
Family Name: . Other Names: .

Student ID: . Signature .

COMP 103 : Test 2

2022, Jan 26 ** WITH SOLUTIONS **

Instructions

• Time allowed: 50 minutes

• Attempt all questions. There are 30 marks in total.

• Write your answers in this test paper and hand in all sheets.

• If you think some question is unclear, ask for clarification.

• Brief Java documentation is provided with the test

• This test contributes 10% of your final grade

• You may use dictionaries.

• You may write notes and working on this paper, but make sure your answers are clear.

Questions Marks

1. Using Queues [10]

2. Using Collections [10]

3. CompareTo, Equals, and HashCode [10]

TOTAL:

Student ID: .

Question 1. Using Queues [10 marks]

This question is about a program that a company needs to help their delivery coordinator
keep track of the boxes to be delivered.

The program uses a queue of Boxes that are waiting for delivery.

When the warehouse staff have boxed up the items for a customer request, the box is
weighed and taken to the delivery area. The coordinator uses the program to record the
box, with its boxID and weight.

When a delivery van is ready for a new trip, boxes are loaded into the van in the order that
they arrived at the delivery area.

Each van has a maximum total weight capacity. The coordinator uses the program to print
out a list of the boxIDs to be loaded that will not overload the van. No box will weigh more
than a single van capacity.

Part of the program is given below. You are to complete two methods.

public class Box{
private int ID;
private double weight;

public Box(int id , double wt){
this . ID = id;
this .weight = wt;

}
public double getWeight(){

return weight;
}
public String toString (){

return String .format("#%d (%.1fkg)", ID, weight);
}

}

import java. util .∗;
import ecs100.∗;

public class DeliveryManager{
private Queue<Box> deliveryQueue = new ArrayDeque<Box>(); // The queue of boxes waiting for delivery

public static void main(String [] args){
new DeliveryManager().setupGUI();

}
public void setupGUI(){

UI.addButton("New Box", ()−>{
int id = UI.askInt("ID");
double wt = UI.askDouble("Weight");
recordBox(id, wt); // for question (a)

});
UI.addTextField("Van weight", (String w)−>{

double maxCapacity = Double.valueOf(w);
chooseBoxesForDelivery(maxCapacity); // for question (b)

});
}
...

COMP 103 (Test) Page 2 of 10

Student ID: .

(Question 1 continued)

(a) [4 marks] Complete the recordBox(int ID, double weight) method to record a new Box on
the delivery queue, and print out the current number of Boxes waiting to be delivered. The
parameters are the id and the weight of the new box.

Box box = new Box(id, weight);

deliveryQueue. offer (box);

UI. println ("queue has "+ deliveryQueue.size() + " items");

public void recordBox(int id , double weight){

}

(b) [6 marks] Complete the chooseBoxesForDelivery(double capacity) to remove boxes from
the delivery queue to be loaded into a van, and print out all the id numbers. The total weight
of the boxes must not exceed the specified capacity.

double total = 0;

while (!deliveryQueue.isEmpty() && total+deliveryQueue.peek().getWeight()<capacity){
Box b = deliveryQueue.poll ();

total += b.getWeight();

UI. println (b);

}

public void chooseBoxesForDelivery(double capacity){
UI. println ("Deliver these boxes");

UI. println ("---------");

}

COMP 103 (Test) Page 3 of 10

Student ID: .

Question 2. Using Collections [10 marks]

This question concerns a program to help an office administrator manage the tasks requested
by people in the organisation.

When the administrator receives a new task, they must first check that it is a valid task for
the office.

The administrator then allocates a priority to the task (a number from 1 to 5), and puts the
task on a priority queue.

When a staff member becomes available, the adminstrator allocates them the highest prior-
ity task from the queue.

The program first reads the valid task categories from the file “taskCategories.txt” and
storing them in an appropriate collection. The file has one category (a word) per line.

You must complete the TaskManager class on the next page:

• the field declarations with the collections (one field called “tasks” and one field called
“categories”),

• the loadCategories method, which will load the file ”taskCategories.txt” into the collec-
tion of valid categories (use “Files.readAllLines”),

• the receiveTask method, which is given a new task with a category, but no priority, and
checks if it is a valid category for the office.
If so, it asks the user for a priority, sets the priority of the task, and adds it to the priority
queue.
Otherwise print out a message containing the invalid category

You should use the Task class to represent tasks, and you should ensure that receiveTask is
efficient, even if the collection of categories is very large.

class Task implements Comparable<Task>{ // comparable based on priority
private String category ;
private priority priorityLevel ;
private long timeStamp;

public Task(String cat){
this . category = cat;

}

public void setPriority (int pri){
this . priority = pri ;
this .timeStamp = System.currentTimeMillis();

}
public String getCategory(){

return this . category ;
}

public String toString (){
return this . category +" (pri:"+this.priority+")";

}
:

}

(Question 2 continued on next page)
COMP 103 (Test) Page 4 of 10

Student ID: .

private Queue<Task> tasks = new PriorityQueue<Task>();

private Set<String> categories = new HashSet<String>();

try{
List<String> allWords = Files. readAllLines (Path.of("taskCategories.txt"));

for (String wd : allWords){
categories .add(wd);

}
}
catch(IOException e){UI. println ("Fail: " + e);}

if (categories . contains(task .getCategory())){
task . setPriority (UI. askInt ("Enter priority"));

tasks . offer (task);

}
else {

UI. println (task .getCategory()+" is not a valid category");

}

public class TaskManager{
// FIELDS

public static void main(String [] args){
TaskManager rm = new TaskManager();

rm.loadCategories ();

UI.addButton("Receive", ()−>{rm.receiveTask(rm.getNewTask());});

UI.addButton("Allocate", rm::allocateTask);

}
public void loadCategories (){

}
public void receiveTask (Task task){

}
public void allocateTask (){ // Removes and prints highest priority task∗/

if (! tasks .isEmpty()){UI. println ("Allocate "+tasks.poll());}
else {UI. println ("No tasks ");}

}

COMP 103 (Test) Page 5 of 10

Student ID: .

Question 3. CompareTo, Equals, and HashCode [10 marks]

Suppose you are writing a program to keep track of the albums that you own. You have
defined an Album class that contains several fields (given below) such as the title, artist,
releaseYear, and trackListing.

(a) [5 marks] You would like to be able to sort a List that contains Album objects, and for
the Album object to have a natural ordering.

Add the approprate interface declaration to the Album class so that it is comparable. Then,
complete the compareTo(...) method for the Album class so that:

• Album will be sorted alphabetically by artist first, and then by release year.
• You can assume that none of the fields are null.

implements Comparable<Album>

if (artist . equals(other . artist) {
return releaseYear − other. releaseYear ; // or equivalent

}
return artist .compareTo(other. artist);

public class Album {

private String title ;

private String artist ;

private int releaseYear ;

private List<String> trackListing ;

public int compareTo(Album other) {

}

.

(Question 3 continued on next page)
COMP 103 (Test) Page 6 of 10

Student ID: .

(Question 3 continued)

(b) [5 marks] It is not sufficient to just define a compareTo(...) method by itself–we also
need to define the equals(...) and hashcode() methods.

Complete the equals(...) and hashcode() methods for the Album class below.

• Two albums are equal if and only if they have the same title, artist, and release year.
• You can assume that neither title nor artist will be null.
• Ensure that the equals(...) and hashcode() methods are consistent:

– with each other (if two albums are equal, they must have the same hash code), and
– with the compareTo(...) method (if two albums are equal, compareTo must return 0)

if (! artist . equals(other . artist))

return false ;

if (! title . equals(other . title))

return false ;

return releaseYear == releaseYear;

result = prime ∗ result + artist .hashCode();

result = prime ∗ result + title .hashCode();

result = prime ∗ result + releaseYear ;

public boolean equals(Object obj) {
if (this == obj)

return true;

if (obj == null)

return false ;

if (getClass () != obj. getClass ())

return false ;

Album other = (Album) obj;

}

public int hashCode() {
int prime = 97;

int result = 1;

return result ;

}

}

* * * * * * * * * * * * * * *

COMP 103 (Test) Page 7 of 10

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 (Test) Page 8 of 10

Documentation

Brief, simplified specifications of some relevant Java collection types and classes.

Note: E stands for the type of the item in the collection.

interface Collection<E>

public boolean isEmpty() // cost : O(1) for all standard collection classes
public int size () // cost : O(1) for all standard collection classes
public void clear ()

public boolean add(E item)

public boolean contains(Object item)

public boolean remove(Object element)

interface List<E> extends Collection<E>

// Implementations: ArrayList
public boolean isEmpty()

public int size ()

public void clear ()

public E get(int index) // cost : O(1)
public E set(int index , E element) // cost : O(1)
public boolean contains(Object item) // cost : O(n)
public void add(int index , E element) // cost : O(n) (unless index is close to the end .)
public E remove(int index) // cost : O(n) (unless index is close to the end .)
public boolean remove(Object element) // cost : O(n)

interface Set extends Collection<E>

// Implementations: HashSet, TreeSet
public boolean isEmpty()

public int size ()

public void clear ()

public boolean add(E item) // cost : O(1) for HashSet, O(log(n)) for TreeSet
public boolean contains(Object item) // cost : O(1) for HashSet, O(log(n)) for TreeSet
public boolean remove(Object element) // cost : O(1) for HashSet, O(log(n)) for TreeSet

interface Map<K, V>

// Implementations: HashMap, TreeMap
public V get(K key) // cost : O(1) for HashMap, O(log(n)) for TreeMap
public V put(K key, V value) // cost : O(1) for HashMap, O(log(n)) for TreeMap
public V remove(K key) // cost : O(1) for HashMap, O(log(n)) for TreeMap
public boolean containsKey(K key) // cost : O(1) for HashMap, O(log(n)) for TreeMap
public Set<K> keySet() // cost : O(1)
public Collection<V> values() // cost : O(1)
// (get returns null if the key is not present)
// (get put and remove return the old value , if any)

interface Queue<E> extends Collection<E>

// Implementations: ArrayDeque, LinkedList , PriorityQueue
public boolean isEmpty()

public int size ()

public void clear ()

public E peek () // cost : O(1) for ArrayDeque, LinkedList , O(1) for PriorityQueue
public E poll () // cost : O(1) for ArrayDeque, LinkedList , O(log(n)) for PriorityQueue
public boolean offer (E element) // cost : O(1) for ArrayDeque, LinkedList , O(log(n)) for PriorityQueue
// (peek and poll return null if the queue is empty)

class Stack<E> implements Collection<E>

public boolean isEmpty()

public int size ()

pubic void clear ()

public E peek () // cost : O(1)
public E pop () // cost : O(1)
public E push (E element) // cost : O(1)
// (peek and pop return null if the queue is empty)

class Collections

public void sort (List<E> list); // cost = O(n log(n)), but O(n) if almost sorted
public void sort (List<E> list, (E e1, E e2)−>{...}); // cost = O(n log(n)), but O(n) if almost sorted
public void swap(List<E> list, int i , int j); // cost = O(1)
public void reverse (List<E> list); // cost = O(n)
public void shuffle (List<E> list); // cost = O(n)

interface Comparable<E> // All Comparable objects have a compareTo method:
public int compareTo(E other);

// returns
// −ve if this comes before other ;
// +ve if this comes after other ,
// 0 if this and other are the same

