
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2017

TRIMESTER 2

COMP103

INTRODUCTION TO DATA
STRUCTURES AND ALGORITHMS

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: Only silent non-programmable calculators or silent programmable calcula-
tors with their memories cleared are permitted in this examination.

Non-electronic foreign language to English dictionaries are permitted.

Other materials are not allowed.

Instructions: Attempt all questions.

Answer in the appropriate boxes or as instructed in the questions — if
you write your answer elsewhere, make it clear where your answer can
be found.

The exam will be marked out of 120 marks.

Documentation on some relevant Java classes and interfaces is provided
separately.

There are spare pages for your working and your answers in this exam pa-
per, but you may ask for additional paper if you need it.

Questions Marks

1. General Questions [12]

2. Linked Lists [14]

3. Complexity [14]

4. Binary Search Trees [15]

5. General Trees [15]

6. Heaps [15]

7. Sorting [20]

8. Hashing [15]

COMP103 Page 1 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 2 of 28

Student ID: .

1. General Questions (12 marks)

(a) (4 marks) By drawing a circle around the correct answer, indicate whether the
following statements are TRUE or FALSE:

TRUE / FALSE: ArrayList is a class that extends Collection.

TRUE / FALSE: The implements relationship is allowed between two interfaces.

TRUE / FALSE: ArraySet implements Set.

TRUE / FALSE: ArrayList directly implements List.

(b) (4 marks) Ben wants to create a list of photos where each element has type Photo.
Identify two issues with Ben’s attempt below.

ArrayList<Photo> myPhotos = new List<Photo>();

(c) (2 marks) Describe a difference between an interface and a class.

(d) (2 marks) Describe an advantage of using linked structures – e.g., a linked list –
compared to using arrays.

COMP103 Page 3 of 28

Student ID: .

2. Linked Lists (14 marks)

Your task is to complete the implementation of class PlayList below. A PlayList object has
a cursor that points to the LinkedNode object that references the currently selected Song
object. This cursor can be set to specific positions and moved forward and backward.
As you can see by reading the available code, PlayList uses a linked list approach to
store the songs available in a play list. Do not use any other collections from the Java
collection library to complete the implementation.

public class PlayList { // manages a list of songs
LinkedNode<Song> head; // the first song in the play list
LinkedNode<Song> cursor; // current point for insertion , removal, ...

public PlayList () { // creates an empty play list
cursor = head = null; // cursor = null , if the play list is empty

}
...

}

Assume the following methods for LinkedNode to be available:

class LinkedNode<E> { ...
LinkedNode<E> getNext() {return next;}
void setNext(LinkedNode<E> next) {this.next = next;}

}

(a) (2 marks) Implement the following moveCursorToStart method for PlayList that sets
the cursor to the first song in the list.

public void moveCursorToStart() {

}

(b) (3 marks) Implement the following moveCursorToEnd method for PlayList that sets
the cursor to the last song in the list.

public void moveCursorToEnd() {

}

COMP103 Page 4 of 28

Student ID: .

(c) (3 marks) Implement the following moveCursorRight method for PlayList that moves
the cursor to the next song in the list.

public void moveCursorRight() {

}

(d) (6 marks) Implement the following moveCursorLeft method for PlayList that moves
the cursor to the previous song in the list.

public void moveCursorLeft() {

}

COMP103 Page 5 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 6 of 28

Student ID: .

3. Complexity (14 marks)

(a) (5 marks) For the following functions, give the complexity class they fall into.

5n5 + 4n + 10 ∈O()

1000
n + 1000 n ∈O()

2
logn + 2n− 1

2 n ∈O()

(b) (2 marks) What is the average case complexity class of the following code, in terms
of number of assignments?

for (int i=0; i<n; i++) {
a[i] = a[i] ∗ 2;

}
O()

(c) (4 marks) What is the average case complexity class of the following code, in terms
of number of assignments?

for (int i=0; i<n; i++)
for (int j=0; j<i; j++)

a[i][j] = a[i][j] + 1;
O()

(d) (3 marks) What is the average case complexity class of the following code, in terms
of number of assignments?

int i=1;

while (i<n) {
a[i−1] = a[i];
i = i ∗ 2;

}

O()

COMP103 Page 7 of 28

Student ID: .

4. Binary Search Trees (15 marks)

(a) (4 marks) Suppose you start with an empty Binary Search Tree, and insert the
following values in the order shown:

4 7 5 1 3 8 6 2

Draw the resulting Binary Search Tree.

COMP103 Page 8 of 28

Student ID: .

(b) (4 marks) Show the result of deleting 20 from the following Binary Search Tree.

COMP103 Page 9 of 28

Student ID: .

(c) (4 marks) Why is it a bad idea to insert values into a Binary Search Tree in ascending
order?

(d) (3 marks) Explain briefly how you would find the smallest value in a non-empty
Binary Search Tree.

COMP103 Page 10 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 11 of 28

Student ID: .

5. General Trees (15 marks)

Suppose you need to maintain a collection of information about the members of a large
family, starting from a single ancestor. For each family member, you need to store the
person’s name (assumed to be unique string), a set of attributes and a list of that person’s
children, thus forming a tree. The attributes are just strings that represent facts about the
person, such as “New Zealander”, “Farmer” or “Nelson”.

(a) (3 marks) Write Java declarations for the fields required in the class used to repre-
sent nodes in this tree.

public class Person {

}

(b) (6 marks) Complete the following method, in the Person class, to print the names
of all people in the family, starting with the Person the method is called on.

public void printNames() {

}

COMP103 Page 12 of 28

Student ID: .

(c) (6 marks) Complete the following method, in the Person class, to count the num-
ber of people in the family having a given attribute, starting with the Person the
method is called on.

public int countWithAttribute(String att) {

}

COMP103 Page 13 of 28

Student ID: .

6. Heaps (15 marks)

(a) A heap is defined to be a complete partially ordered tree stored in an array.

i. (2 marks) What is the defining property of a complete tree?

ii. (2 marks) What is the defining property of a partially ordered tree?

iii. (1 mark) If the root of the heap is stored at index 0, what are the indexes of the
left and right children of the node at index k (if they exist)?

iv. (1 mark) How do you determine whether a node in a heap is a leaf?

COMP103 Page 14 of 28

Student ID: .

(b) (6 marks) Suppose the following values are added, in the order shown, to a heap
that starts off empty:

1 3 5 6 4 2 7

Show the partially-ordered tree represented by the heap after each value is added.

Note that you should construct a “max” heap, so the largest value (7) ends at the
root.

Draw the array containing the heap after all values have been added:

COMP103 Page 15 of 28

Student ID: .

(c) (3 marks)

Given the following array representing a “max” heap:

20 14 15 10 9 13 7 8 6

Draw the partially-ordered tree representation of the heap after removing its largest
element.

COMP103 Page 16 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 17 of 28

Student ID: .

7. Sorting (20 marks)

(a) Selection sort and insertion sort both work by dividing the list (represented as an
array) into a sorted part and an unsorted part, and increasing the size of the sorted
part by one in each execution of the outer loop.

For each of these algorithms, explain briefly how the algorithm chooses the next item
to be added to the sorted part, and how it is added.

i. (3 marks) Selection sort

ii. (3 marks) Insertion Sort

COMP103 Page 18 of 28

Student ID: .

(b) Merge sort and Quicksort both work by splitting the list to be sorted into two parts,
sorting each of them recursively, and then combining the results to produce the re-
quired sorted list.

Briefly describe each of these steps, and give the cost of each step in terms of the
sizes of the sub-lists being split or combined.

i. (5 marks) Merge sort:

Split:

Cost:

Combine:

Cost:

COMP103 Page 19 of 28

Student ID: .

ii. (5 marks) Quicksort:

Split:

Cost:

Combine:

Cost:

COMP103 Page 20 of 28

Student ID: .

(c) (4 marks) Suppose you have a large set of integers to sort (more than a million),
and you know that all of the integers are between one and a thousand.

Describe an efficient way of sorting these numbers, and give its cost.

COMP103 Page 21 of 28

Student ID: .

8. Hashing (15 marks)

(a) (5 marks) Suppose you have a hash table which stores strings, using closed hashing,
and that the following words have hash codes as shown below:

Word: the quick lazy dog jumps over brown fox

Hash code: 5 6 8 2 6 7 3 7

Show the table that would result after inserting the above words into the table, in
the order shown, starting with an empty table, and using linear probing to resolve
collisions.

You should show the position of each word in the table by drawing a line from the
relevant cell in the table to the word that is stored there. For example, you should
start by drawing a line from cell 5 to “the”.

0 1 2 3 4 5 6 7 8 9 10 11 12

the quick lazy dog jumps over brown fox

(b) (5 marks) Explain how open hashing avoids the problem of handling collisions asso-
ciated with closed hashing, as in part (a).

COMP103 Page 22 of 28

Student ID: .

(c) (5 marks) Consider a hash function for words that just takes the positions in the
alphabet (counting from 0, as shown in the table below) of the first and last letters
and adds them together. For example the hash code for “the” is 19 + 4 = 23.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Explain why this hash function is not very good, and how you would design a better
hash function.

* * * * * * * * * * * * * * *

COMP103 Page 23 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 24 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 25 of 28

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 Page 26 of 28

Student ID: .

Documentation

Brief (and simplified) specifications of some relevant interfaces and classes.

interface Collection<E>

public boolean isEmpty()

public int size()

public boolean add(E item)

public boolean contains(Object item)

public boolean remove(Object element)

public Iterator<E> iterator()

interface List<E> extends Collection<E>

// Implementations: ArrayList, LinkedList

public E get(int index)

public E set(int index, E element)

public void add(int index, E element)

public E remove(int index)

// plus methods inherited from Collection

interface Set extends Collection<E>

// Implementations: ArraySet, HashSet, TreeSet

// methods inherited from Collection

interface Queue<E> extends Collection<E>

// Implementations: ArrayDeque, LinkedList

public E peek () // returns null if queue is empty

public E poll () // returns null if queue is empty

public boolean offer (E element) // returns false if fails to add

// plus methods inherited from Collection

class Stack<E> implements Collection<E>

public E peek () // returns null if stack is empty

public E pop () // returns null if stack is empty

public E push (E element) // returns element being pushed

// plus methods inherited from Collection

interface Map<K, V>

// Implementations: HashMap, TreeMap, ArrayMap

public V get(K key) // returns null if no such key

public V put(K key, V value) // returns old value, or null

public V remove(K key) // returns old value, or null

public boolean containsKey(K key)

public Set<K> keySet() // returns a Set of all the keys

COMP103 Page 27 of 28

Student ID: .

interface Iterator<E>

public boolean hasNext();

public E next();

public void remove();

interface Iterable<E> // Can use in the "for each" loop

public Iterator<E> iterator();

interface Comparable<E> // Can compare this to another E

public int compareTo(E o); // -ve if this less than o; +ve if greater

interface Comparator<E> // Can use this to compare two E’s

public int compare(E o1, E o2); // -ve if o1 less than o2; +ve if greater

class Collections

public static void sort(List<E>)

public static void sort(List<E>, Comparator<E>)

public static void shuffle(List<E>, Comparator<E>)

class Arrays

public static <E> void sort(E[] ar, Comparator<E> comp);

class Random

public int nextInt(int n); // return a random integer between 0 and n-1

public double nextDouble(); // return a random double between 0.0 and 1.0

class String

public int length()

public String substring(int beginIndex, int endIndex)

COMP103 Page 28 of 28

