
9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 1/12

COMP 103 : Test 1     Page 1 of 12    

Family Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP 103 : Test 1

September 6, 2023

Test Instructions
Time Limit: 60 Minutes
Write your Full Name and Student ID at the top of the first page of the exam paper. For all
subsequent pages, include your Student ID at the top.
Attempt all questions in the exam paper; the total marks available are 50.
Write your answers on the provided test paper in their desinated spaces.
Upon completing the test, please ensure that you hand in all sheets of the test paper.
If you encounter a question that appears unclear, feel free to request clarification from the
invigilator.
A concise Java documentation for Collections is made available with the test to assist you during
the test.
The marks obtained in this test will contribute 20% towards your final grade for the course.
You may use dictionaries during the exam. Computer, phone and other smart devices are not
allowed.
Ensure that your final answers are presented clearly.
You can assume that all libraries required for programs are imported.

Question Max mark Stu. Mark

1. Properties of
Collections 9

2. Using Collections 8

3. More on using
Collections 17

4. Cost of Algorithms 10

5. Recursion 6

TOTAL 50



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 2/12

COMP 103 : Test 1     Page 2 of 12     Student ID: . . . . . . . . . . . . . . . .

Question 1. Properties of Collections [9 marks]

For these questions, circle the right answer from the list.

1.a) [3 marks]

You need to store a list of student names and their corresponding IDs in a way that allows for fast
retrieval of a student's ID given their name. Which collection would you use for this purpose?

1. ArrayList      2. HashMap      3. TreeSet      4. LinkedList

1.b) [3 marks]

In a game application, you want to maintain a list of players with their scores in descending order, where
the highest score comes first. Additionally, you need to efficiently retrieve and remove the highest-
scoring player. Which collection would you use for this purpose?

1. HashSet      2. PriorityQueue    3. TreeMap     4. LinkedHashSet

1.c) [3 marks]

You are building a spell-checking feature for a text editor. You need to store a dictionary of words in a
way that allows for efficient lookup of words (i.e., check words are contained in the dictionary) and
doesn't store duplicate words. Which collection would you use for this purpose?

1. ArrayDeque      2. HashMap      3. HashSet      4. TreeMap

In [1]: // Answer: HashMap

In [2]: // Answer: PriorityQueue

In [3]: // Answer: HashSet



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 3/12

COMP 103 : Test 1     Page 3 of 12     Student ID: . . . . . . . . . . . . . . . .

Question 2. Using Collections [8 marks]

Complete the method filterDuplicates  that takes a List<String>  as input and returns a
List<String>  containing only the unique elements from the input list, with the following two

properties:

1. maintains the original order of appearance of elements in the input list, and
2. ignores the case of letters when checking for uniqueness. For example, red  and Red  are

considered the same.

Each element in inputList  contains only one word. For tracking whether an element has been
encountered before, you must use a Set . Otherwise, you will loose some marks.

public class FilterDuplicatesSol {

    public static List<String> filterDuplicates(List<String> inputList) {
        List<String> resultList = new ArrayList<>();
        Set<String> seenWords = new HashSet<>();

        for (String word : inputList) {
            String lowerCaseWord = word.toLowerCase(); 
            if (!seenWords.contains(lowerCaseWord)) {
                resultList.add(word);
                seenWords.add(lowerCaseWord);
            }
        }
        return resultList;
    }

    public static void main(String[] args) {
        List<String> words = Arrays.asList(
            "apple", "Banana", "APPLE", "Grape", "banana", "Pear");
        List<String> uniqueWords = filterDuplicates(words);
        System.out.println("Unique Words (ignoring case): " 
                           + uniqueWords);
    }
}



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 4/12

COMP 103 : Test 1     Page 4 of 12     Student ID: . . . . . . . . . . . . . . . .

Question 3. More on using Collections [17 marks]

You are working on a project to manage a library's book collection. The library wants to enhance its
system by incorporating sorting and mapping functionalities for books. You have a class named Book
that needs to be modified to implement the Comparable  interface for natural ordering based on book
titles and their publication years. Additionally, you have a class named LibraryBookManager  to be
modified by adding various methods.

3.a) For the Book  class: [6 marks]

1. Modify the Book  class to implement the Comparable  interface. The natural order should arrange
books in ascending alphabetical order of titles, and in cases where titles match, it should then sort
them in ascending order of publication years, from the oldest to the newest.

2. Add a toString()  method to the Book  class to print the title, author and publication year of the
book.

Provide your code solution for each task in the given spaces and wherever it is required on page 5:



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 5/12

COMP 103 : Test 1     Page 5 of 12     Student ID: . . . . . . . . . . . . . . . .

class Book implements Comparable<Book> {
    private String title;
    private String author;
    private int publicationYear;
    // Constructor
    public Book(String title, String author, int publicationYear) {
        this.title = title;
        this.author = author;
        this.publicationYear = publicationYear;
    }
    public String getTitle() {
        return title;
    }
    public String getAuthor() {
        return author;
    }
    public int getPublicationYear() {
        return publicationYear;
    }
    //compareTo method
    public int compareTo(Book otherBook) {
        int titleComparison = this.title.compareTo(otherBook.getTitle());
        if (titleComparison == 0) {
            return Integer.compare(this.publicationYear, 
otherBook.getPublicationYear());
            // or: return this.publicationYear - otherBook.getPublicationYear() // 
        }
        return titleComparison;
    }
    //toString method
    public String toString() {
        return "Title: " + title + ", Author: " + author + ", Publication Year: " 
+ publicationYear;
    }
}



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 6/12

COMP 103 : Test 1     Page 6 of 12     Student ID: . . . . . . . . . . . . . . . .

3.b) For the LibraryBookManager  class: [11 marks]

Add the following two fields:
an ArrayList named sortedBooks  to store a collection of Book  objects.
a TreeMap named bookAuthorMap  to associate book titles with their respective authors.

Complete the addBook  method which adds Book  objects to the ArrayList, ensuring that they are
sorted based on their natural ordering. Enforce natural ordering after adding a Book . Do not worry
about big-O cost.
Complete addBooksToMap  method which adds books to the TreeMap bookAuthorMap .
Complete printBookAuthors  to print bookAuthorMap  elemetns in the following format
book title -> book author
Complete printBooks  method to print Book  objects from the ArrayList sortedBooks .

class LibraryBookManager {
    // Adding an ArrayList and a TreeMap fields

    private ArrayList<Book> sortedBooks;
    private TreeMap<String, String> bookAuthorMap;

    // Constructor (written for you)
    public LibraryBookManager() {
        sortedBooks = new ArrayList<>();
        bookAuthorMap = new TreeMap<>();
    }
    // Adding books to the ArrayList and sorting
    public void addBook(Book book) {

        sortedBooks.add(book);
        Collections.sort(sortedBooks);

    }

    // Adding books to the TreeMap
    public void addBooksToMap(Book book) {

        bookAuthorMap.put(book.getTitle(), book.getAuthor());

    }// Continue on next page



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 7/12

COMP 103 : Test 1     Page 7 of 12     Student ID: . . . . . . . . . . . . . . . .

// Printing the TreeMap elements as per instructions.
    public void printBookAuthors() {

        for (Map.Entry<String, String> entry : bookAuthorMap.entrySet()) {
            System.out.println(entry.getKey() + " -> " + entry.getValue());
        }   

    }
    // Printing the ArrayList elements
    // Note that the Book class has a toString() method
    public void printBooks(){

        for (Book bk : sortedBooks) {
            System.out.println(bk);

    }
}



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 8/12

COMP 103 : Test 1     Page 8 of 12     Student ID: . . . . . . . . . . . . . . . .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you
do want marked.



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 9/12

COMP 103 : Test 1     Page 9 of 12     Student ID: . . . . . . . . . . . . . . . .

Question 4. Cost of Algorithms [10 marks]

4.a) [5 marks]

What is the big-O cost of the following method, which takes a list of numbers and replaces each digit
that is 8 or less by 0. Suppose the list of numbers, called values , contains n  numbers.

write the big-O cost of performing each line with a comment
write the (total) number of times each of the lines will be performed
write the total cost of the algorithm (big-O) at the bottom of the box

public void putInZeros(List<Integer> values){
   for (int k=8; k>0; k--) {                 // cost= O(  1  ), times= 8  

      for (int i=0; i<values.size(); i++) {  // cost= O(  1  ), times= 8n

         if (i % 8 == 0)                     // cost= O(  1  ), times= 8n

            values.set(i,k-1);               // cost= O(  1  ), times= n

      }
   }
}                                           // TOTAL COST = O(   n   )

4.b) [5 marks]

Do the same for the following method, which is rather different. For the fifth line, you can give the worst
case (i.e. maximum) number of times.

public void takeOut(List<String> values, String s){

    Collections.sort(values);             // cost= O(nlog(n))   times= 1 

    for (int i=0; i<values.size(); i++) { // cost= O(   1   )   times= n

        if (values.get(i) == s)           // cost= O(   1   )   times= n

            values.remove(i);             // cost= O(   n   )   times(max)= n

   }
}                                         // TOTAL COST = O(   n^2   )



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 10/12

COMP 103 : Test 1     Page 10 of 12     Student ID: . . . . . . . . . . . . . . . .

Question 5. Recursion [6 marks]

5.a) [4 marks]

Complete the following recursive drawCastle(left, y, width)  method to draw a castle, having
several levels. Each level is a rectangle, with two others above it, each taking up one third of the width of
the level. The height of each rectangle should be 20, and each level should be 25 above the one below,
that is, the horizontal gap between rectangles should be 5.

You must use a first-and-rest recursion: drawCastle  should draw the first level and then call itself
recursively to draw the others.
(left, y)  is the top left of the first rectangle where first rectangle is base, and width  is its

width. Remember you can use the method UI.fillRect(left, top, width, height)   to
draw a rectangle.
Your method should continue to draw rectangles as long as the width is at least 10.

For example, drawCastle(20, 400, 600)  should output the following:

The dashed arrow line and the numbers are for indication, you do not need to draw them.

public class DrawCastle{
    public static void drawCastle(double left, double y, double width) {
        // YOUR CODE HERE

            if (width < 10) return;
            UI.printf("left: %.0f \t %.1f \t %.1f\n",left,width, y);

            UI.fillRect(left, y, width, 20);          // one level

            drawCastle(left, y-25, width/3);           // level's left  "turret"
            drawCastle(left+2*width/3, y-25, width/3); // level's right "turret"      
    }
}

// OR..........
public class DrawCastle{
    public static void drawCastle(double left, double y, double width) {
        // YOUR CODE HERE
            if (width >= 10) {
                    UI.fillRect(left, y, width, 20);          

                    drawCastle(left, y-25, width/3);           
                    drawCastle(left+2*width/3, y-25, width/3); 
            }
    }
}



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 11/12

COMP 103 : Test 1     Page 11 of 12     Student ID: . . . . . . . . . . . . . .

5.b) [2 marks]

Consider the method alterString(String)  given below.

public static String alterString(String str) {
        if (str.isEmpty()) {
            return "Done";
        } else {
            char firstChar = str.charAt(0);
            String remainder = str.substring(1); 
            return alterString(remainder) + firstChar;
        }
    }

What string would be returned by this method, if it is called with the argument lag ?

// Your answer to 5.b

-->  Donegal

//



9/15/23, 9:45 AM Test_1_v2-Copy1

file:///C:/Users/gnari/OneDrive/WF/comp103-T2/COMP103-other/exam/Test_1_v2-SSS.html 12/12

COMP 103 : Test 1     Page 12 of 12     Student ID: . . . . . . . . . . . . . . . .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you
do want marked.


