
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2016

TRIMESTER 2

COMP103

INTRODUCTION TO DATA
STRUCTURES AND ALGORITHMS

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: Only silent non-programmable calculators or silent programmable calcula-
tors with their memories cleared are permitted in this examination.

Non-electronic foreign language to English dictionaries are permitted.

Other materials are not allowed.

Instructions: Attempt all questions.

Answer in the appropriate boxes or as instructed in the questions — if
you write your answer elsewhere, make it clear where your answer can
be found.

The exam will be marked out of 120 marks.

Documentation on some relevant Java classes and interfaces can be found
at the end of the paper. You may tear that page off if it helps.

There are spare pages for your working and your answers in this exam, but
you may ask for additional paper if you need it.

Questions Marks

1. Stacks and Queues [10]

2. Complexity [10]

3. Linked Lists [10]

4. Binary Search Trees [15]

5. Heaps [15]

6. Hashing [15]

7. General Questions [20]

8. Iterators [10]

9. Recursion [15]

COMP103 Page 1 of 24

Student ID: .

1. Stacks and Queues (10 marks)

(a) (5 marks) Postfix order (also known as “Reverse Polish Notation”) rewrites the ex-
pressions to have the operations following the arguments. For example, 6 + 4 becomes
6 4 + and

√
9 becomes 9 √ . Rewrite the following arithmetic expression in postfix or-

der:√
((5× 2)/(4− 6 + 3))

TO DO

(b) (5 marks) What does the following code print?

Queue<String> q = new ArrayDeque<String>();
q.offer("Z"); q.offer("Y"); q.offer("X");
q.poll(); q.offer("A"); q.offer("B"); q.poll();
UI.println(q);
q.poll(); q.offer("C"); q.offer("D");
UI.println(q);
q.offer("E"); q.offer("F"); q.poll();
UI.println(q);

[X, A, B] [A, B, C, D] [B, C, D, E, F]

COMP103 Page 2 of 24

Student ID: .

2. Complexity (10 marks)

(a) (3 marks) For the following functions, give the complexity class they fall into.

1
2 n4 + 200n3 + 99 ∈O()

n + n + n ∈O()

2
n + 1 ∈O()

(b) (3 marks) For the following operations, give the complexity class they fall into.

Adding an element to the front of a LinkedList of length n ∈O()

Method contains in ArrayList of length n ∈O()

Iterating through all n elements in a set of m bags ∈O()

(c) (4 marks)

List the following sorting algorithms from lowest to highest in terms of their worst case
complexity: Bubble Sort, Quick Sort, Merge Sort, Heap Sort, Insertion Sort, Selection
Sort. In cases where they have the same complexity — list them in alphabetical order.

From lectures.

COMP103 Page 3 of 24

Student ID: .

3. Linked Lists (10 marks)

(a) (5 marks) Suppose you are working on a program that uses a List of episodes (ie.
objects of class Episode), implemented as a list of LinkedNodes. You are to write a
method middleEpisode for this program. The method is passed the head of the list as
an argument, and should return a reference to the middle Episode in the list if the size
is odd, and either of the middle nodes if the size is even. If no such item exists because
the list is empty, it should return null. Your implementation of this method needs to be
iterative.

TODO

/* Returns the value in the middle node of a list

starting at a given node */

public Episode middleEpisode (LinkedNode<Episode> list){

}

COMP103 Page 4 of 24

Student ID: .

(b) (5 marks) Give pseudocode for the algorithm for processing the nodes in a general tree
in an iterative, breadth-first traversal.

make a queue,

put root on the queue,

while queue not empty:

dequeue

put its children on the queue

process node

.

COMP103 Page 5 of 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 6 of 24

Student ID: .

4. Binary Search Trees (15 marks)

(a) (5 marks) Consider the following Binary Search Tree, that is being used to implement
a Set. By drawing on the diagram below, show what happens as you add the following
items (using the algorithm described in lectures) in the following order: 50, 36, 21, 17

COMP103 Page 7 of 24

Student ID: .

(b) (5 marks) The binary search tree below is the same as the one before. Add nodes of
your choice to change it into a complete binary search tree which represents a Set of items.
If it helps to make your answer clearer, redraw the entire tree in the space below.

COMP103 Page 8 of 24

Student ID: .

(c) (3 marks) Again using the same binary search tree as before (re-drawn below) that
represents a Set, show what the tree would look like if the values 2 and 37 were removed
from the Set.

(d) (2 marks) Now remove the value 20 from the resulting tree above (after deleting 2
and 37) and redraw the final tree below:

COMP103 Page 9 of 24

Student ID: .

5. Heaps (15 marks)

(a) (10 marks) Show the heap that results from adding the following values to a heap
that starts off empty: 15, 0, 25, 26, 27, 1, 2 (in that order).

This is a “max” heap, with the largest value at the root (not the smallest).

Draw both the partially-ordered tree representation, and the array representation of the
heap.

draw the partially ordered tree

and the array:

COMP103 Page 10 of 24

Student ID: .

(b) (5 marks) Show that turning an unsorted array into a heap is O(n). You can follow
the same argument as was presented in the lectures.

TO DO

COMP103 Page 11 of 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 12 of 24

Student ID: .

6. Hashing (15 marks)

(a) (5 marks) Explain the difference between open addressing and closed addressing in hash-
ing:

TO DO

COMP103 Page 13 of 24

Student ID: .

(b) (10 marks) Describe two different collision resolution techniques for open addressing, and
state advantages and disadvantages of each:

1st Technique: TO DO

2nd Technique: TO DO

COMP103 Page 14 of 24

Student ID: .

7. General Questions (20 marks)

(a) (5 marks) Give an example of a unit test and describe what they are used for in
software development.

TO DO

(b) (5 marks) Explain what the purpose is of Comparable interface in the Java Collections,
and give a realistic example of where you might use it in a software project.

TO DO

COMP103 Page 15 of 24

Student ID: .

(c) (5 marks) Consider the Java Map implementation. For some maps, the number of
items in the set of values and the set of keys is different. Explain why it is the case and
give an example of a map to illustrate your answer.

TO DO

(d) (5 marks) Why is it important to override both the equalsmethod and the hashCode
method in a class? What can go wrong if you override one but not the other?

TO DO

COMP103 Page 16 of 24

Student ID: .

8. Iterators (10 marks)

(a) (10 marks) In the box below write code for the three missing methods of an iterator
for ArrayList:

See lecture slides on Iterators and Iterable for the answers.

private class ArrayListIterator<E> implements Iterator<E> {
private ArrayList<E> list;
private int nextIndex;
private boolean removeable = false;

private ArrayListIterator(ArrayList<E> list) {

}

private boolean hasNext() {

}

private E next() {

}
}

COMP103 Page 17 of 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 18 of 24

Student ID: .

9. Recursion (15 marks)

Consider the following triple tree data structure (from the test):

class TripleTreeNode {
public TripleTreeNode left, middle, right;
public String value;
public TripleTreeNode(String value) {

this.value = value;
}

}

(a) (7 marks) Implement recursively a printAll()method that will go inside TripleTreeNode
class that prints all the nodes in the tree by doing a depth first traversal. Each node should
be indented by the number of spaces that is equal to the depth of the node being printed.

COMP103 Page 19 of 24

Student ID: .

(b) (8 marks) (Hard) Now implement recursively the drawAll() method that will also
go inside TripleTreeNode class that draws all the nodes in the tree, while ensuring that
all the nodes of each subtree do not draw over each other.

Assume that you just need to draw circles (using UI) with a fixed size of 10 pixels diame-
ter. Use UI.drawOval(x, y, width, height) where x,y is the top left corner and
the width and height are both 10. You don’t need to print any values in these circles - you
just need to ensure that the children will have enough space to draw a subtree without
interfering with the other nodes.

* * * * * * * * * * * * * * *

COMP103 Page 20 of 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 21 of 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 22 of 24

Student ID: .

Appendix (may be removed)

Brief (and simplified) specifications of some relevant interfaces and classes.

interface Collection<E>

public boolean isEmpty()

public int size()

public boolean add(E item)

public boolean contains(Object item)

public boolean remove(Object element)

public Iterator<E> iterator()

interface List<E> extends Collection<E>

// Implementations: ArrayList, LinkedList

public E get(int index)

public E set(int index, E element)

public void add(int index, E element)

public E remove(int index)

// plus methods inherited from Collection

interface Set extends Collection<E>

// Implementations: ArraySet, HashSet, TreeSet

// methods inherited from Collection

interface Queue<E> extends Collection<E>

// Implementations: ArrayDeque, LinkedList

public E peek () // returns null if queue is empty

public E poll () // returns null if queue is empty

public boolean offer (E element) // returns false if fails to add

// plus methods inherited from Collection

class Stack<E> implements Collection<E>

public E peek () // returns null if stack is empty

public E pop () // returns null if stack is empty

public E push (E element) // returns element being pushed

// plus methods inherited from Collection

interface Map<K, V>

// Implementations: HashMap, TreeMap, ArrayMap

public V get(K key) // returns null if no such key

public V put(K key, V value) // returns old value, or null

public V remove(K key) // returns old value, or null

public boolean containsKey(K key)

public Set<K> keySet() // returns a Set of all the keys

COMP103 Page 23 of 24

Student ID: .

interface Iterator<E>

public boolean hasNext();

public E next();

public void remove();

interface Iterable<E> // Can use in the "for each" loop

public Iterator<E> iterator();

interface Comparable<E> // Can compare this to another E

public int compareTo(E o); // -ve if this less than o; +ve if greater

interface Comparator<E> // Can use this to compare two E’s

public int compare(E o1, E o2); // -ve if o1 less than o2; +ve if greater

class Collections

public static void sort(List<E>)

public static void sort(List<E>, Comparator<E>)

public static void shuffle(List<E>, Comparator<E>)

class Arrays

public static <E> void sort(E[] ar, Comparator<E> comp);

class Random

public int nextInt(int n); // return a random integer between 0 and n-1

public double nextDouble(); // return a random double between 0.0 and 1.0

class String

public int length()

public String substring(int beginIndex, int endIndex)

COMP103 Page 24 of 24

