T-Field)

1

1. T =⇓∆′ U by def T-Field

2

2. ∆;Γ ` e : ∃∆′.N

3

3. fType(f, N) = U

}
by premises T-Field

4

4. done by 2, 3, 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` e.f : U

2

2. ∆ ` U <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆;Γ ` e : ∃∆′.N

5

5. ∆ `⇓∆′ fType(f, N) <: U

}
by 1, ind hyp

64

6

6. ∆ `⇓∆′ fType(f, N) <: T by 5, 2, S-Trans

7

7. done by 4, 6

2

Lemma 34 (Inversion Lemma (field assignment)).

If:
a. ∆;Γ ` e.f = e′ : T

then:
∆; Γ ` e : ∃∆′.N
U = fType(f, N)
∆; Γ ` e′ : U′

∆,∆′ ` U′ <: U
∆ ` U′ <: T

Proof by structural induction on the derivation of ∆;Γ ` e.f = e′ : T with a
case analysis on the last step:

Case 1 (T-Assign)

1

1. T = U′ by def T-Assign

2

2. ∆;Γ ` e : ∃∆′.N

3

3. fType(f, N) = U

4

4. ∆;Γ ` e′ : U′

5

5. ∆,∆′ ` U′ <: U





by premises T-Assign

6

6. done by 2, 3, 4, 5, 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` e.f = e′ : U′′

2

2. ∆ ` U′′ <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆;Γ ` e : ∃∆′.N

5

5. fType(f, N) = U

6

6. ∆;Γ ` e′ : U′

7

7. ∆,∆′ ` U′ <: U

8

8. ∆ ` U′ <: U′′





by 1, ind hyp

9

9. ∆ ` U′ <: T by 8, 2, S-Trans

10

10. done by 4, 5, 6, 7, 9

2

Lemma 35 (Inversion Lemma (method invocation)).

65

If:
a. ∆;Γ ` e.<P>m(e) : T

then:
where:

∆; Γ ` e : ∃∆′′.N
mType(m, N) = <Y¢ B>U→ U
∆; Γ ` e : ∃∆.R
match(sift(R, U, Y), P, Y, T)
∆ ` P ok

∆,∆′′,∆ ` T <: [T/Y]B
∆,∆′′,∆ ` ∃∅.R <: [T/Y]U
∆ `⇓∆′′,∆ [T/Y]U <: T

Proof by structural induction on the derivation of ∆; Γ ` e.<P>m(e) : T with a
case analysis on the last step:

Case 1 (T-Invk)

1

1. T =⇓∆′′,∆ [T/Y]U by def T-Invk

2

2. ∆;Γ ` e : ∃∆′′.N

3

3. mType(m, N) = <Y¢ B>U→ U

4

4. ∆;Γ ` e : ∃∆.R

5

5. match(sift(R, U, Y), P, Y, T)

6

6. ∆ ` P ok

7

7. ∆,∆′′, ∆ ` T <: [T/Y]B

8

8. ∆,∆′′, ∆ ` ∃∅.R <: [T/Y]U





by premises T-Invk

9

9. done by 2, 3, 4,
5, 6, 7, 8, 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` e.<P>m(e) : U

2

2. ∆ ` U <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆;Γ ` e : ∃∆′′.N

5

5. mType(m, N) = <Y¢ B>U→ U

6

6. ∆;Γ ` e : ∃∆.R

7

7. match(sift(R, U, Y), P, Y, T)

8

8. ∆ ` P ok

9

9. ∆,∆′′, ∆ ` T <: [T/Y]B

10

10. ∆,∆′′, ∆ ` ∃∅.R <: [T/Y]U

11

11. ∆ `⇓∆′′,∆ [T/Y]U <: U





by 1, ind hyp

66

12

12. ∆ `⇓∆′′,∆ [T/Y]U <: T by 11, 2, S-Trans

13

13. done by 4, 5, 6, 7, 8, 9, 10, 12

2

Lemma 36 (Inversion Lemma (null)).

If:
a. ∆;Γ ` null : T

then:
∆ ` U ok
∆ ` U <: T

Proof by structural induction on the derivation of ∆;Γ ` null : T with a case
analysis on the last step:

Case 1 (T-Null)

1

1. ∆ ` U ok by premise T-Null

2

2. done by 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` null : U ′

2

2. ∆ ` U ′ <: T

3

3. ∆ ` T ok



 by premises T-Subs

4

4. ∆ ` U ok

5

5. ∆ ` U <: U ′

}
by 1, ind hyp

6

6. ∆ ` U <: T by 5, 2, S-Trans

7

7. done by 4, 6

2

Lemma 37 (Inversion Lemma (cast)).

If:
a. ∆;Γ ` (T)e : T ′

then:
∆; Γ ` e : U
∆ ` T <: U
∆ ` T ok
∆ ` T <: T ′

Proof by structural induction on the derivation of ∆; Γ ` (T)e : T ′ with a case
analysis on the last step:

67

Case 1 (T-Cast)

1

1. T ′ = T by def T-Cast

2

2. ∆;Γ ` e : U

3

3. ∆ ` T <: U

4

4. ∆ ` T ok



 by premises T-Cast

5

5. done by 1, 2, 3, 4, reflexivity

Case 2 (T-Subs)

1

1. ∆;Γ ` (T)e : U ′

2

2. ∆ ` U ′ <: T ′

3

3. ∆ ` T ′ ok



 by premises T-Subs

4

4. ∆;Γ ` e : U

5

5. ∆ ` T <: U

6

6. ∆ ` T ok

7

7. ∆ ` T <: U ′





by 1, ind hyp

8

8. ∆ ` T <: T ′ by 7, 2, S-Trans

9

9. done by 4, 5, 6, 8

2

Lemma 38 (Subclassing gives extended subclassing).

If:
a. ` R′ @@: R

then:
∆ ` ∃∆′.R′ @: ∃∆′.R

Proof by structural induction on the derivation of ` R′ @@: R with a case analysis
on the last step:

Case 1 (SC-Reflex)

1

1. R′ = R by def SC-Reflex

2

2. ∆ ` ∃∆′.R′ @: ∃∆′.R by 1, XS-Reflex

Case 2 (SC-Sub-Class)

1

1. R′ = C<T>

2

2. R = [T/X]N

}
by def SC-Sub-Class

3

3. class C<X...> ¢ N ... by premise SC-Sub-Class

4

4. ∆ ` ∃∆′.R′ @: ∃∆′.R by 1, 2, 3, XS-Sub-Class

Case 3 (SC-Trans)

68

1

1. ` R′ @@: R′′

2

2. ` R′′ @@: R

}
by premises SC-Trans

3

3. ∆ ` ∃∆′.R′ @: ∃∆′.R′′ by 1, ind hyp

4

4. ∆ ` ∃∆′.R′′ @: ∃∆′.R by 2, ind hyp

5

5. ∆ ` ∃∆′.R′ @: ∃∆′.R by 3, 4, XS-Trans

2

Lemma 39 (Extended subclassing gives subclassing).

If:
a. ∆ ` ∃∆′.R′ @: ∃X→[Bl Bu].R
b. ∆ ` ok

then:
there exists T

where:
` R′ @@: [T/X]R
∆,∆′ ` T <: [T/X]Bu

∆,∆′ ` [T/X]Bl <: T
fv(T) ⊆ dom(∆,∆′)

Proof by structural induction on the derivation of ∆ ` ∃∆′.R′ @: ∃X→[Bl Bu].R
with a case analysis on the last step:

Case 1 (XS-Reflex)

Easy, using SC-Reflex, T = X and S-Bound.
Case 2 (XS-Trans)

1

1. ∆ ` ∃∆′.R′ @: B

2

2. ∆ ` B @: ∃X→[Bl Bu].R

}
by premises XS-Trans

3

3. B = ∃X′ →[B′l B′u].R
′′ by 1 gives B 6=⊥

4

4. wlog assume X′ are fresh by 3, Barendregt

5

5. there exists U′

6

6. ` R′ @@: [U′/X′]R
′′

7

7. ∆,∆′ ` U′ <: [U′/X′]Bu

8

8. ∆,∆′ ` [U′/X′]Bl <: U′

9

9. fv(U′) ⊆ dom(∆,∆′)





by 1, 3, b, ind hyp

10

10. there exists U

11

11. ` R′′ @@: [U/X]R

12

12. ∆, X′ →[B′l B′u] ` U <: [U/X]B′u

13

13. ∆, X′ →[B′l B′u] ` [U/X]B′l <: U

14

14. fv(U) ⊆ dom(∆), X′





by 2, 3, b, ind hyp

69

15

15. ` [U′/X′]R
′′ @@: [U′/X′][U/X]R by 11, lemma 1

16

16. ` R′ @@: [U′/X′][U/X]R by 6, 15, SC-Trans

17

17. ` R′ @@: [[U′/X′]U/X]R by 16, 4

18

18. ∆,∆′, X′ →[B′l B′u] ` U <: [U/X]Bu by 12, 4, lemma 8

19

19. ∆,∆′, X′ →[B′l B′u] ` [U/X]Bl <: U by 13, 4, lemma 8

20

20. ∆,∆′ ` [U′/X′]U <: [U′/X′][U/X]Bu by 18, 7, 8, b, lemma 17

21

21. ∆,∆′ ` [U′/X′]U <: [[U′/X′]U/X]Bu by 20, 4

22

22. ∆,∆′ ` [U′/X′][U/X]Bl <: [U′/X′]U by 19, 7, 8, b, lemma 17

23

23. ∆,∆′ ` [[U′/X′]U/X]Bl <: [U′/X′]U by 22, 4

24

24. fv([U′/X′]U) ⊆ dom(∆,∆′) by 9, 14

25

25. let T = [U′/X′]U

26

26. done by 25, 17, 21, 23, 24

Case 3 (XS-Env)

1

1. R = N

2

2. R′ = [U/X]N

}
by def XS-Env

3

3. ∆,∆′ ` U <: [U/X]Bu

4

4. ∆,∆′ ` [U/X]Bl <: U

5

5. dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅

6

6. fv(U) ⊆ dom(∆, ∆′)





by premises XS-Env

7

7. ` N @@: N by SC-Reflex

8

8. ` [U/X]N @@: [U/X]N by 7, lemma 1

9

9. ` N′ @@: [U/X]N by 8, 2

10

10. let T = U

11

11. done by 10, 9, 3, 4, 6

Case 4 (XS-Sub-Class)

1

1. ∆′ = X→[Bl Bu]

2

2. R′ = C<U>

3

3. R = [U/Y]N
′′



 by def XS-Sub-Class

4

4. class C<Y...>¢ N′′... by premise XS-Sub-Class

5

5. ` C<U> @@: [U/Y]N
′′

by 4, SC-Sub-Class

6

6. ` R′ @@: R by 5, 2, 3

7

7. let T = X

8

8. done by 6, 7, S-Bound, 1

Case 5 (XS-Bottom)

N/A

70

2

Lemma 40 (Subclassing preserves matching (receiver)).

If:
a. ∆ ` ∃∆1.N1 @: ∃∆2.N2

b. mType(m, N2) = <Y2 →[B2l B2u]>U2→U2

c. mType(m, N1) = <Y1 →[B1l B1u]>U1→U1

d. match(sift(R, U2, Y2), P, Y2, T)
e. ∅ ` ∆ ok
f. ∆,∆′ ` T ok

then:
match(sift(R, U1, Y1), P, Y1, T)

Proof

1

1. ` N1 @@: [T′/X]N2

2

2. ∆2 = X→[Bl Bu]

3

3. ∆,∆1 ` T′ <: [T′/X]Bu

4

4. ∆,∆1 ` [T′/X]Bl <: T′





by a, e, lemma 39

5

5. assume wlog X ∩ Y2 = ∅

6

6. assume wlog fv(T′) ∩ Y2 = ∅
}

by b

7

7. mType(m, [T′/X]N2) = by b, lemma 6
[T′/X]<Y2 →[B2l B2u]>U2→U2

8

8. mType(m, N1) = [T′/X]<Y2 →[B2l B2u]>U2→U2 by 1, 7, lemma 24

9

9. Y1 = Y2 by 8

10

10. U1 = [T′/X]U2 by 8

11

11. let sift(R, U2, Y2) = 〈R′′, ∃∆.R′〉 by d, def sift

12

12. ∀i where Pi 6= ? : Ti = Pi

13

13. ∀j where Pj = ? : Y2j ∈ fv(R′)

14

14. ` R′′ @@: [T/Y2,T′′/Z]R′

15

15. dom(∆) = Z

16

16. fv(T2, T′′) ∩ Y2, Z = ∅





by premises of match, d, 11

17

17. ` [T′/X]R′′ @@: [T′/X][T/Y2,T′′/Z]R′ by 14, lemma 1

18

18. X ∩ fv(R′′) = ∅ by Barendregt

19

19. ` R′′ @@: [T′/X][T/Y2,T′′/Z]R′ by 17, 18

20

20. Z ∩ fv(T′) = ∅ by 15, 11, Barendregt

21

21. ` R′′ @@: [[T′/X]T/Y2,[T′/X]T′′/Z][T′/X]R′ by 19, 6, 20

22

22. ∀j where Pj = ? : Y2j ∈ fv([T′/X]R′) by 13, 5

23

23. fv([T′/X]T, [T′/X]T′′) ∩ Y2, Z = ∅ by 16,6,20

24

24. match(〈R′′, [T′/X]∃∆.R′〉, P, Y2, [T′/X]T) by 12, 22, 21, 15, 23, def match

71

25

25. sift(R, [T′/X]U2, Y2) = 〈R′′, [T′/X]∃∆.R′〉 by 11, 5, 6, lemma 3

26

26. sift(R, U1, Y1) = 〈R′′, [T′/X]∃∆.R′〉 by 25, 9, 10

27

27. match(sift(R, U1, Y1), P, Y1, [T′/X]T) by 24, 26, 9

28

28. match(sift(R, U1, Y1), P, Y1, T) by 27, f, 2, Barendregt

2

Lemma 41 (Subclassing preserves matching (arguments)).

If:
a. ∆ ` ∃∆1.R1 @: ∃∆2.R2

b. match(sift(R2, U, Y), P, Y, T)
c. fv(U) ∩ Z = ∅
d. ∆2 = Z→[Bl Bu]
e. ∅ ` ∆ ok

f. ∆ ` ∃∆1.R1 ok
g. ∆ ` P ok

then:
there exists U′

where:
match(sift(R1, U, Y), P, Y, [U′/Z]T)
∆, ∆1 ` U′ <: [U′/Z]Bu

∆, ∆1 ` [U′/Z]Bl <: U′

` R1 @@: [U′/Z]R2

fv(U′) ⊆ ∆, ∆1

Proof

1

1. let sift(R2, U, Y) = 〈R′2, ∃∆3.R3〉

2

2. R′1 and R′2 are subsequences of R1 and R2 respectively

3

3. Take ∆′
1 and ∆′

2 to be the corresponding environments of R′1 and R′2

4

4. sift(R1, U, Y) = 〈R′1,∃∆3.R3〉

5

5. ∆ ` ∃∆′
1.R

′
1 @: ∃∆′

2.R
′
2

}
by 1, a, 2, 3, lemma 4

6

6. there exists U′

7

7. ` R1 @@: [U′/Z]R2

8

8. ∆,∆1 ` U′ <: [U′/Z]Bu

9

9. ∆,∆1 ` [U′/Z]Bl <: U′

10

10. fv(U′) ⊆ dom(∆, ∆1)





by a, e, lemma 39

11

11. fv(∃∆3.R3) ∩ Z = ∅ by c, def sift

12

12. fv(R3) ∩ Z = ∅ by 11, Barendregt

72

13

13. ∀i where Pi 6= ? : Ti = Pi

14

14. ∀j where Pj = ? : Yj ∈ fv(R3)

15

15. ` R′2 @@: [T/Y,T′/X]R3

16

16. dom(∆3) = X

17

17. fv(T, T′) ∩ Y, X = ∅





by b, 1, def match

18

18. ` [U′/Z]R
′
2 @@: [U′/Z][T/Y,T′/X]R3 by 15, lemma 1

19

19. ` R′1 @@: [U′/Z][T/Y,T′/X]R3 by 7, 18, SC-Trans

20

20. ` R′1 @@: [[U′/Z]T/Y,[U′/Z]T′/X]R3 by 12, 19

21

21. ∆,∆1 ` R1 ok

22

22. ∆ ` ∆1 ok

}
by f, def F-Exist

23

23. ∅ ` ∆, ∆1 ok by 22, e, lemma 12

24

24. ∆,∆1 ` [U′/Z]R2 ok by 7, f, e, lemma 22

25

25. fv(U′) ∩ X = ∅ by 16, Barendregt

26

26. fv(U′) ∩ Y = ∅ by 10

27

27. fv([U′/Z]T, [U′/Z]T′) ∩ Y, X = ∅ by 17, 25, 26

28

28. ∀i where Pi 6= ? : [U′/Z]Ti = [U′/Z]Pi = Pi by 14, g, d, Barendregt

29

29. match(〈R′1, ∃∆3.R3〉, P, Y, [U′/Z]T) by 28, 14, 20, 16, 27, def match

30

30. match(sift(R1, U, Y), P, Y, [U′/Z]T) by 29, 4

31

31. done by 30, 8, 9, 7, 10

2

Lemma 42 (Method body is well typed).

If:
a. ∅ ` ∆ ok
b. ∆ ` C<T > ok
c. mType(m, C<T >) = <Y¢ Uu>U→ U
d. mBody(m, C<T >) = (x; e)

then:
∆, Y→[⊥ Uu]; x:U, this:∃∅.C<T > ` e : U

Proof by induction on the derivation of mBody(m, C<T >) = (x; e) with a case
analysis on the last step:

Case 1 Base case

1

1. class C<X¢ Tu> ¢ N ...M...

2

2. <Y′¢ U′u>U
′ m(U′ x) {return e0} ∈ M

}
by premises mBody

3

3. e = [T /X]e0 by def mBody

4

4. <Y¢ Uu>U→U = [T /X]<Y′¢ U′u>U
′→U′ by 1, 2, mType

5

5. letX = X, O, Oo, Ot

73

6

6. letT = U, τ , τo, τt

7

7. ` class C<X¢ Uu> ¢ N ...M... ok by 1, wf-prog

8

8. X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` <Y′¢ U′u>T
′ m(U′ x) {return e0} ok

by 7, def T-Class

9

9. X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu], Y′ →[⊥ U′u]; x:U
′, this:C<X> ` e0 : U′

by 8, def T-Method

10

10. ∆, X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu], Y′ →[⊥ U′u]; x:U
′, this:C<X> ` e0 : U′

by 9, 1, 2,
distinctness of formal variables, lemma 10

11

11. X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` Y′ →[⊥ U′u] okby 8, def T-Method

12

12. ∆, X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` Y′ →[⊥ U′u] okby 11, 1, distinctness of formal variables,
lemma 9

13

13. ∆ ` T ok

14

14. ∆ ` T <: [T /X]Tu

15

15. ∀τ ∈ τ . ∆ ` τo <: τ



 by b, def F-Class

16

16. [T /X]Oo = τo by 5, 6

17

17. ∆ ` [T /X]Oo <: τ by 15, 16

18

18. ∆, Y′ →[⊥ [T /X]U′u]; x:[T /X]U′, this:∃∅.[T /X]C<X> ` [T /X]e0 : [T /X]U
′

by 10, 13, 14, XS-Bttm, 17, a, 12, 1,
distinctness of formal variables, lemma 21

19

19. ∆, Y→[⊥ Uu]; x:U, this:∃∅.C<T > ` e : U by 18, 4

Case 2 Inductive case

1

1. class C<X¢ Tu> ¢ N ...M...

2

2. m 6∈ M

}
by premises mBody

3

3. (x, e) = mBody(m, [T /X]N) by def mBody

4

4. <Y¢ Uu>U→U = mType(m, [T /X]N) by 1, 2, mType

5

5. letX = X, O, Oo, Ot

6

6. letT = U, τ , τo, τt

7

7. ` class C<X¢ Tu> ¢ N ...M... ok by 1, wf-prog

8

8. X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N okby 7, def T-Class

9

9. ∆, X→[⊥ Tu], O→[Oo Tu], Oo →[⊥ Tu], Ot →[⊥ Tu] ` N okby 8, 1, distinctness of formal variables,
lemma 9

10

10. ∆ ` T ok

11

11. ∆ ` T <: [T /X]Tu

12

12. ∀τ ∈ τ . ∆ ` τo <: τ



 by b, def F-Class

13

13. [T /X]Oo = τo by 5, 6

14

14. ∆ ` [T /X]Oo <: τ by 12, 13

15

15. ∆ ` [T /X]N ok by 9, a, 10, 11, XS-Bttm, 14, lemma 18

16

16. ∆, Y→[⊥ Uu]; x:U, this:∃∅.[T /X]N ` e : U∅ by 3, 4, a, 15, ind hyp

17

17. ∆, Y→[⊥ Uu] ` ∃∅.C<T > <: ∃∅.[T /X]N by 1, SC-Sub-Class

18

18. ∆, Y→[⊥ Uu]; x:U, this:∃∅.C<T > ` e : U∅ by 16, 17, 15, lemma 26

74

2

Lemma 43 (mType defined gives mBody defined).

If:
a. mType(m, C<T>) defined

then:
mBody(m, C<T>) defined

Proof by case analaysis on the defintion of mType(m, C<T>)

Case 1 Base case

1

1. class C...{...M}

2

2. m ∈ M

}
by premises mType

3

3. mBody(m, C<T>) defined by 1, 2, base case of def mBody

Case 2 Inductive case

1

1. class C...{...M}

2

2. m 6∈ M

}
by premises mType

3

3. mBody(m, C<T>) defined by 1, 2, ind case of def mBody

2

Lemma 44 (fType and fields related).

a. fType(f, C<T>) defined
b. fields(C) = f

then:
f ∈ f

Proof by induction on the derivation of fType(f, N) with a case analysis on the
last step:

Case 1 (base case)

1

1. class C...¢ D<U> {T f′;...}

2

2. f ∈ f′

}
by premises fType

3

3. fields(C) = f′, fields(D) by def fType

4

4. f ∈ f by 2, 3

Case 2 (inductive case)

75

1

1. class C<X...> ¢ D<U> {T f′;...}

2

2. f 6∈ f′

}
by premises fType

3

3. fType(f, N) = fType(f, D<[T/X]U>) by def fType

4

4. fields(C) = f′, fields(D) by def fType

5

5. f ∈ fields(D by 3, 4, ind hyp

6

6. f ∈ f by 5, 4

2

Lemma 45 (Inversion lemma: locations).

If:
a. ∆;H ` ι : T

then:
H(ι) = {N; ...}
∆ ` ∃∅.N <: T

Proof by structural induction on the derivation of ∆;H ` ι : T with a case
analysis on the last step:

Case 1 (T-Var)

1

1. T = ∃∅.N by def T-Var, H-T, b

2

2. done by 1, reflexivity

Case 2 (T-Subs)

1

1. ∆;H ` ι : U

2

2. ∆ ` U <: T

}
by premises of T-Subs

3

3. H(ι) = {N; ...}

4

4. ∆ ` ∃∅.N <: U

}
by 1, ind hyp

5

5. ∆ ` ∃∅.N <: T by 2, 4, S-Trans

2

Lemma 46 (Generalisation of XS-Env).

If:
a. ∆,∆′ ` T <: [T/Z]Bu

b. ∆,∆′ ` [T/Z]Bl <: T
c. fv(T) ⊆ dom(∆,∆′,∆′′)
d. dom(∆′) ∩ fv(∃∆′′, Z→[Bl Bu],∆′′′.N) = ∅
e. ∆ ` ∃∆′′,∆′′′.N ok

then:
∆ ` ∃∆′′,∆′, [T/Z]∆′′′.[T/Z]N @: ∃∆′′, Z→[Bl Bu],∆′′′.N

76

Proof by deduction

1

1. let ∆0 = ∆′′,∆′,∆′′′

2

2. let ∆1 = ∆′′, Z→[Bl Bu], ∆′′′

3

3. let ∆1 = Y→[B′l B′u]

4

4. let X→[B′′l B′′u] = ∆′′′

5

5. let X′ →[B′′′l B′′′u] = ∆′′

6

6. X ⊆ Y by 2, 3, 4

7

7. X′ ⊆ Y by 2, 3, 5

8

8. X ⊆ dom(∆0) by 1, 4

9

9. X′ ⊆ dom(∆0) by 1, 5

10

10. fv(T), X, X′ ⊆ dom(∆,∆0) by c, 8, 9

11

11. dom(∆0) ∩ fv(∃∆1.N) = ∅ by d, 1, ∆′′′ and ∆′′ bind in ∃∆1.N

12

12. ∆,∆0 ` T <: [T/Z]Bu by a, lemma 8, 1

13

13. ∆,∆0 ` [T/Z]Bl <: T by b, lemma 8, 1

14

14. Z 6∈ fv(B′′l , B′′u) by e,4

15

15. Z 6∈ fv(B′′′l , B′′′u) by e,5

16

16. ∆,∆0 ` X <: [T/Z]B′′u by S-Bound, 14

17

17. ∆,∆0 ` [T/Z]B′′l <: X by S-Bound, 14

18

18. ∆,∆0 ` X′ <: [T/Z]B′′′u by S-Bound, 15

19

19. ∆,∆0 ` [T/Z]B′′′l <: X′ by S-Bound, 15

20

20. ∆ ` ∃∆0.[T/Z]N @: ∃∆1.N by 10, 11, 12, 13, 16, 17, XS-Env

21

21. done by 20, 14, 15, 1, 2

2

Lemma 47 (Close gives subtyping under appropriate substitutions).

If:
a. ∆ ` U <: [U/Z]Bu

b. ∆ ` [U/Z]Bl <: U
c. fv(U) ⊆ dom(∆)
d. ∆, Z→[Bl Bu] ` T ok

e. ∆ ` Z→[Bl Bu] ok
then:

∆ ` [U/Z]T <:⇓Z→[Bl Bu]
T

Proof by structural induction on the derivation of ⇓Z→[Bl Bu]
T with a case

analysis on the last step:

Case 1

1

1. T = ∃∅.X

2

2. X 6∈ Z

3

3. ⇓Z→[Bl Bu]
T = ∃∅.X



 by def close

77

4

4. [U/Z]T = T by 2, 1

5

5. done by reflexivity, 4, 3, 1

Case 2

1

1. T = ∃∅.X

2

2. X = Zi

3

3. ⇓Z→[Bl Bu]
T =⇓Z→[Bl Bu]

Bui



 by def close

4

4. [U/Z]T = Ui by 1, 2

5

5. ∆ ` [U/Z]T <: [U/Z]Bui by a, 4

6

6. ∆, Z→[Bl Bu] ` Bui ok by e, def F-Env

7

7. ∆ ` [U/Z]Bui <:⇓Z→[Bl Bu]
Bui by a, b, c, 6, e, ind hyp

8

8. done by 5, 7, transitivity, 3

Case 3

1

1. T = ∃∆′.N

2

2. ⇓Z→[Bl Bu]
T = ∃Z→[Bl Bu],∆′.N

}
by def close

3

3. ∆ `⇓Z→[Bl Bu]
T ok by d, e, lemma 30

4

4. ∆ ` ∃[U/Z]∆′.[T/Z]N @: ∃Z→[Bl Bu],∆′′.N by a, b, c, 1, 3, lemma 46

5

5. ∆ ` [U/Z]T @: ∃Z→[Bl Bu],∆′.N by 4, 1

6

6. done by 5, 2, S-SC

2

Lemma 48 (Reduction preserves heap judgements).

If:
a. ∆;H ` e : T
b. e′;H ; e′′;H′

then:
∆;H′ ` e : T

Proof by structural induction on the derivation of e′;H ; e′′;H′ with a case
analysis on the last step:

Case 1 (R-Field, R-Invk, R-Cast, R-Cast-Null, R-Bad-Cast, *-Null)

1

1. trivial

Case 2 (RC-*)

1

1. easy, byindhyp

Case 3 (R-Assign)

1

1. H(ι) = {N; f→v[fi 7→ v]}

2

2. H′ = H[ι 7→ {N; f→v[fi 7→ v]}]
}

by premise of R-Assign

78

3

3. H = ι → C<T ,T ,ι′>; ...

4

4. ∆, ι → [⊥ T]; ι:C<T ,T ,ι′> ` e : T

}
by a, def H-T

5

5. ∆;H′ ` e : T by 2, 4, H-T

Case 4 (R-New)

1

1. easy, byweakening

2

Lemma 49 .
Theorem (Subject Reduction).

If:
a. ∅;H ` e : T
b. e;H ; e′;H′
c. ` H ok

then:
e′ = err

or:
∅;H′ ` e′ : T
` H′ ok

Proof by structural induction on the derivation of e;H ; e′;H′ with a case
analysis on the last step:

Case 1 (R-New)

1

1. e = new C<T , T , ? >

2

2. e′ = ι

}
by def R-New

3

3. ι 6∈ dom(H)

4

4. fields(C) = f

5

5. H′ = H, ι → {C<T , T , ι>; f→null}



 by premises of R-New

6

6. H ` T , T ok

7

7. H ` ∃O→[⊥ T].C<T , T , O> ok

8

8. H ` ∃O→[⊥ T].C<T , T , O> <: T



 by 1, a, lemma 32

9

9. H′ ` ∃O→[⊥ T].C<T , T , O> <: T by 8, 5, lemma 8

10

10. ∅;H′ ` ι : C<T , T , ι> by 5, H-T, T-Var

11

11. H ` T ok by a, F-Env-Empty, lemma 31

12

12. H′ ` T ok by 11, 5, lemma 9

13

13. ∅ ∩ fv(...) = ∅ by def intersection

14

14. fv(ι) ∈ ∅ by def fv

15

15. H′ ` ι <: T by 5, def H-S, S-Bound

16

16. H′ ` C<T , T , ι> <: ∃O→[⊥ T].C<T , T , O> by 13, 14, 15, XS-Bttm, XS-Env, S-SC

17

17. H′ ` C<T , T , ι> <: T by 16, 9, S-Trans

18

18. ∅;H′ ` ι : T by 10, 17, 12, T-Subs

79

19

19. H ` O→[⊥ T] ok

20

20. H, O→[⊥ T]C<T , T , O> `
ok



 by 7, def F-Exists

Case analysis on C:

Case 1 C 6= Object

1

1.1. H, O→[⊥ T]T , T , O `
ok

2

1.2. class C<X¢ T u> ¢...

3

1.3. H, O→[⊥ T] ` T , T , O <: [T , T , O/X]Tu

4

1.4. (H, O→[⊥ T])(O) = [⊥ T ’]





by 20, def F-Class

5

1.5. H′ ` ι ok by 5, def H-F, F-Var

6

1.6. H′(ι) = [⊥ T] by 5, def H-F

7

1.7. H, ι →[⊥ T] ` T , T , ι <: [T , T , ι/X]Tu by 1.3, 6, renaming

8

1.8. H′ ` T , T , ι <: [T , T , ι/X]Tu by 1.7, 5, def H-S

9

1.9. H′ ` C<T , T , ι> ok by 6, lemma 8, 1.5, 1.6, 1.2, 1.8

Case 2 C = Object

1

2.1. T = ∅ by def syntax

2

2.2. H, O→[⊥ T]T , O `
ok

3

2.3. (H, O→[⊥ T])(O) = [⊥ T ’]
}

by 20, def F-Object

4

2.4. H′ ` ι ok by 5, def H-F, F-Var

5

2.5. H′(ι) = [⊥ T] by 5, def H-F

6

2.6. H′ ` Object<T , ι> ok by 6, lemma 8, 2.4, 2.5,

21

21. H′ ` C<T , T , ι> ok by by cases

22

22. let fType(f, C<T , T , ι>) = U

23

23. H ` ι → [⊥ T] ok by 7, def F-Exists, F-Env

24

24. H′ ` U ok by 22, 21, c, 23, def H-F, lemma 27

25

25. ∅;H′ ` null :U by 24, lemma 10, T-Null

26

26. ` H′ ok by 5, c, 7, 22, 25, def F-Heap

27

27. done by 18, 2, 26

Case 2 (R-Field)

1

1. e = ι.fi

2

2. e′ = vi

3

3. H′ = H



 by def R-Field

4

4. H(ι) = {N; f→v} by premise of R-Field

80

5

5. ∅;H ` ι : ∃∆′.N′

6

6. fType(f, N′) = T′

7

7. ∅ `⇓∆′ T′ <: T



 by 1, a, F-Env-Empty, lemma 33

8

8. ∅ ` ∃∅.N <: ∃∆′.N′ by 4, 5, lemma 45

9

9. ∅ ` T ok by a, F-Env-Empty, lemma 31

10

10. ∅ ` ∃∅.N @: ∃∆′.N′ by 8, F-Env-Empty, lemma 16

11

11. let ∆′ = Z→[Bl Bu]

12

12. There exists Ts

13

13. ` N @@: [Ts/Z]N
′

14

14. ∅ ` Ts <: [Ts/Z]Bu

15

15. ∅ ` [Ts/Z]Bl <: Ts

16

16. fv(Ts) = ∅





by 10, F-Env-Empty, lemma 39

17

17. fType(fi, N) = Ui

18

18. ∅,H ` vi : Ui

}
by 4, c, def F-Heap

19

19. Ui = fType(fi, [Ts/Z]N
′
) by 13, 6, 17, lemma 23

20

20. Ui = [Ts/Z]fType(fi, N′) by 19, lemma 5

21

21. Ui = [Ts/Z]T
′

by 20, 6

22

22. ∅ ` ∃∆′.N′ ok by 5, F-Env-Empty, c, lemma 31

23

23. ∆′ ` T′ ok by 22, 6, F-Env-Empty, lemma 27

24

24. ∅ ` ∆′ ok by 22, def F-Exists

25

25. ∅ ` [Ts/Z]T
′
<:⇓∆′ T′ by 14, 15, 16, 23, 11, 24, F-Env-Empty, lemma 47

26

26. ∅ ` Ui <:⇓∆′ T′ by 25, 21

27

27. ∅ ` Ui <: T by 26, 7, transitivity

28

28. ∅;H ` vi : T by 18, 27, F-Env-Empty, 9, T-Subs

29

29. ` H′ ok by 3, c

30

30. done by 28, 2, 29

Case 3 (R-Assign)

1

1. e = ι.fi = v

2

2. e′ = v

}
by def R-Assign

3

3. H(ι) = {N; f→v}

4

4. H′ = H[ι 7→ {N; f→v[fi 7→ v]}]
}

by premises of R-Assign

5

5. ∅;H ` ι : ∃∆′.N′

6

6. fType(fi, N′) = U

7

7. ∅;H ` v : U′

8

8. ∆′ ` U′ <: U

9

9. ∅ ` U′ <: T





by 1, a, F-Env-Empty, lemma 34

10

10. ∅ ` T ok by a, F-Env-Empty, lemma 31

11

11. ∅;H ` v : T by 7, 9, 10, T-Subs

12

12. ∅;H′ ` v : T by 11, 4, def H-T

81

13

13. ∅ ` N ok

14

14. fType(f, N) = U

15

15. ∅;H ` v : U



 by 3, c, def F-Heap

16

16. ∅ ` ∃∅.N <: ∃∆′.N′ by 3, 5, lemma 45

17

17. ∅ ` ∃∅.N @: ∃∆′.N′ by 34, F-Env-Empty, lemma 16

18

18. let ∆′ = Z→[Bl Bu]

19

19. There exists Ts

20

20. ` N @@: [Ts/Z]N
′

21

21. ∅ ` Ts <: [Ts/Z]Bu

22

22. ∅ ` [Ts/Z]Bl <: Ts

23

23. fv(Ts) = ∅





by 17, F-Env-Empty, lemma 39

24

24. Ui = fType(fi, [Ts/Z]N
′
) by 20, 6, 14, lemma 23

25

25. Ui = [Ts/Z]fType(fi, N′) by 24, lemma 5

26

26. Ui = [Ts/Z]U by 25, 6

27

27. ∅ ` ∃∆′.N′ ok by 5, F-Env-Empty, lemma 31

28

28. ∆′ ` N′ ok

29

29. ∅ ` ∆′ ok

}
by 27, def F-Exists

30

30. ∆′ ` U ok by 6, 28, 29lemma 27

31

31. Ui = U by 26, 30

32

32. ∅;H ` v : Ui by 15, 31

33

33. ` H′ ok by 4, c, 13, 15, 14, 32, def F-Heap

34

34. done by 12, 2, 33

Case 4 (R-Invk)

1

1. e = ι.<P>(ι)

2

2. e′ = [T/Y, ι/x, ι/this]e0

3

3. H′ = H



 by def R-Invk

4

4. H(ι) = {N′}

5

5. H(ι) = {N′}

6

6. mBody(m, C<T′>) = (x; e0)

7

7. mType(m, C<T′>) = <Y¢ B>U → U

8

8. match(sift(N, U, Y), P, Y, T)





by premises R-Invk

9

9. ∅;H ` ι : ∃∆′.N

10

10. mType(m, N) = <Y′¢ B′>U′′ → U′′

11

11. ∅;H ` ι : ∃∆.R

12

12. match(sift(R, U′′, Y′), P, Y′, T′′)

13

13. ∅ ` P ok

14

14. ∆′, ∆ ` T′′ <: [T′′/Y′]B
′

15

15. ∆′, ∆ ` ∃∅.R <: [T′′/Y′]U
′′

16

16. ∅ `⇓∆′,∆ [T′′/Y′]U
′′

<: T





by 1, a, lemma 35

82

17

17. ∅ ` ∃∆′.N ok by 9, F-Env-Empty, lemma 31

18

18. ∅ ` ∃∅.N′ <: ∃∆′.N by 4, 9, lemma 45

19

19. ∅ ` N′ ok by 4, def F-Heap

20

20. ∅ ` ∃∅.N′ <: ∃∆.R by 5, 11, lemma 45

21

21. ∅ ` N
′
ok by 5, def F-Heap

22

22. ∅ ` ∃∅.N′ @: ∃∆′.N by 18, F-Env-Empty, lemma 16

23

23. ∅ ` T ok by a, F-Env-Empty, lemma 31

24

24. ∅ ` ∃∆.R ok by 11, F-Env-Empty, lemma 31

25

25. ∆ ` R ok by 24, def F-Exists

26

26. ∆ ` T′′ ok by 13, 12, 24, F-Env-Empty, lemma 29

27

27. match(sift(R, U, Y′), P, Y′, T′′) by 22, 10, 7, 12,
F-Env-Empty, 26, lemma 40

28

28. there exists Nfresh : R = Nfresh by 24, def F-Var

29

29. ∅ ` ∃∅.N′ @: ∃∆.R by 20, 28, F-Env-Empty, lemma 16

30

30. let ∆′ = Xx →[Bxl Bxu]

31

31. There exists Ux

32

32. ` N′ @@: [Ux/Xx]N

33

33. ∅ ` Ux <: [Ux/Xx]Bxu

34

34. ∅ ` [Ux/Xx]Bxl <: Ux

35

35. fv(Ux) = ∅





by 22, 30, F-Env-Empty, lemma 39

36

36. mType(m, [Ux/Xx]N) = [Ux/Xx]<Y′¢ B′>U′′→ U′′by 10, lemma 6

37

37. mType(m, N′) = [Ux/Xx]<Y′¢ B′>U′′→ U′′ by 32, 36, lemma 24

38

38. <Y¢ B>U → U = [Ux/Xx]<Y′¢ B′>U′′→ U′′ by 37, 7

39

39. Y = Y′

40

40. U = [Ux/Xx]U′′

41

41. U = [Ux/Xx]U′′

42

42. B = [Ux/Xx]B′





by 38

43

43. match(sift(R, U, Y), P, Y, T′′) by 27, 39

44

44. Y→[⊥ B] ` U ok by 7, F-Env-Empty, 19, lemma 28

45

45. let ∆ = Xs →[Bsl Bsu]

46

46. ∅ ` ∃∅.N′ ok by 21, F-Env-Empty, F-Exists

47

47. There exists Us

48

48. T = [Us/Xs]T
′′

49

49. ∅ ` Us <: [Us/Xs]Bsu

50

50. ∅ ` [Us/Xs]Bsl <: Us

51

51. ` N′ @@: [Us/Xs]R

52

52. fv(Us) = ∅





by 29, 43, 8, 44, 45,
F-Env-Empty, 46, 13, lemma 41

53

53. ∆′, Y′ →[⊥ B′] ` U′′ ok

54

54. ∆′, Y′ →[⊥ B′] ` U′′ ok

55

55. ∆′, Y′ →[⊥ B′] ` B′ ok





by 10, 17, F-Env-Empty, lemma 28

83

56

56. ∆′ ` [Us/Xs]T′′ <: [Us/Xs][T′′/Y′]B
′

by 14, 49, 50, 52, lemma 17

57

57. ∆′ ` [Us/Xs]T′′ <: [[Us/Xs]T′′/Y′]B
′

by 56, 55

58

58. ∆′ ` T <: [T/Y]B
′

by 57, 48, 39

59

59. ∅ ` [Ux/Xx]T <: [Ux/Xx][T/Y]B
′

by 58, 33, 34, 35, lemma 17

60

60. ∅ ` T <: [T/Y][Ux/Xx]B
′

by 59, 23, 7, 30, lemma 14

61

61. ∅ ` T <: [T/Y]B by 60, 42

62

62. ∆′ ` ∃∅.[Us/Xs]R <: [Us/Xs][T′′/Y′]U
′′

by 15, 49, 50, 52, lemma 17

63

63. ∆′ ` ∃∅.[Us/Xs]R <: [[Us/Xs]T′′/Y′]U
′′

by 57, 54

64

64. ∆′ ` ∃∅.[Us/Xs]R <: [T/Y]U
′′

by 63, 48, 39

65

65. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [Ux/Xx][T/Y]U
′′

by 64, 33, 34, 35, lemma 17

66

66. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [T/Y][Ux/Xx]U
′′

by 65, 23, 7, 30, lemma 14

67

67. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [T/Y]U by 66, 40

68

68. ∅ ` ∃∅.N′ @: ∃∅.[Us/Xs]R by 51, lemma 38

69

69. ∅ ` ∃∅.[Ux/Xx]N′ @: ∃∅.[Ux/Xx][Us/Xs]R by 68, 33, 34, 35, lemma 17

70

70. ∅ ` ∃∅.[Ux/Xx]N′ <: [T/Y]U by 67, 69, XS-Trans, S-SC

71

71. ∅ ` ∃∅.N′ <: [T/Y]U by 70, 21

72

72. let Uc = [T′′/Y′]U
′′

73

73. let U′c = [Us/Xs]([[Us/Xs]Ux/Xx]Uc)

74

74. ∅ ` ∆′ ok by 17, F-Exists

75

75. ∅ ` ∆ ok by 24, F-Exists

76

76. fv(Bxl, fv(Bxu, fv(Bsl, fv(Bsu) = ∅ by 74, 75

77

77. ∅ ` Ux) <: [Us/Xs]([[Us/Xs]Ux/Xx]Bxu by 33, 35, 76

78

78. ∅ ` [Us/Xs]([[Us/Xs]Ux/Xx]Bxl <: Ux by 34, 35, 76

79

79. ∅ ` Us <: [Us/Xs]([[Us/Xs]Ux/Xx]Bsu by 49, 52, 76

80

80. ∅ ` [Us/Xs]([[Us/Xs]Ux/Xx]Bsl <: Us by 50, 52, 76

81

81. fv([Us/Xs]Ux, Us) ⊆ dom(∆) by 52, 35

82

82. ∅ ` ∆′, ∆ ok by 74, 75, 16 gives ∆′ and ∆ are disjoint

83

83. ∆′, ∆, Y′ →[⊥ B′] ` U′′ ok by 53, lemma 9

84

84. ∆′, ∆ ` T′′ ok by 26, lemma 9

85

85. ∆′, ∆ ` Uc ok by 72, 83, 84, 14, SC-Bottom, 82, lemma 18

86

86. ∅ ` U′c <:⇓∆′,∆ Uc by 73, 77, 78, 79, 80, 81, 85, 82, lemma 47

87

87. ∅ ` [Ux/Xx,Us/Xs]Uc <:⇓∆′,∆ Uc by 86, def subst, 73

88

88. ∅ ` [Us/Xs][Ux/Xx][T′′/Y′]U
′′

<: T by 87, 72, 73, 16, transitivity

89

89. ∅ ` [Us/Xs][T′′/Y′]U <: T by 88, 41, 26

90

90. ∅ ` [T/Y][Us/Xs]U <: T by 89, 48, 39

91

91. fv(U′′) ⊆ Y′, Xx by 53

92

92. fv(U′′) ⊆ Y′ by 91, 41, 44, 39

84

93

93. ∅ ` [T/Y]U <: T by 90, 92

94

94. Y→[⊥ B]; x:U, this:C<T′> ` e0 : U by F-Env-Empty, 19, 6, 7, lemma 42

95

95. ∅ ` T ok by 13, 46, F-Exist,
F-Env-Empty, 8, lemma 29

96

96. ∅; x:[T/Y]U, this:[T/Y]C<T′> ` by 94, 61, XS-Bttm, F-Env-Empty

[T/Y]e0 : [T/Y]U 95, lemma 21

97

97. ∅; x:[T/Y]U, this:N′ ` [T/Y]e0 : [T/Y]U by 96, 19

98

98. ∅;H ` ι : ∃∅.N′ by 4, H-T, T-Var

99

99. ∅;H ` ι : ∃∅.N′ by 5, H-T, T-Var

100

100. ∅ ` [T/Y]U ok by 44, 95, F-Env-Empty, XS-Bttm,
61, lemma 18

101

101. ∅;H ` [T/Y, ι/x, ι/this]e0 : [T/Y]U by 97, 98, 99, 19,
100, 71, lemma 25

102

102. ∅;H ` [T/Y, ι/x, ι/this]e0 : T by 101, 93, F-Env-Empty, T-Subs

103

103. ` H′ ok by 3, c

104

104. done by 102, 2, 103

Case 5 (R-Cast)

1

1. e = (T’)ι

2

2. e′ = ι

3

3. H′ = H



 by def R-Cast

4

4. H(ι) = {N ; ...}

5

5. ∅ ` N <: T ′

}
by premise of R-Cast

6

6. ∅;H ` ι : U

7

7. ∅ ` T ′ <: U

8

8. ∅ ` T ′ ok

9

9. ∅ ` T ′ <: T





by 1, a, lemma 37

10

10. ∅;H ` ι : N by 5, H-T, T-Var

11

11. ∅ ` T ok by a, c, lemma 31

12

12. ∅ ` N <: T by 5, 9, S-Trans

13

13. ∅;H ` ι : T by 10, 12, 11, T-Subs

14

14. ∅;H ` e′ : T by 13, 2

15

15. ` H′ ok by 3, c

16

16. done by 14, 15

Case 6 (R-Cast-Null)

1

1. e = (T’)null

2

2. e′ = null

3

3. H′ = H



 by def R-Cast

85

4

4. ∅ ` T ok by a, c, lemma 31

5

5. ∅;H ` null : T by 4, T-Null

6

6. ∅;H ` e′ : T by 5, 2

7

7. ` H′ ok by 3, c

8

8. done by 6, 7

Case 7 (RC-Field)

1

1. e = er.f

2

2. e′ = e′r.f

}
by def RC-Field

3

3. er;H ; e′r;H′

4

4. e′r 6= err

}
by premise RC-Field

5

5. ∅;H ` er : ∃∆n.N

6

6. ∅ `⇓∆n
fType(f, N) <: T

}
by 1, a, F-Env-Empty, lemma 33

7

7. ∅;H ` e′r : ∃∆n.N

8

8. ` H′ ok

}
by 3, 5, ind hyp

9

9. ∅;H ` e′r.f :⇓∆n fType(f, N) by 7, T-Field

10

10. ∅ ` T ok by a, c, lemma 31

11

11. ∅;H ` e′r.f : T by 9, 6, 10, T-Subs

12

12. done by 11, lemma 48, 2, 8

Case 8 (RC-Assign-1)

1

1. e = e1.f = e2

2

2. e′ = e′1.f = e2

}
by def RC-Assign-1

3

3. e1;H ; e′1;H′ by premise RC-Assign-1

4

4. ∅;H ` e1 : ∃∆′.N

5

5. fType(f, N) = U

6

6. ∅;H ` e2 : U′

7

7. ∆′ ` U′ <: U

8

8. ∅ ` U′ <: T





by 1, a, F-Env-Empty, lemma 34

9

9. ∅;H ` e′1 : ∃∆′.N

10

10. ` H′ ok

}
by 3, 4, ind hyp

11

11. ∅;H ` e′1.f = e2 : U′ by 9, 5, 6, 7, T-Assign

12

12. ∅ ` T ok by a, c, lemma 31

13

13. ∅;H ` e′1.f = e2 : T by 11, 8, 12, T-Subs

14

14. done by 13, lemma 48, 2, 10

Case 9 (RC-Assign-2)

86

1

1. e = ι.f = e2

2

2. e′ = ι.f = e′2

}
by def RC-Assign-2

3

3. e2;H ; e′2;H′ by premise RC-Assign-2

4

4. ∅;H ` ι : ∃∆′.N

5

5. fType(f, N) = U

6

6. ∅;H ` e2 : U′

7

7. ∆′ ` U′ <: U

8

8. ∅ ` U′ <: T





by 1, a, F-Env-Empty, lemma 34

9

9. ∅;H ` e′2 : ∃∆′.N

10

10. ` H′ ok

}
by 3, 4, ind hyp

11

11. ∅;H ` ι.f = e′2 : U′ by 4, 5, 9, 7, T-Assign

12

12. ∅ ` T ok by a, c, lemma 31

13

13. ∅;H ` ι.f = e′2 : T by 11, 8, 12, T-Subs

14

14. done by 13, lemma 48, 2, 10

Case 10 (RC-Invk-Recv)

1

1. e = er.<P>m(e)

2

2. e′ = e′r.<P>m(e)

}
by def RC-Invk-Recv

3

3. er;H ; e′r;H′ by premise RC-Invk-Recv

4

4. ∅;H ` er : ∃∆′′.N

5

5. mType(m, N) = <Y¢ B>U→ U

6

6. ∅;H ` e : ∃∆.R

7

7. match(sift(R, U, Y), P, Y, T)

8

8. ∅ ` P ok

9

9. ∆′′,∆ ` T <: [T/Y]B

10

10. ∆′′,∆ ` ∃∅.R <: [T/Y]U

11

11. ∅ `⇓∆′′,∆ [T/Y]U <: T





by 1, a, F-Env-Empty, lemma 35

12

12. ∅;H ` e′r : ∃∆′′.N

13

13. ` H′ ok

}
by 3, 4, ind hyp

14

14. ∅;H ` e′r.<P>m(e) :⇓∆′′,∆ [T/Y]U by 12, 5, 6, 7, 8, 9, 10, T-Invk

15

15. ∅ ` T ok by a, F-Env-Empty, lemma 31

16

16. ∅;H ` e′r.<P>m(e) : T by 14, 11,15, T-Subs

17

17. done by 16, lemma 48, 2, 13

Case 11 (RC-Invk-Arg)

1

1. e = er.<P>m(e)

2

2. e′ = er.<P>m(e′)

3

3. e = ...ei...

4

4. e′ = ...e′i...





by def RC-Invk-Arg

87

5

5. ei;H ; e′i;H′ by premise RC-Invk-Arg

6

6. ∅;H ` er : ∃∆′′.N

7

7. mType(m, N) = <Y¢ B>U→ U

8

8. ∅;H ` e : ∃∆.R

9

9. match(sift(R, U, Y), P, Y, T)

10

10. ∅ ` P ok

11

11. ∆,∆′′, ∆ ` T <: [T/Y]B

12

12. ∆,∆′′, ∆ ` ∃∅.R <: [T/Y]U

13

13. ∅ `⇓∆′′,∆ [T/Y]U <: T





by 1, a, F-Env-Empty, lemma 35

14

14. ∅;H ` e′i : ∃∆i.Ri

15

15. ` H′ ok

}
by 5, 8, ind hyp

16

16. ∅;H ` er.<P>m(e′) :⇓∆′′,∆ [T/Y]U by 6, 7, 8, 14, 9, 10, 11, 12, T-Invk

17

17. ∅ ` T ok by a, F-Env-Empty, lemma 31

18

18. ∅;H ` er.<P>m(e′) : T by 16, 13, 17, T-Subs

19

19. done by 18, lemma 48, 2, 15

Case 12 (RC-Cast)

1

1. e = (T ′)e0

2

2. e′ = (T ′)e′0

}
by def RC-Cast

3

3. e0;H ; e′0;H′ by premise RC-Cast

4

4. H; ∅ ` e0 : U

5

5. H ` T ′ <: U

6

6. H ` T ′ ok

7

7. H ` T ′ <: T





by 1, a, F-Env-Empty, lemma 37

8

8. ∅;H′ ` e′0 : U

9

9. ` H′ ok

}
by 3, 4, ind hyp

10

10. ∅;H ` (T ′)e′0 : T ′ by 8, 5, 6, T-Cast

11

11. ∅ ` T ok by a, F-Env-Empty, lemma 31

12

12. ∅;H ` (T ′)e′0 : T by 10, 7,11, T-Subs

13

13. done by 12, lemma 48, 2, 9

Case 13 (*-Null, *-Err, R-Bad-Cast)

1

1. trivial

2

Lemma 50 .
Theorem (Progress).

88

If:
a. ∅;H ` e : T
b. ` H ok

then:
there exists e′ and H′ such that e;H ; e′;H′

or:
there exists v such that e = v

Proof by structural induction on the derivation of ∅;H ` e : T with a case
analysis on the last step:

Case 1 (T-Var)

1

1. e = γ

2

2. T = H(γ)

}
by def T-Var

3

3. e = ι by 1, 2, def H-T

4

4. done by e = v by 3

Case 2 (T-New)

1

1. e = new C<T , τo, ? > by def T-New

2

2. done by RC-New

Case 3 (T-Field)

1

1. e = er.f by def T-Field

2

2. ∅;H ` er : ∃∆.N

3

3. ⇓∆ fType(f, N) = T

}
by premises T-Field

4

4. er;H ; e′r;H′ or there exists vr where er = vrby 2, ind hyp

Case analysis on er:

Case 1 er;H ; e′r;H′

1

1.1. done by RC-Field or RC-Field-Err

Case 2 there exists vr where er = vr

1

2.1. if vr = null done by R− Field−Null

2

2.2. let vr = ι by syntax of v

3

2.3. H(ι) = {C<T>; f→v} by 2, 2.2, def H-T

4

2.4. ∅ ` ∃∅.C<T> <: ∃∆.N by 2.3, 2, lemma 45

5

2.5. fields(C) = f by b, def F-Heap

6

2.6. ∅ ` ∃∅.C<T> @: ∃∆.N by 2.4, F-Env-Empty, lemma 16

7

2.7. there exists U

8

2.8. dom(∆) = Z

9

2.9. ` C<T> @@: [U/Z]N



 by 2.6, F-Env-Empty, lemma 39

89

10

2.10.fType(f, [U/Z]N) = [U/Z]fType(f, N) by lemma 5

11

2.11.fType(f, C<T>) = [U/Z]fType(f, N) by 2.10, 2.9, lemma 23

12

2.12.f ∈ f by 2.5, 2.11, 3, lemma 44

13

2.13.done by 2.2, 2.3, 2.12, R-Field

Case 4 (T-Assign)

1

1. e = e1.f = e2 by def T-Field

2

2. ∅;H ` e1 : ∃∆.N

3

3. fType(f, N) = U

4

4. ∅;H ` e2 : T

5

5. ∅ ` T <: U





by premises T-Assign

6

6. e1;H ; e′1;H′ or there exists v where e1 = v by 2, ind hyp

7

7. e2;H ; e′2;H′ or there exists v where e2 = v by 4, ind hyp

Case analysis on e1, e2:

Case 1 e1;H ; e′1;H′, e2;H ; e′2;H′

1

1.1. done by RC-Assign-1 or RC-Assign-1-Err

Case 2 e1;H ; e′1;H′, there exists v where e2 = v

1

2.1. done by RC-Assign-1 or RC-Assign-1-Err

Case 3 there exists v where e1 = v, e2;H ; e′2;H′

1

3.1. done by RC-Assign-2 or RC-Assign-2-Err

Case 4 there exists v where e1 = v, there exists v′ where e2 = v′

1

4.1. if v = null done by R−Assign−Null

2

4.2. let v = ι by syntax of v

3

4.3. H(ι) = {C<T>; f→v} by 2, 4.2, def H-T

4

4.4. ∅ ` ∃∅.C<T> <: ∃∆.N by 4.3, 2, lemma 45

5

4.5. fields(C) = f by b, def F-Heap

6

4.6. ∅ ` ∃∅.C<T> @: ∃∆.N by 4.4, F-Env-Empty, lemma 16

7

4.7. there exists U

8

4.8. dom(∆) = Z

9

4.9. ` C<T> @@: [U/Z]N



 by 4.6, F-Env-Empty, lemma 39

10

4.10.fType(f, [U/Z]N) = [U/Z]fType(f, N) by lemma 5

11

4.11.fType(f, C<T>) = [U/Z]fType(f, N) by 4.10, 4.9, lemma 23

12

4.12.f ∈ f by 4.5, 4.11, 3, lemma 44

13

4.13.done by 4.2, 4.3, 4.12, R-Assign

90

Case 5 (T-Subs)

1

1. ∅;H ` e : U by premise of T-Subs

2

2. done by 1, b, ind hyp

Case 6 (T-Invk)

1

1. e = er.<P>m(e) by def T-Invk

2

2. ∅;H ` er : ∃∆′.N

3

3. ∅;H ` e : ∃∆.R

4

4. mType(m, N) = <Y¢ Tu>U→U

5

5. match(sift(R, U, Y), P, Y, T)

6

6. ∅ ` P ok





by premises T-Invk

7

7. er;H ; e′rH′ or (there exists vr with er = vr) by 2, ind hyp

8

8. ∀ei ∈ e : (there exists vi with ei = vi) or (there exists ei ∈ e : ei;H ; e′i;H′)
3, ind hyp

9

9. ∅ ` ∃∆′.N ok by 2, F-Env-Empty, lemma 31

Case analysis on er, e:

Case 1 er;H ; e′r;H′

1

1.1. done by RC-Inv-Recv or RC-Inv-Recv-Err

Case 2 there exists ei ∈ e where ei;H ; e′i;H′

1

2.1. done by RC-Inv-Arg or RC-Inv-Arg-Err

Case 3 there exists vr where er = vr and ∀ei ∈ e : ∃vi where ei =
vi

1

3.1. if vr = null done by R− Invk −Null

2

3.2. let vr = ι

3

3.3. let vr = ι

4

3.4. H(ι) = {N′; f→v} by 2, 3.2, def H-T

5

3.5. H(ι) = {N′; f→v} by 3, 3.3, def H-T

6

3.6. ∅ ` ∃∅.N′ <: ∃∆.N by 3.3, 3, lemma 45

7

3.7. ∅ ` N′ ok by b, def F-Heap

8

3.8. ∅ ` ∃∅.N′ @: ∃∆′.N by 3.6, F-Env-Empty, lemma 16

9

3.9. let ∆′ = Z→[Bl Bu]

10

3.10. ` N′ @@: [U′/Z]N

11

3.11. ∅ ` U′ <: [U′/Z]Bu

12

3.12. ∅ ` [U′/Z]Bl <: U′

13

3.13. fv(U′) ⊆ dom(∆)





by 3.8, 3.9, lemma 39

91

14

3.14.mType(m, [U′/Z]N) = [U′/Z]<Y¢ Tu>U→U by 4, lemma 6

15

3.15.mType(m, N′) = [U′/Z]<Y¢ Tu>U→U by 3.14, 3.10, lemma 24

16

3.16.mBody(m, N′) defined by 3.15, lemma 43

17

3.17.∅ ` ∃∆.R ok by 3, F-Env-Empty, lemma 31

18

3.18.∆ ` T ok by 6, 3.17, F-Env-Empty, 5, lemma 29

19

3.19.match(sift(R, [U′/Z]U, Y), P, Y, T) by 5, 3.15, 4, 3.8,
F-Env-Empty, 3.18, lemma 40

20

3.20. ∅ ` N′ ok

21

3.21. ∅ ` ∃∅.N′ <: ∃∆.R

}
by 3.3, 3, lemma 32

22

3.22.∃Nfresh such that R = Nfresh by 3.17

23

3.23.∅ ` ∃∅.N′ @: ∃∆.R by 3.21, 3.22,
F-Env-Empty, lemma 16

24

3.24.∅ ` ∃∅.N′ ok by 3.20, F-Env-Empty, F-Exists

25

3.25. let Xs →[Bsl Bsu] = ∆

26

3.26.wlog assume Xs are fresh by 3.25, Barendregt

27

3.27. match(sift(N′, [U′/Z]U, Y), P, Y, [Us/Xs]T)

28

3.28. ∅ ` Us <: [Us/Xs]Bu

29

3.29. ∅ ` [Us/Xs]Bl <: Us

30

3.30. ` N′ @@: [Us/Xs]R





by 3.23, 3.19, 3.26, 3.25,
F-Env-Empty, 3.24, 6, lemma 41

31

3.31.done by 3.4, 3.5, 3.15, 3.16, 3.27, R-Invk

Case 7 (T-Cast)

1

1. e = (T’)e0 by def T-Cast

2

2. ∅;H ` e0 : U

3

3. H ` T ′ <: U

4

4. H ` T ′ ok



 by premises T-Invk

5

5. e0;H ; e′0H′ or (there exists v0 with e0 = v0) by 2, ind hyp

6

6. done by 5, and R-Cast, R-Cast-Null, R-Bad-Cast, RC-Cast, or RC-Cast-Err

Case 8 (T-Null)

1

1. easy by syntax of values

2

92

