
EXAMINATIONS – 2023

TRIMESTER 2

FRONT PAGE

COMP 103

INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

1/11/2023

Time allowed: TWO HOURS

Instructions:

This test is a Closed-Book test

No calculators permitted

Answer the questions in the provided spaces if possible. If you write your answer elsewhere, make it clear

where your answer can be found.

There are spare pages for your working and your answers in this test, but you may ask for additional paper

if you need it.

If you encounter a question that appears unclear, feel free to request clarification from the invigilator.

A brief Java Documentation and a summary of Collections and Methods are made available with the

test.

You can assume that all libraries required for programs are imported and are available for you to use.

The number of questions and the distribution of marks are as in the following table:

Question Max. mark Earned mark

1. Properties of Collections 20

2. Using Collections 22

3. Cost of Algorithms 20

4. General Trees 30

5. Traversing Graphs 12

6. Binary Search 8

7. Heaps 8

TOTAL 120

COMP 103                                  Page 1 of 15       

Question 1. Properties of Collections [20 marks]

For questions 1.a., 1.b, 1.c, 1.d. and 1.e., circle the right answer(s) from the list.

1.a. [4 marks]

Which implementation of the ‘Set‘ interface in Java’s collections framework maintains elements in a sorted

order?

1. ArrayList            2. LinkedHashSet            3. HashSet            4. TreeSet

1.b. [4 marks]

Which data structure in Java’s collections framework provides fast random access to elements but may be less

efficient for insertions and removals in the middle?

1. HashSet            2. PriorityQueue            3. TreeMap            4. ArrayList

1.c. [4 marks]

When implementing the equals() method for a class, which of the following statements is true regarding

the compareTo() method if we want to maintain consistency, assuming the class has both methods

implemented?

1. The compareTo() method should return -1 for any two objects that are considered equal by

equals() .

2. The compareTo() method should return 0 for any two objects that are considered equal by

equals() .

3. The compareTo() method should return 1 for any two objects that are considered equal by

equals() .

4. None of the above is necessary.

1.d. [4 marks]

Consider the following lines of Java code. Which of these examples demonstrates the practice of

'programming to interface'? Select the line(s) that represent(s) the 'programming to interface' concept.

1. ArrayList<String> list = new ArrayList<>();

2. Map<String, Integer> map = new HashMap<>();

3. Set<Double> set = new HashSet<>();

4. LinkedList<Character> linkedList = new LinkedList<>();

1.e. [4 marks]

Which one of the following data structures in Java's Collection Framework cannot have a null element?

1. ArrayList          2. HashSet          3. TreeSet          4. LinkedList

 COMP 103                                  Page 2 of 15       

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.

Specify the question number for work that you do want marked.

COMP 103                                  Page 3 of 15       

Question 2. Using Collections [22 marks]

Given WordData class as bellow,

public class WordData {

 public String word; // a word encountered in the text

 public int count; // frequency count

 WordData(String w) {

 word = w;

 count = 1; // count is set to be 1 when a WordData object is created

 }

}

complete the following class called WordFrequencyAnalyser . The goal of this program is to count the

frequency of words encountered in a text and save them along with their corresponding WordData objects

in an appropriate data structure in ascending alphabetical order and ignoring the case of letters. You'll need to

complete the following tasks:

2.a. [3 marks]

Declare and initialise a TreeMap to store the words and their corresponding WordData objects.

public class WordFrequencyAnalyser {

 // Answer to 2.a.=============

2.b. [8 marks]

Implement the processWord method to process a word and update the WordData objects in your data

structure. If the word is encountered for the first time, create a new WordData object. If it has been

encountered before, update the count. Ignore the case of the letters: e.g., Book and book are considered

the same.

public void processWord(String word) {

 //Answer to 2.b.============

}

 COMP 103                                  Page 4 of 15       

2.c. [6 marks]

Implement the getFrequencySorted method to return a List of WordData objects from words that

is sorted by word frequency in descending order. Use a lambda expression for sorting.

public List<WordData> getFrequencySorted() {

 // Answer to 2.c:============

}

2.d. [5 marks]

Implement the print() method to

1. Using the map, print all the words along with their frequencies where the words are sorted

alphabetically, and then

2. Using the list, print all the words along with their frequencies where the words are sorted by frequency.

Make use of getFrequencySorted() method.

public void print() {

 // Answer to 2.d:=========

} // End of print() method

} // End of WordFrequencyAnalyser class

 COMP 103                                  Page 5 of 15       

Question 3. Cost of Algorithms [20 marks]

3.a. [5 marks]

Consider the Big-O (worst-case) costs of the fragment of code below, where mylist is an

ArrayList<String> , of size n.

List<String> words = new ArrayList<String>(); //cost of line = O(), times=

for (int i = 0; i < mylist.size(); i++) {

 for (int j = 0; j < mylist.size(); j++) {

 if (mylist.get(i).charAt(0) ==

 mylist.get(j).charAt(0)){ //cost of line = O(), times=

 words.add(mylist.get(i)); //cost of line = O(), times=

 }

 }

}

 // Total Cost=O()

 

3.b. [5 marks]

Consider the Big-O (worst-case) costs of the fragment of code below, where mylist is an

ArrayList<Integer> , of size n.

Set<Integer> numbers = new TreeSet<Integer>();// cost of line = O(), times=

for (int i = 0; i < mylist.size(); i+=3) {

 if (mylist.get(i) % 2 == 0) { // cost of line = O(), times=

 numbers.add(mylist.get(i)); // cost of line = O(), times=

 }

}

 // Total Cost=O()

COMP 103                                  Page 6 of 15       

3.c. [5 marks]

A clinic uses a HashMap to store its patients, where the Patient ID is the key, and the patient's medical history

is the value. If it takes 80 nanoseconds to retrieve a patient's medical history when the clinic has 10,000

patients, how long would you expect it to take when the clinic has 100,000 patients? Explain your reasoning.

Answer to 3.c.

3.d. [5 marks]

A hospital uses a sorted ArrayList to maintain its list of appointments in chronological (i.e., sorted by

appointment time) order. When the hospital has 1,000 appointments scheduled, it takes 5 milliseconds to

insert a new appointment into the correct position in the list. If the hospital had 10,000 scheduled

appointments, how long would you expect it to take to insert a new appointment in the correct position?

Explain your reasoning.

Answer to 3.d.

COMP 103                                  Page 7 of 15       

Question 4. General Trees [30 marks]

In this question we use general trees to implement a simple Box Stacking game. Each box has a width, and

contains a letter ("A", "B",...). The program represents each box as a Box object, which stores data about its

width, the letter, and a list of any other boxes that are stacked directly on top. The Box class has the following

methods:

Box class:

public String getLetter (); // get the letter of the box

public double getWidth(); // get the width of the box

public List<Box> getTopBoxes(); // get the list of the boxes

 // directly on top of the selected box

public String toString (); // return a String with format ”(letter, width)”

The following figure shows an example of a set of stacked boxes (left-hand side) and its representation as a

general tree (right-hand side). (A, 20) represents a box with letter A and width 20. If getTopBoxes() is

called on (A,20) it will return a list consisting of (B,5), (C,8) and (D,3). And, if it is called on (B,5) it will return a

list consisting of (E,3) and (F,3)

4.a. [10 marks]

Complete printBoxes() method on the following page (page 9) which is given the root node, and prints

out all the boxes in the tree, using indentation to show the structure. For example, the tree on the previous

page should be printed as:

(A, 20)

  (B, 5)

    (E, 3)

    (F, 3)

  (C, 8)

    (G, 7)

  (D, 3)

    (A, 4)

COMP 103                                  Page 8 of 15       

public void printBoxes(Box root){

 // Answer to 4.a.:=================

}

4.b. [10 marks]

Complete the following numOccurrences() method which is given the root node and a letter. The method

should return the number of boxes containing the given letter (in lowercase or uppercase).

For example, calling numOccurrences(root, "A") returns 2.

public int numOccurrences(Box root, String letter){

 // Answer to 4.b.: =============

}

COMP 103                                  Page 9 of 15       

4.c. [10 marks]

In the game, a box is unstable if the total width of boxes directly on top is greater than its own width.

Complete the following findUnstableBoxes() method which is given the root node, and returns a list of

unstable boxes.

For example, calling findUnstableBoxes(root) returns a list containing two boxes (B, 5) and (D, 3).

public List <Box> findUnstableBoxes(Box root){

 // Answer to 4.c.:================

}

COMP 103                                  Page 10 of 15       

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.

Specify the question number for work that you do want marked.

COMP 103                                  Page 11 of 15       

Question 5. Traversing Graphs [12 marks]

You are writing a travel app that helps customers to navigate in a train network containing multiple train

stations. You can use a graph to represent the train network where each node represents a train station. Two

stations are considered 'neighbours' if they are connected directly in the graph (without any other

station/nodes in between). The Station class has the following methods:

Station class :

public String getName(); // get the name of the Station

public Set<Station> getNeighbours(); // get the set of neighbouring stations

5.a. [6 marks]

Complete the following isConnected() method which returns true if two Stations are connected,

directly or indirectly, in the network and returns false otherwise.

public boolean isConnected(Station s1, Station s2){

 // Answer to 5.a.:==============

}

COMP 103                                  Page 12 of 15       

5.b. [6 marks]

Complete the following withinDistance() method, which should return a set of train stations reachable

from the starting station (start) while considering a maximum number (maxDist) of intermediate

stations that can be traversed.

public Set<Station> withinDistance(Station start, int maxDist) {

 // Answer 5.b.:===============

}

COMP 103                                  Page 13 of 15       

Question 6. Binary Search [8 marks]

6.a. [4 marks]

(A music store has a collection of albums sorted by release date. If the store has 1,024 albums and uses binary

search to find an album, what is the maximum number of comparisons the store would need to make?

Answer to 6.a.:

6.b. [4 marks]

Consider the sequence [10, 20, 30, 40, 50, 60, 70, 80, 90]. If you're searching for the number 35 using binary

search, how many comparisons will you need before determining that 35 is not in the list?

Answer to 6.b.

COMP 103                                  Page 14 of 15       

Question 7. Heaps [8 marks]

Background: In this course, we have studied the "heap": a complete binary tree, implemented using an array,

that maintains the heap property. For a max heap, every parent node has a value greater than or equal to any

of its children.

Suppose you have a max heap that was created as follows:

private List<Integer> heap = new ArrayList<>();

And which has since then been populated with several integer values. Below is a method that inserts a value

into the Max Heap. It uses a helper method pushUp(index) which ensures the heap property is maintained

after the insertion. Complete the pushUp(index) method.

public void insert(int value) {

 heap.add(value); // add to the end of the heap

 pushUp(heap.size() - 1); // start pushing up from the last

 //position (where the new value was added)

}

private void pushUp(int index) {

 // Answer to 7:================

}

*************** THE END ***************

COMP 103                                  Page 15 of 15       

