
Family Name: .

Other Names: .

ID Number: .

Signature .

Model Solutions
COMP 103: Test 1

9th August, 2013

Instructions

• Time allowed: 45 minutes

• There are 45 marks in total.

• Answer all the questions.

• Write your answers in the boxes in this test paper and hand in all sheets.

• Brief Java documentation is supplied on the last pages.

• This test will be converted to 15% of your final grade.

Questions Marks

1. Question 1 [13]

2. Question 2 [8]

3. Question 3 [24]

TOTAL:

Question 1. [13 marks]

(a) [2 marks] Suppose you use a List called mypets to store information about your pets,
represented as objects of type Pet. Write code to declare and initialise an empty instance of
such a list.

List <Pet> mypets = new ArrayList <Pet> ();.

(b) [2 marks] Many people today have more than one phone number at which they might
be reached. Suppose you wish to use a Map called phoneNums to store the set of phone
numbers associated with each of your friends, who are represented by a class Person. The
Map needs to be from keys that are objects of class Person, to sets of integers. Write code to
declare and initialise an empty instance of such a map.

Map <Person, <Set <Integer>>> phoneNums =
new HashMap <Person, <Set<Integer>>> ();.

(c) [2 marks] Java has interfaces Iterable and Iterator. In words, describe the difference be-
tween these two interfaces.

Iterable ensures that the class HAS an iterator (returned by the method iterator()
required by the interface), and this allows an object to be the target of the “foreach”
statement.
Iterator ensures that the class IS an iterator, meaning it has methods next() and
hasNext() (and remove()). .

(d) [3 marks] Java uses the method Collections.sort() to sort Lists into what is called a “nat-
ural ordering”. What is the critical method that the class of objects in the list must have for
this to work, and how is this ensured in Java?

. The class must have a compareTo() method. //Ensured by saying xxx extends
Comparable

(e) [2 marks] Which Java interface ensures that a class is able to compare two objects of
some other class by returning an integer?

. Comparator

(f) [2 marks] Queues and Stacks can be thought of as Lists that have additional constraints
placed on them. What are these extra constraints?

Queue constraint: FIFO

Stack constraint: FILO

COMP 103 (Terms Test 1) Page 2 of 10 continued...

Question 2. [8 marks]

(a) [2 marks] Here is a list:

List <String> mylist = new ArrayList <String> ();

Suppose the list has been populated with various Strings by scanning a file, for example.

Write code that uses UI.println() to print out the strings, by going through the list using a
standard “for” loop such as for (int i=0; ...)...

for (int i=0; i<mylist.size (); i++)
UI. println (mylist .get(i));

.

(b) [2 marks] Write code that uses UI.println() to print out the strings, by going through the
list using a “for each” loop instead.

for (String s: mylist)
UI. println (s);

.

(c) [4 marks] Write code that uses UI.println() to print out the strings, by getting and using
an Iterator instead.

Iterator <String> iter = mylist . iterator ();
while (iter .hasNext())

UI. println (iter .next ());

.

COMP 103 (Terms Test 1) Page 3 of 10 continued...

Question 3. [24 marks]

This question concerns a program written to keep track of cars in a car sales yard.

Most cars are painted with just one colour, but some consist of several colours. Suppose
there is a class Car, which has two fields: an integer registration number and a List of the all
colours painted on that car.

public class Car {
private int reg;
private Set <String> colours;

// constructor , which is passed a set of colours
public Car(int registration , Set <String> cols) {

this .reg = registration ;
this .colours = cols;

}

// a method
public Set<String> getColours() { return colours; }

}

Note that the constructor has two arguments: an integer and Set of String objects (the
colours).

Each car is identified by its unique registration number, and stores its colours in a Set.

Information on an individual car is stored on a single line, in a simple text file. The format
is the car model (eg “Mini”), registration number, and a list of colours, for each car. A car
will always have at least one colour.

Here is a short example:

Cortina 1634 blue yellow green
Mini 7721 red
Mini 223 black white
Jeep 989 white

Suppose you are writing a class which reads a text file formatted in this way. You may
assume that the file is correctly formatted.

COMP 103 (Terms Test 1) Page 4 of 10 continued...

(a) [10 marks] Complete the following method mapModelToCars, which is passed a file-
name. The method needs to generate and return a Map. Each entry in the Map will have a
model as its key, and a Set of Car objects as its value.

The first couple of lines are provided for you.

It is usually a good idea to start with pseudocode, as comments.

Map <String,Set<Car>>

while (sc.hasNext()) {
String model = sc.next();
int reg = sc.nextInt ();
Scanner linescan = new Scanner(sc.nextLine());
// make a new set to read the colour into
Set <String> colours = new HashSet <String> ();
while (linescan.hasNext())

colours.add(linescan.next ());

// make a new Car
Car c = new Car(reg, colours);

// ensure the Map has a set (value) for this model (key)
if (! modelsMap.keySet().contains(model)) // is a novel model

modelsMap.put(model, new HashSet<Car>());
// add car into map
modelsMap.get(model).add(c);

}
return modelsMap; // actually , needs to go after catch , but not penalized .

}

public mapModelToCars(String filename) {

Map <String, Set<Car> > modelsMap = new HashMap <String, Set<Car>> ();

try {
Scanner sc = new Scanner(new File(filename));

}
catch (IOException e) {

UI. println ("Error: File not found!");
return null ;

}
}

COMP 103 (Terms Test 1) Page 5 of 10 continued...

(b) [7 marks] Write code for printAllColours, which uses the Map to generate and print out
the set of all the colours that appear on at least one car.

Note this is the same as all the colours mentioned in the original file, but they are now stored
inside Car objects, which are in the Map.

Each such colour should be printed out just once, but the order does not matter.

public void printAllColours(Map <String, Set<Car>> modelsMap) {
Set <String> allColours = new HashSet <String> ();

// note there are several ways to do this .
for (Set <Car> setOfCars : modelsMap.values())

for (Car car : setOfCars)
for (String col : car.getColours())

allColours .add(col);

for (String c : allColours)
UI. println (c);

}

public void printAllColours(Map <String, Set<Car>> modelsMap) {

}

COMP 103 (Terms Test 1) Page 6 of 10 continued...

(c) [7 marks] Car buyers tend to have preferences for some colours. If a customer expresses
an interest in buying a car with some red on it, for example, we would like to list out the
models for which there is at least one car that has red on it.

Write a new method, printModelsGivenColour(), which takes a colour (String) and the Map
provided by mapModelToCars as arguments, and prints out the models. To gain full marks,
print the models out in ascending order, without duplications.

public void printModelsGivenColour(String colour, Map <String, Set<Car>> modelsMap) {

List <String> models = new ArrayList <String> ();
for (String model : modelsMap.keySet()) {

// is there a car of this model having the colour?
for (Car car : modelsMap.get(model))

if (car.getColours().contains(colour)) {
models.add(model);
break;

}
// Note that we only add once because the keys to a Map
// are a Set . But there are other ways to do this , eg . add
// to a Set , then convert that to a List

}

// Now sort it and print out .
Collections.sort (models);
for (String mod : models) UI.println (mod);

}

public void printModelsGivenColour(...

}

COMP 103 (Terms Test 1) Page 7 of 10

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 (Terms Test 1) Page 8 of 10 continued...

appendix
Some brief and truncated documention that may be helpful:

interface Collection<E>
public boolean isEmpty()
public int size ()
public boolean add(E item)
public boolean contains(Object item)
public boolean remove(Object element)
public Iterator<E> iterator()

interface List<E> extends Collection<E> // Implementations: ArrayList , LinkedList
public E get(int index)
public E set(int index, E element)
public void add(int index, E element)
public E remove(int index)
// plus methods inherited from Collection

interface Set extends Collection<E> // Implementations: ArraySet, HashSet, TreeSet
// methods inherited from Collection

interface Queue<E> extends Collection<E> // Implementations: ArrayQueue, LinkedList
public E peek () // returns null if queue is empty
public E poll () // returns null if queue is empty
public boolean offer (E element) // returns false if fails to add

class Stack<E> implements Collection<E>
public E peek () // returns null if stack is empty
public E pop () // returns null if stack is empty
public E push (E element) // returns element being pushed

interface Map<K, V> // Implementations: HashMap, TreeMap, ArrayMap
public V get(K key) // returns null if no such key
public V put(K key, V value) // returns old value , or null
public V remove(K key) // returns old value , or null
public boolean containsKey(K key)
public Set<K> keySet()
public Collection<V> values()
public Set<Map.Entry<K,V>> entrySet()

interface Map.Entry<K,V> // a nested class of Map
K getKey()
V getValue()

public class Collections
public void sort(List<E>)
public void sort(List<E>, Comparator<E>)

interface Iterable :
public Iterator<T> iterator ()

interface Iterator :
public boolean hasNext()
public E next()
public void remove(E)

interface Comparable:
public int compareTo(E)

interface Comparator:
public int compare(E ob1, E ob2)

class UI:
public println (anything val)

class Scanner:
public boolean hasNext()
public boolean hasNextInt()
public String next()
public int nextInt ()
public String nextLine()

