
Student ID: .
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2014

NOTE!!
THIS
CONTAINS
SOLUTIONS
***** TRIMESTER 2

COMP 103
INTRODUCTION TO
DATA STRUCTURES
AND ALGORITHMS

Time Allowed: Two Hours

Instructions: Closed Book.

Attempt ALL Questions.

Answer in the appropriate boxes if possible — if you write your answer
elsewhere, make it clear where your answer can be found.

The exam will be marked out of 120 marks.

Documentation on some relevant Java classes, interfaces, and exceptions
can be found at the end of the paper. You may tear that page off if it helps.

There are spare pages for your working and your answers in this exam, but
you may ask for additional paper if you need it.

Only silent non-programmable calculators or silent programmable calcula-
tors with their memories cleared are permitted in this examination.

Non-electronic foreign language to English dictionaries are permitted.

Other materials are not allowed.

Questions Marks

1. General questions [10]

2. Using collections [10]

3. Array-based implementation of a collection [10]

4. Recursion, Sorting [10]

5. Linked Lists and Trees [30]

6. Binary Search Trees [20]

7. Priority Queues and Heaps [20]

8. Hashing [10]

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 Page 2 of 22 continued...

Student ID: .

Question 1. General questions [10 marks]

(a) [2 marks] What is the asymptotic (“big-O”) cost of searching for an item in a Bag that is
implemented using an unsorted array?

O(n)

(b) [2 marks] Suppose we start with an empty queue and carry out the following opera-
tions in order: offer(A), offer(B), poll(), offer(C), offer(A). Draw the queue after these have
been carried out.

Queue

A −→ C −→ B

(c) [2 marks] How many comparisons are required to find a node that is a leaf in a binary
search tree (BST) if it contains n items and is perfectly balanced?

log2(n + 1)

(d) [2 marks] Name a fast sorting algorithm which has the same best, average, and worst
case “big-O” costs. (You should assume the “basic” algorithm, as was described in lec-
tures).

MergeSort - the other fast sorts all have different worst or best case costs

(e) [2 marks] State the property a binary tree must satisfy in order to be a partially ordered
binary tree.

The value in each node must be less than (or equal to) the values in its children.

COMP 103 Page 3 of 22 continued...

Question 2. Using collections [10 marks]

Imagine you are writing a program to help university students to figure out what timetable
they will have, if they choose to take certain courses. As part of this, you need to write a
method checkCourses, which will take two arguments:

• a Set of courses selected by a student, such as COMP103, ENGR112, MATH492.

• a Map containing all the courses in the university as keys. For each key, the value is
a List giving the times of lectures for that course. The keys, and the times, are all just
String objects. Here are some example elements from this Map, as key --> value
pairs:

JAPA308 --> {TUE4pm, WED10am, FRI2pm}
COMP103 --> {MON4pm, TUE4pm, THU4pm}
RELI489 --> {WED1pm, FRI8am}
ENGR212 --> {MON2pm, THU4pm, FRI9am}

:

You may assume that both the Set and the Map are correctly constructed elsewhere in the
program.

(a) [10 marks] Write the java method checkCourses, which checks the chosen Set of courses
for clashes. A clash occurs when two courses have a lecture at the same time.

Each time your method finds a pair of courses that have a clash, it should print an infor-
mative line of text. For example, if passed the Map as in the example above, and the Set of
courses JAPA308, COMP103, ENGR212, it should print:

JAPA308 and COMP103 clash at TUE4pm.
COMP103 and ENGR212 clash at THU4pm.

checkCourses should return a Set containing all the clash times that were found.

Hint: it might help to write out pseudocode for what you need to do, first.

COMP 103 Page 4 of 22 continued...

Student ID: .

public Set <String> checkCourses(Map<String,Set<String>> vuwtt, Set<String> courses) {
// make a new list for the times
List <String> clashtimes = new ArrayList<String> ();
for (String course1 : courses)

for (Str course2 : courses)
if (course1 != course2)
{

// go through the Map’s values for each ...
for (String slot1 : vuwtt.get(course1))

for (String slot2 : vuwtt.get(course2))
if (slot1 == slot2)
{

UI. println (’%s and %s clash at %s’,course1, course2, slot1);
clashtimes.add(slot1);

}
}

return clashtimes;

public Set <String> checkCourses(

}

COMP 103 Page 5 of 22 continued...

Question 3. Array-based implementation of a Collection [10 marks]

A Set is a type of collection that has no structure, but it is not allowed to contain duplicates.
Part of the code for the ArraySet class is shown below.

import java. util .∗;

public class ArraySet<E> extends AbstractCollection<E> {
private static int INITIALCAPACITY = 10;
private int count = 0;
private E[] data;

public ArraySet() {
data = (E []) new Object[INITIALCAPACITY];

}

public boolean add(E item) {
for (int i=0; i<count; i++){

if (item.equals(data[i])) return false;
}
ensureCapacity();
data[count]=item;
count++;
return true;

}

private void ensureCapacity () {
...

}

public boolean remove(Object item) {
...

}

public Iterator <E> iterator() {
return new ArraySetIterator <E> (this);

}
}

COMP 103 Page 6 of 22 continued...

Student ID: .

(Question 3 continued)

(a) [5 marks] Complete the remove method which will remove an item from the set, if the
item is present. remove will return true if and only if it modifies the set. Note that a Set is
a collection in which order does not matter. Your method should exploit this to be more
efficient than it would be if this were an ArrayList rather than an ArraySet.

for(int i = 0; i < count; i++) {
if (data[i]. equals(item)) {

count−−;
data[i] = data[count];
return true;

}
}
return false;

public boolean remove(Object item) {

if (item == null) return false;

}

(b) [5 marks] You have seen the ensureCapacity method in the course, but suppose one
also wanted to have a reduceCapacity method, in order to save memory by reducing the
capacity of the array if that was possible. Complete the reduceCapacity method below. If
the number of items in the Set falls to less than 1/3 (one third) of the current capacity of
the array (i.e. data.length), then the method should reset data to refer to a new array
of half the current capacity.

if (count > data.length/3) return;
int newLength = data.length/2;
if (newLength < 2) return;
E [] newArray = (E[])(new Object[newLength]);
for (int i = 0; i < count; i++)

newArray[i] = data[i];
data = newArray;

private void reduceCapacity() {

}

COMP 103 Page 7 of 22 continued...

Question 4. Recursion, Sorting [10 marks]

Suppose we ran a sorting algorithm on the following array (assume left-to-right, A-Z):

C E G K F I A D J H

(a) [2 marks] Which two elements would Selection Sort swap first?

A and C

(b) [2 marks] Which two elements would Insertion Sort swap first?

F and K

(c) [6 marks] The diagram below shows QuickSort sorting an array, with arrows and shad-
ing indicating the new pivot points that are being chosen. Suppose we always choose the
right-most element of the sub-array as the pivot (the first one is done for you).

Complete the diagram showing how QuickSort progresses at each step.
Note: boxes may contain different numbers of elements.

COMP 103 Page 8 of 22 continued...

Student ID: .

Question 5. Linked Lists and Trees [30 marks]

Consider the following declaration of LinkedNode, which can be thought of as the first node
in a linked list.

public class LinkedNode <E> {
// fields and constructor
private E value;
private LinkedNode<E> next;
public LinkedNode(E item, LinkedNode<E> nextNode){

value = item;
next = nextNode;

}

// methods ...
:

}

(a) [4 marks] Complete the size() method for the above LinkedNode class, that returns the
number of items in the linked list which starts at the current node. You must give a recursive
version.

public int size () {

if (next == null) return 1;

return next.size () + 1;

}

public ...

}

(b) [2 marks] Other recursive methods for LinkedNode can be written, such as add, con-
tains, and so on. But there is a difficulty with using LinkedNode as a full implementation
of the List interface - what is that problem?

A linked list which was empty would presumably have no nodes, in which case
no methods could be called on it. A proper linked list should be able to be empty
and (eg) return 0 when size() is called on it.

COMP 103 Page 9 of 22 continued...

(c) [2 marks] Which of the following best describes this tree? (Circle ONE).

Binary
tree

Binary
search
tree

General
tree

Partially
ordered
tree

Complete
tree

(d) [4 marks] For the tree shown above, state the order in which the values would be
processed in a post-order traversal.

A, E, C, D, B, G, M, H, R, Z, S, L, F

(e) [4 marks] The breadth-first traversal algorithm uses a collection to store the nodes that
are to be visited. This collection keeps the nodes in the order that they are to be visited.
For the tree shown above, draw the state of this collection at the point when node “C” has
just been added to the collection.

It’s a queue: (back) C - S - H (front)

For questions (f) and (g) to follow, consider the partial code given below for a class
GenTreeNode that will be used to store integer values:

class GenTreeNode {
public List<GenTreeNode> chillun;
public int value;
:
public getValue() { return this .value; }
}

COMP 103 Page 10 of 22 continued...

Student ID: .

(f) [5 marks] Write the contains method for the GenTreeNode class, which returns true if
and only if the value passed in as a parameter is stored in the subtree given by the node
calling the method.

// something like ...
if (n == null) return false;
if (n == value) return true;
for (GenTreeNode nd : chillun)

if (nd.contains(n)) return true;
return false;

public boolean contains (int n) {

}

(g) [5 marks] (Harder) Write an iterative contains method for a “wrapper” class
GeneralTreeWrapper for a General Tree. Assume that GeneralTreeWrapper has a field
named root which is a reference to a GeneralTreeNode object that is the root of the tree of
GenTreeNode objects. Thus you may refer to this.root in your code. Hint: it may help to
start with pseudocode.

// something like ...
if (n == null) return false;
// make a stack (or queue) and put the root node on it
Stack <GenTreeNode> st = new Stack <GenTreeNode> ();
st .push(this.root);
// while collection not empty, pop off , process and put children on.
while (! st . isempty()) {

GenTreeNode tmp = st.pop();
if (tmp.getValue() == n) return true;
for (GeneralTreeNode child : current.getChildren)

st .push(child);
}
return false;

public boolean contains (int n) {

}

COMP 103 Page 11 of 22 continued...

(h) [4 marks] On average, how many item-to-item comparisons need to be carried out in
order to find a specific item that is stored at depth 2 in a Binary Tree that has 15 nodes,
assuming the tree is balanced, and a depth-first traversal is used? Give your reasoning.

8. Since the tree is not a BST there are no shortcuts to simply searching the whole
tree. There are 15 nodes and it is balanced, the tree has depth 3. There are 4 nodes
at depth 2. IF you do a depth-first traversal, you’ll need 3,6,10 and 13 comparisons
respectively. Sum=32, av=8.

COMP 103 Page 12 of 22 continued...

Student ID: .

Question 6. Binary search trees [20 marks]

Suppose you are given this ordered sequence of values stored in an array:

A B C D E F G H I J K L M N O

If you inserted these nodes into a Binary Search Tree in this order, the resulting tree would
be completely unbalanced: each element would be added as a child of the previous one, so
you would end up with a linked list instead of a tree!

(a) [5 marks] In the array below, give a re-ordering of these elements that would produce
a balanced Binary Search Tree. Hint: Drawing the tree first might help you!

H D B A C F E G L J I K N M O
there are many arrays that will produce this - will be some sort of preorder though

(b) [2 marks] Which kind of traversal would process the nodes in the order
ABCDEFGHIJKLMNO when applied to any BST containing the above items?

An in-order depth-first traversal.

COMP 103 Page 13 of 22 continued...

(c) [3 marks] Draw the tree that will result from removing the value “1” from the binary
search tree (BST) shown below.

(d) [3 marks] Draw the tree that will result from removing “10” from the BST below.

(e) [7 marks] A BSTSet is a Set that uses a tree of BSTNode objects as the data structure.
In the box below, complete the pseudocode for the add method in BSTNode. Since it is in
BSTNode (not BSTSet) it will need to be a recursive method. The first couple of lines are
done for you. Assume “item” is a reference to the value that is stored in the BSTNode.

if value < item // belongs on left
if there is no left child

insert as left child , and return true
else add value to left child

else // belongs on right
if there is no right child

insert as right child , and return true
else add value to right child

public boolean add (E value) {
if value equals item
return false // item already present

}

COMP 103 Page 14 of 22 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 Page 15 of 22 continued...

Question 7. Priority Queues and Heaps [20 marks]

A heap is a complete, partially ordered binary tree in an array. The following array
represents a heap.

B F D L O E K N P T

(a) [4 marks] Draw the heap as a tree.

B
F D

L O E K
N P T

(b) [4 marks] Redraw the POT (partially ordered tree) after the following operations have
been carried out: Add ’R’, Add ’C’.

B
F C

L O D K
N P T R E

COMP 103 Page 16 of 22 continued...

Student ID: .

(c) [4 marks] Redraw the tree from your answer to (b), after removing an element (poll)
from the heap.

C
F D

L O E K
N P T R

(d) [2 marks] If a complete partially ordered binary tree is stored in an array, and the
index of the root is 0, what are the indexes of the children of the node at index i?

(2 * i + 1) and (2 * i + 2)

COMP 103 Page 17 of 22 continued...

(e) [6 marks] The HeapQueue class implements a Priority Queue, by using a heap.

Assume that the HeapQueue contains the following fields:

private E[] data;
private int count;
private Comparator <E> comp;

where comp is a comparator that considers values with higher priority to be larger than
values with lower priority. When new items are added to the heap, they are “bubbled up”
to their correct position to ensure the array remains a valid heap.

Complete the following bubbleUp(int i) method that moves the value at index i up the
partially ordered tree into its correct position.
(Hint: use the comparator, and use recursion on bubbleUp).

if (comp.compare(data[parent], data[i]) < 0){
E temp = data[i];
data[i]=data[parent];
data[parent] = temp;
bubbleUp(parent);

}

private void bubbleUp(int i) {
if (i==0) return;

int parent = (i−1)/2;

}

COMP 103 Page 18 of 22 continued...

Student ID: .

Question 8. Hashing [10 marks]

(a) [4 marks] Explain why iterating over the items stored in a HashSet can be a slow
process.

The only way to iterate is to step through the array, passing over the nulls in
many of the positions. If the array is large (and the set is small) this will be slow,
as it scales with the size of the array, not the size of the set.

(b) [3 marks] Once a Hash Table gets too full, it needs to move the items to an larger
array. Why is doubling and copying the array elements (as we did for ArrayList for
example) not the correct way to do this, and what is the correct way?

Double and copy would put elements into the same positions in a larger array,
but the hashed code depends on the size of the array, so a new hash of an existing
elt won’t lead to it in the array. The right thing to do is to rehash every element
to its new position in the new array.

(c) [3 marks] When implementing a HashSet and using open addressing (probing), the
operation add is easy to achieve but remove requires more thought. Why is remove more
challenging?

The element you want to remove may be part of a chain, and setting its position to
null would prevent probing from reaching the elements further down the chain.
Replacing null by a placeholder (tombstone) fixes this.

* * * * * * * * * * * * * * *

COMP 103 Page 19 of 22

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 Page 20 of 22 continued...

Student ID: .

Appendix (may be removed)

Brief (and simplified) specifications of some relevant interfaces and classes.

interface Collection<E>
public boolean isEmpty()
public int size()
public boolean add(E item)
public boolean contains(Object item)
public boolean remove(Object element)
public Iterator<E> iterator()

interface List<E> extends Collection<E>
// Implementations: ArrayList, LinkedList
public E get(int index)
public E set(int index, E element)
public void add(int index, E element)
public E remove(int index)
// plus methods inherited from Collection

interface Set extends Collection<E>
// Implementations: ArraySet, HashSet, TreeSet
// methods inherited from Collection

interface Queue<E> extends Collection<E>
// Implementations: ArrayQueue, LinkedList, PriorityQueue
public E peek () // returns null if queue is empty
public E poll () // returns null if queue is empty
public boolean offer (E element) // returns false if fails to add
// plus methods inherited from Collection

class Stack<E> implements Collection<E>
public E peek () // returns null if stack is empty
public E pop () // returns null if stack is empty
public E push (E element) // returns element being pushed
// plus methods inherited from Collection

interface Map<K, V>
// Implementations: HashMap, TreeMap, ArrayMap
public V get(K key) // returns null if no such key
public V put(K key, V value) // returns old value, or null
public V remove(K key) // returns old value, or null
public boolean containsKey(K key)
public Set<K> keySet() // returns a Set of all the keys

COMP 103 Page 21 of 22 continued...

interface Iterator <E>
public boolean hasNext();
public E next ();
public void remove();

interface Iterable<E> // Can use in the ”for each” loop
public Iterator<E> iterator();

interface Comparable<E> // Can compare this to another E
public int compareTo(E o); // −ve if this less than o; +ve if greater than o;

interface Comparator<E> // Can use this to compare two E’s
public int compare(E o1, E o2); // −ve if o1 less than o2; +ve if greater than o2

class Collections
public static void sort(List<E>)
public static void sort(List<E>, Comparator<E>)
public static void shuffle (List<E>, Comparator<E>)

class Arrays
public static <E> void sort(E[] ar, Comparator<E> comp);

class Random
public int nextInt (int n); // return a random integer between 0 and n−1
public double nextDouble(); // return a random double between 0.0 and 1.0

class String
public int length()
public String substring(int beginIndex, int endIndex)

COMP 103 Page 22 of 22 continued...

