VICTORIA UNIVERSITY OF

WELLINGTON

TE HERENGA WAKA

1897

it
N

EXAMINATIONS - 2024

TRIMESTER 2 (TEST 2)
FRONT PAGE
COMP 103
2024-10-19
Time allowed: 120 MINUTES
Permitted CLOSED BOOK
materials: You are allowed to use a printed language dictionary during the test. Elec-
tronic dictionaries, apps, and other digital resources are not permitted.
Instructions: Attempt ALL 7 questions
The test will be marked out of a total of 120 marks.
You will be provided with a concise Java documentation for Collections and
a brief Java documentation.
Record your answers in their designated spaces — if you write your answer
elsewhere, make it clear where your answer can be found.
There are spare pages for your working and your answers in this booklet. If
you need additional space, you may request extra white paper sheets from
the invigilators.
If you find any question unclear, request clarification from the invigilator.
Assume that all necessary java libraries are already imported.
Question #1 #2 #3 #4 #5 #6 #7 Total
Max Points | 20 20 16 26 14 10 14 120
Mark
COMP 103 Page 1 of 16

Question 1: Properties of Collections [20 marks]

For questions (a) and (b), specify which of the four collection types — Set, List, Map, Deque — have
the given properties. (Your answer may include more than one type).

a) Collection(s) that maintain insertion order of elements: [4 marks]|

Your answer:

List, Deque

b) Collection(s) that do not allow null elements: [4 marks]

Your answer:

None of the collections implemented in JCF prohibits null element but, it is
— recommended not to use nulls with Queues (and Deques) because null can be the
— return type some methods.

¢) For a TreeMap, state whether each property is true or false. [4 marks]

i true / O false : Elements are stored in the natural order of their keys.
ii. O true /| |false : The time complexity for retrieving an element is O(1).
iii. true / O false : It allows duplicate values for different keys.

d) Consider the following code snippet using ArrayDeque: [8 marks]

ArrayDeque<String> aDeque = new ArrayDeque<>();
aDeque.offerLast("A");

aDeque.offerLast("B");

aDeque.offerFirst("C");

aDeque.offerLast("D");

aDeque.pollFirst();

aDeque.offerFirst("E");

What will be the returned value of executing aDeque.peekFirst() and aDeque.peekLast() after
these operations? And, what will be final state of the deque?

Your answer:

aDeque.peekFirst() returns: -> E

aDeque.peekLast() returns: -> D

Final state of the deque after executing aDeque.peekFirst() and aDeque.peekLast():

-> EABD

COMP 103 Page 2 of 16

Question 2: Using Collections — Simulation [20 marks]
This question is about simulating the queue system for a popular roller coaster ride in a park.

The roller coaster has 3 loading platforms. Each platform has space for a queue of up to 5 people
(referred to as visitors). Each platform loads visitors into the roller coaster cars. There is also a main
queue area where visitors wait until there is space in one of the platform queues. The following
figure shows the roller coaster queue system:

Platform 0 Queue (5 max) Ride Platform 0

Main Queue Platform 1 Queue (5 max) Ride Platform 1

F

Platform 2 Queue (5 max) Ride Platform 2

The visitor class that represents individual park visitors has the following methods:

public class Visitor {
public void boardRide(); // Visitor boards the ride
public boolean hasRidden(); // Has the visitor completed the ride?
public static Visitor newVisitor(); // Returns either null or a new visitor

The RideSimulation class has the following fields and methods:

public class RideSimulation {
private static final int NUM_PLATFORMS = 3;
private static final int PLATFORM_SIZE = 5;
private List<Deque<Visitor>> pfQueues; // List of platform queues
private Deque<Visitor> mainQueue;

public void initialiseQueues(){...} // To be completed

public void runSimulation(){...} // To be completed

COMP 103 Page 3 of 16

Question 2 (continued)

a) Complete the initialiseQueues() method which initialises mainQueue and the three platform
queues in pfQueues list. All the queues should exist but should be empty. [8 marks]

public void initialiseQueues() {
// YOUR CODE HERE
// Initialise the main queue as an ArrayDeque
mainQueue = new ArrayDeque<>();

// Initialise the platform queues as ArrayDeques

pfQueues = new ArraylList<>();

for (int i = @; i < NUM_PLATFORMS; i++) {
pfQueues.add(new ArrayDeque<Visitor>());

COMP 103 Page 4 of 16

Question 2 (continued)

b) Complete the runSimulation() method to run the simulation. [12 marks]
At each time tick of the simulation:

* The visitor at the head of each platform queue who has completed the ride is removed from the
platform.

* The visitor at the head of each platform queue who has not completed the ride (if there is one)
boards the ride.

* Visitors waiting in the main queue are moved to fill up all the platform queues (if there are any
spaces).

* A new visitor (if there is one, i.e., if it is not null) is added to the main queue.

public void runSimulation() {
// YOUR CODE HERE
// Board visitors on the ride and remove those who have completed the ride
for (Deque<Visitor> pfQueue : pfQueues) {
if (!pfQueue.isEmpty()) {
Visitor visitor = pfQueue.peek();
if (visitor.hasRidden()) {
pfQueue.poll();
} else {
visitor.boardRide();

// Move visitors from the main queue to the platform queues
for (Deque<Visitor> pfQueue : pfQueues) {
while (pfQueue.size() < PLATFORM_SIZE && !mainQueue.isEmpty()) {
pfQueue.offer(mainQueue.poll());

// Add new visitor to the main queue

Visitor newVisitor = Visitor.newVisitor();

if (newVisitor != null) {
mainQueue.offer(newVisitor);

COMP 103 Page 5 of 16

Question 3: Complexity — Big-O Costs [16 marks]

For each piece of code given in parts (a) and (b) below, work out the cost (in Big-O notation) by

» working out the cost of performing each line once.

» working out the number of times each line will be performed.

* computing the total cost.

* in both parts (a) and (b), assume that 1ist is an ArrayList of size n.

a) [7 marks]

Set<Integer> result = new TreeSet<Integer>(); // cost = 0(1) times = 1
for (int i=list.size()-1; i»>=0; i--) {
int count = 9; // cost = 0(1) times = n
for (int j=list.size()-1; j>»=0; j--){
if (list.get(i) == list.get(j)){ // cost =0(1) times = n”2
count = count + 1; // cost = 0(1) times = n”2
}
}
if (count > 3){ // cost =0(1) times = n
result.add(list.get(i)); // cost = 0(log(n)) times = n
}
}
// Total Cost = O(n*2)

b) [4 marks] (Note how the for loop is incremented!)

Queue<Integer> queue = new PriorityQueue<Integer>();// cost = 0(1) times =1
for (int i=1; i<list.size(); i=i*2){
if(list.get(i) == list.get(i-1)){ // cost =0(1) times = Log(n)

queue.offer(list.get(i)); // cost = 0(log(n)) times = Log(n)

// Total Cost = O([log(n)]"2)

¢) [5 marks]

We are using a java program to process and maintain student grades in a course. To this end, we use
a HashMap where the key is the Student ID and the value is the student’s grade. When the number
of students is 1,000 (= 2'°) students, the program takes 10 nanoseconds to find a student’s grade
given the student ID. If the number of students were 20,000 students, how long would you expect
the program to take to find a student’s grade given the student ID? Explain why.

Your answer:
Still 10 nanaseconds.
Finding a student from a HashMap is 0(1) (assuming a few number of collisions).

COMP 103 Page 6 of 16

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that
you do want marked.

COMP 103 Page 7 of 16

Question 4: Binary Trees [26 marks]

Suppose we are using a binary tree to encode characters as sequences of dots (".") and dashes
("-"). In the tree, the root node contains an empty string and any other node contains either a letter
or an empty string. In this tree, starting at any node:

* moving left along a branch represents a dot and

* moving right along a branch represents a dash.

The CharNode class represents the tree nodes. It has the following constructor and methods:

// CharNode class:

// Creates a new CharNode containing a string (single Lletter or empty) and two child
— nodes for the dot and dash branches.

public CharNode(String letter, CharNode dot, CharNode dash);

public String getLetter(); // Returns the letter stored in the current CharNode.
public CharNode getDot(); // Returns the Lleft child (dot branch).

public void setDot(CharNode node); // Sets the Lleft child (dot branch) to the provided
< node.

public CharNode getDash(); // Returns the right child (dash branch).

public void setDash(CharNode node); // Sets the right child (dash branch) to the

— provided node.

The figure on the right illustrates a binary tree used for encoding letters.
In this tree, empty circles represent nodes containing an empty string, the
letter ”’C” is encoded as - — and the letter ”’F” is encoded as — — (two dashes).

a) Complete the following 1istString method, which takes the root node of a tree and returns a
Set containing all unique letters (excluding empty strings) encoded in the tree. For example, for
the tree above, 1istString method should return the set {E, B, C, A, G, F}. [13 marks]

public Set<String> listString(CharNode node) {
Set<String> results = new HashSet<String>();
// YOUR CODE HERE

listString(node, results);
return results;

public void listString(CharNode node, Set<String> results) {
if (node == null) { return; }

if (!node.getLetter().isEmpty()) {

results.add(node.getLetter());

listString(node.getDot(), results);
listString(node.getDash(), results);

COMP 103 Page 8 of 16

Question 4 (continued)

b) Complete the insert() method below. [13 marks]
The method takes three parameters:

* The root node of the binary tree.
* An original letter orilL.
* A new letter newL.

The task is to insert newL into the tree before orilL, making orilL a child of newL, without changing
oril’s original parent. Additionally, newL should follow the same connection (dot or dash link) as

oriL did. You can assume that the tree always contains orilL.

The figure below illustrates two examples of trees after the insertion of nodes.

insert(root,"G","M") insert (root, "A" ,"M")

public void insert(CharNode node, String oriL, String newlL) {
// YOUR CODE HERE

if (node == null) {
return;

if (node.getDot() != null && node.getDot().getLetter().equals(oriL)) {
CharNode newNode = new CharNode(newL, node.getDot(), null);
node.setDot(newNode);
return;

if (node.getDash() != null & node.getDash().getLetter().equals(orilL)) {
CharNode newNode = new CharNode(newL, null, node.getDash());
node.setDash(newNode);
return;

insert(node.getDot(), orilL, newL);
insert(node.getDash(), oriL, newlL);

COMP 103 Page 9 of 16

Question 5: Traversing General Trees [14 marks]
a) pre-order traversal of a file system: |5 marks]

Imagine you are designing a basic file system for an operating system. The file system is represented
as a tree where each node is either a file or a directory. A directory can contain other directories and
files, but a file cannot contain other nodes. Below is the FSNode class, representing a File System
Node, which you will use.

class FSNode {
String name;
boolean isDirectory;
FSNode[] children;

public FSNode(String name, boolean isDirectory, FSNode[] children) {
this.name = name;
this.isDirectory = isDirectory;
this.children = children;

public String getName() { return name;}
public boolean isDirectory() { return isDirectory;}
public FSNode[] getChildren() { return children;}

Write a method preTraversal that performs a pre-order traversal of this file system, starting from
the root directory, and returns a list of file and directory names in the order they are visited.

public List<String> preTraversal(FSNode root) {
// YOUR CODE HERE

List<String> result = new ArrayList<>();
if (root != null) {
result.add(root.getName()); // Visit the current node
if (root.isDirectory()) { // Only directories have children
for (FSNode child : root.getChildren()) {
result.addAll(preTraversal(child));

}

return result;

COMP 103 Page 10 of 16

b) Depth of a file system: |5 marks]

Continuing from the file system representation as a tree, we want to find the depth of the deepest
component in the file system. The depth is defined as the number of edges on the longest path from

the root directory to any file or subdirectory. If the tree consists of only one node (the root), the
depth is 0.

Using the FSNode class defined in part (a), complete the following method to calculate the depth of
the file system given the root node.

public int getDepth(FSNode node){
if (node == null) return 0;
int maxDepth = 0;
// YOUR CODE HERE (note that only directories have children)

if (node.isDirectory()) {
for (FSNode child : node.getChildren()){
int childDepth = getDepth(child);
if (childDepth > maxDepth){
maxDepth = childDepth;

}

return maxDepth+1;

¢) Post-order Traversal of an Organizational Hierarchy: [4 marks]

A company’s organizational hierarchy is represented by the following tree (see diagram below).
Using a post-order traversal, what is the order of employees visited? (Note: post-order, not pre-
order).

CEO
Managerl Manager2
£ |
Empl Emp2 Emp3

YOUR ANSWER:

Empl, Emp2, Managerl, Emp3, Manager2, CEO

COMP 103 Page 11 of 16

Question 6: Graph Traversals [10 marks]

You are designing a feature for a social networking platform to suggest friends to users. The network
is represented as a graph where each node is a user, and an edge between two users indicates they
are direct friends. Two users are connectable if there is a path between them through any number
of intermediate users.

The users are represented by the UserNode class which has the following methods:

// UserNode class methods
String getName() // returns the name of the user.
List<UserNode> getFriends() // returns a List of the user's direct friends.

Your task: Complete the following method. The method should return the list of all user names
that are connectable to the given UserNode. Note that the starting user should not be included in
the result list. You can use any approach you want.

public List<String> findAllConnectable(UserNode start) {
List<String> connectables = new ArraylList<>();
// YOUR CODE HERE

/177777777777 //////////// Version 1: BFS
Set<UserNode> visited = new HashSet<>();
Queue<UserNode> queue = new LinkedList<>();

// Start with the given user
queue.offer(start);
visited.add(start);

while (!queue.isEmpty()) {
UserNode current = queue.poll();

// Get friends of the current user
for (UserNode friend : current.getFriends()) {
// If the friend has not been visited yet
if (!lvisited.contains(friend)) {
visited.add(friend);
queue.offer(friend);

// Add to the connectables list (avoid adding the start user)

if (!friend.equals(start)) {
connectables.add(friend.getName());

return connectables;

}
//17///////////////////// Version 2: DFS

Set<UserNode> visited = new HashSet<>();

// Start DFS from the given user

COMP 103 Page 12 of 16

dfs(start, visited, connectables);

return connectables;

private void dfs(UserNode current, Set<UserNode> visited, List<String> connectables) {
visited.add(current);

// Explore each friend of the current user
for (UserNode friend : current.getFriends()) {
if (!visited.contains(friend)) {
// Add the friend's name to connectables Llist (avoid adding the start user)
if (!friend.equals(current)) {
connectables.add(friend.getName());
}
// Recursive DFS call
dfs(friend, visited, connectables);

COMP 103 Page 13 of 16

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that
you do want marked.

COMP 103 Page 14 of 16

Question 7: Binary Search and Heaps [14 marks]

The university library maintains a digital catalog of all its books, sorted by ISBN. Students often
search for books by ISBN to locate them quickly.

Consider the following code snippet for performing a binary search on an array of ISBN numbers:

public int searchISBN(int[] catalog, int targetISBN) {
int left = 0;
int right = catalog.length - 1;

while (left <= right) {

int mid = (left + right) / 2;

if (catalog[mid] == targetISBN) {
return mid;

} else if (catalog[mid] < targetISBN) {
left = mid + 1;

} else {
right = mid - 1;

}

return -1;

a) Explain in your own words how this binary search algorithm works. What is the significance of
updating left and right in the loop? [4 marks]

Your answer:

alg repeatedly divides the array in half by comparing the target ISBN to the middle
element ("mid). If the target is found, it returns the index. If the target is
less than the middle element, it searches the left half by updating “right™; if
greater, it searches the right half by updating ~left’ . Continues until the target
is found or left meets right...

rerots

b) If the array has 1024 books (i.e., catalog.length = 1024), what is the maximum number of
comparisons the algorithm will need to make? Explain your reasoning. [5 marks]

Your answer:

10, because binary search reduces the search space by half each time, leading to a
— logarithmic time complexity of 0(log n), and log2(1024) = 10.

COMP 103 Page 15 of 16

Question 7 (continued)

¢) A task management app uses a max-heap to keep the most urgent task at the top of the list, based
on its deadline. Consider the following code snippet for inserting a new task into the max-heap:

public void insertTaskIntoHeap(int[] heap, int deadline) {
heap[heap.length] = deadline; // Add the new task at the end of the heap
int currentIndex = heap.length;

while (currentIndex > 0) {
int parentIndex = (currentIndex - 1) / 2;
if (heap[currentIndex] > heap[parentIndex]) {
// Swap the current node with its parent
int temp = heap[currentIndex];
heap[currentIndex] = heap[parentIndex];
heap[parentIndex] = temp;
currentIndex = parentIndex; // Move up to the parent's position
} else {
break; // Heap property is satisfied

Explain the purpose of the while loop in this code. Why do we compare the current node with its
parent? [5 marks]

Your answer:

While loop restores the max-heap property after a new task is added. The new task is
— initially placed at the end of the heap, and the loop moves it up the tree if
necessary by comparing it with its parent. If the new task has a higher priority
(in this context, a closer deadline) than its parent, the two nodes are swapped.
This process continues until the new task is either the root of the heap (where it
has no parent) or its parent has a higher priority, ensuring the max-heap property
is maintained.

L

d sk sk sk sk sk ook ok ok ok

COMP 103 Page 16 of 16

