COMP 103 : Test 2
WITH SOLUTIONS
November 1, 2023

9:30 AM - 11:30 AM

Test Instructions

o Time Limit: 120 Minutes

e Write your Full Name and Student ID at the top of the first page of the test paper.
For all subsequent pages, include your Student ID at the top.

o Attempt all questions in the test paper.

e The test will be marked out of 120 marks.

e Answer in the appropriate boxes if possible. If you write your answer elsewhere, make it
clear where your answer can be found.

e There are spare pages for your working and your answers in this test, but you may ask
for additional paper if you need it.

o If you encounter a question that appears unclear, feel free to request clarification from
the invigilator.

¢ A brief Java Documentation and a summary of collections are made available with the
test.

e You can assume that all libraries required for programs are imported and are available
for you to use.

Question Max. mark FEarned mark
1. Properties of Collections 20

2. Using Collections 22

3. Cost of Algorithms 20

4. General Trees 30

5. Traversing Graphs 12

6. Binary Search 8

7. Heaps 8

TOTAL 120

Examiners use only

Question 1. Properties of Collections [20 marks]

For questions 1.a., 1.b, 1.c, 1.d. and 1.e., circle the right answer(s) from the list.

l.a. [4 marks]

Which implementation of the 'Set‘ interface in Java’s collections framework maintains elements
in a sorted order?

1. ArrayList 2. LinkedHashSet 3. HashSet 4. TreeSet

// Answer: 1. TreeSet

1.b. [4 marks]

Which data structure in Java’s collections framework provides fast random access to elements
but may be less efficient for insertions and removals in the middle?

1. HashSet 2. PriorityQueue 3. TreeMap 4. ArrayList

// Answer: 4. Arraylist

l.c. [4 marks]

When implementing the equals() method for a class, which of the following statements is true
regarding the compareTo() method if we want to maintain consistency, assuming the class has
both methods implemented?

1. The compareTo() method should return -1 for any two objects that are considered equal
by equals().

2. The compareTo() method should return 0 for any two objects that are considered equal
by equals().

3. The compareTo() method should return 1 for any two objects that are considered equal
by equals().

4. None of the above is necessary.

// Answer: 2.

1.d. [4 marks]

Consider the following lines of Java code. Which of these examples demonstrates the practice of
‘programming to interface’? Select the line(s) that represent(s) the ‘programming to interface’
concept.

1. ArrayList<String> list = new ArraylList<>();
2. Map<String, Integer> map = new HashMap<>();
3. Set<Double> set = new HashSet<>();

4. LinkedList<Character> linkedList = new LinkedList<>();

//Answer: Lines 2. and 3.

l.e. [4 marks]

Which one of the following data structures in Java’s Collection Framework cannot have a null
element?

1. Arraylist 2. HashSet 3. TreeSet 4. LinkedList

// Answer: 3. TreeSet

Question 2. Using Collections [22 marks]

Given WordData class as bellow,

public class WordData {
public String word; // a word encountered in the text
public int count; // frequency count
WordData(String w) {
word = w;
count = 1; // Count 1is set to be 1 when a a WordData onject is created

complete the following class called WordFrequencyAnalyser. The goal of this program is to count
the frequency of words encountered in a text and save them along with their corresponding
WordData objects in an appropriate data structure in ascending alphabetical order and ignoring
the case of letters. You'll need to complete the following tasks:

2.a. [3 marks]

Declare and initialise a TreeMap to store the words and their corresponding WordData objects.

public class WordFrequencyAnalyser {
// Answer to 2.Q.=============

private Map<String, WordData> words = new TreeMap<>();

2.b. [8 marks]

Implement the processWord method to process a word and update the WordData objects in your
data structure. If the word is encountered for the first time, create a new WordData object. If
it has been encountered before, update the count. Ignore the case of the letters: e.g., Book and
book are considered the same.

ipublic void processWord(String word) { i
‘ //Answer to 2.b.================== ‘
‘ if (word != null) { // [1 mark for nullity check] ‘
‘ word = word.toLowerCase(); // Normalize word to Lowercase ‘
‘ // [1 mark for checking case correctly] ‘

if (words.containsKey(word)) {//[3 marks for incrementing count]
// Word already exists, update count
WordData existingWordData = words.get(word);
existingWordData.count++;

} else {
// Word 1is encountered for the first time [3 marks]
WordData newWordData = new WordData(word);
words.put(word, newWordData);

2.c. [6 marks]

Implement the getFrequencySorted method to return a List of WordData objects from words
that is sorted by word frequency in descending order. Use a lambda expression for sorting

public List<WordData> getFrequencySorted() {

List<WordData> wordList = new ArrayList<>(words.values());//[2 marks]
wordList.sort((a, b) -> b.count - a.count); // [3 marks]

// OR: Collections.sort(wordList, (a,b) -> b.count - a.count);
return wordList; //[1 mark]

2.d. [5 marks]

Implement the print() method to 1. Using the map, print all the words along with their
frequencies where the words are sorted alphabetically, and then 2. Using the list, print all
the words along with their frequencies where the words are sorted by frequency. Make use of
getFrequencySorted method.

public void print() {

// Output data from the map (sorted by word) [2 marks]
for (WordData data : words.values()) {
UI.println(data.word + " (" + data.count + ")");

// Output data from the list (sorted by frequency) [3 marks]
List<WordData> wordList = getFrequencySorted();
UI.println("\nList of words sorted by frequency of occurrence:\n");
for (WordData data : wordList) {
UI.println(data.word + " (" + data.count + ")");
}
} // End of print() method
} // End of WordFrequencyAnalyser class

Question 3. Cost of Algorithms [20 marks]

3.a. [5 marks]

Consider the Big-O (worst-case) costs of the fragment of code below, where mylist is an
ArrayList<String>, of size n.

List<String> words = new ArraylList<String>();//cost = 0(1), times=1
for (int 1 = 0; 1 < mylist.size(); i++) {
for (int j = 0; j < mylist.size(); j++) {
if (mylist.get(i).charAt(0) == mylist.get(j).charAt(0)) {
//cost = 0(1), times=n~"2
words.add(mylist.get(i)); //cost = 0(1), times=n~"2

// Total Cost=0(n"2)

3.b. [5 marks]

Consider the Big-O (worst-case) costs of the fragment of code below, where mylist is an
ArraylList<Integer>, of size n.

Set<Integer> numbers = new TreeSet<Integer>();//cost = 0(1), times=1
for (int i = 0; i < mylist.size(); i+=3) {
if (mylist.get(i) % 2 == 0) { // cost = 0(1), times=n/3
numbers.add(mylist.get(i)); // cost = 0(log n), times=n/3
}

// Total Cost=0(n Log n)

3.c. [5 marks]

A clinic uses a HashMap to store its patients, where the Patient ID is the key, and the patient’s
medical history is the value. If it takes 80 nanoseconds to retrieve a patient’s medical history
when the clinic has 10,000 patients, how long would you expect it to take when the clinic has
100,000 patients? Explain your reasoning.

ANSWER: It would still take approximately 80 nanoseconds to retrieve a patient's medical
< history. HashMaps, when utilized effectively and avoiding hash collisions, provide
< constant-time performance, 0(1), for retrieval operations regardless of their size.

3.d. [5 marks]

A hospital uses a sorted ArraylList to maintain its list of appointments in chronological (i.e.,
sorted by appointment time) order. When the hospital has 1,000 appointments scheduled, it
takes 5 milliseconds to insert a new appointment into the correct position in the list. If the
hospital had 10,000 scheduled appointments, how long would you expect it to take to insert a
new appointment in the correct position? Explain your reasoning.

ANSWER: 50 milliseconds. Inserting an element into a sorted ArrayList takes O(n) time. If
< 1inserting into a list of 1,000 appointments takes 5 milliseconds, then for a list ten
times bigger (10,000 appointments), it would take approximately 10 times longer, or 50

milliseconds, to insert a new appointment. This is because the operation involves
searching for the correct position, which is 0(log n) with binary search, and then
inserting, which is O(n) due to potential shifting of elements. These costs add, so the
dominant factor here is the 0(n) insertion.

L es

Question 4. General Trees [30 marks]

In this question we use general trees to implement a simple Box Stacking game. Each box has
a width, and contains a letter (“A”, “B”,...). The program represents each box as a Box object,
which stores data about its width, the letter, and a list of any other boxes that are stacked
directly on top. The Box class has the following methods:

Box class:
public String getLetter (); // get the Lletter of the box
public double getWidth(); // get the width of the box
public List<Box> getTopBoxes(); // get the List of the boxes
// directly on top of the selected box
public String toString (); // return a String with format ’(letter, width)”

The following figure shows an example of a set of stacked boxes (left-hand side) and its repre-
sentation as a general tree (right-hand side). (A, 20) represents a box with letter A and width
20. If getTopBoxes() is called on (A,20) it will return a list consisting of (B,5), (C,8) and (D,3).
And, if it is called on (B,5) it will return a list consisting of (E,3) and (F,3).

€3 €| ©n || @as |
@9 | | e [e3
(A, 20)

4.a. [10 marks]

Complete printBoxes() method which is given the root node, and prints out all the boxes in
the tree, using indentation to show the structure. For example, the tree on the previous page
should be printed as:

(A, 20)

(B, 5)
(E, 3)
(F, 3)

(C, 8)
(G, 7)

(b, 3)
(A, 4)

public void printBoxes(Box root){

printBoxes(root , "");

public void printBoxes(Box root, String indent){
UI.println(indent + root.toString());
for (Box child : root.getTopBoxes())
printBoxes(child , indent+" ");

4.b. [10 marks]

Complete the following numOccurrences() method which is given the root node and a letter.
The method should return the number of boxes containing the given letter (in lowercase or
uppercase).

For example, calling numOccurrences(root, "A") returns 2.

public int numOccurrences(Box root, String letter){

// Answer: ===s================
int count = 9;
if (root.getLetter().equalsIgnoreCase(letter))
count = 1;
for(Box box: root.getTopBoxes()){
count += numOccurrences(box, letter);

}

return count;

//

10

4.c. [10 marks]

In the game, a box is unstable if the total width of boxes directly on top is greater than its
own width. Complete the following findUnstableBoxes() method which is given the root node,
and returns a list of unstable boxes.

For example, calling findUnstableBoxes(root) returns a list containing two boxes (B, 5) and
(D, 3).

public List <Box> findUnstableBoxes(Box root){

List<Box> ans = new ArrayList<Box>();
findUnstableNodes(root, ans);
return ans;

}

public void findUnstableBoxes(Box root, List<Box> ans){
double width = root.getWidth();

//sum all the widths

double topWidth = 0;

for(Box box: root.getTopBoxes()){
topWidth += box.getWidth();

}

if(width<topWidth)
ans.add(root);

for(Box box: root.getTopBoxes()){
findUnstableBoxes(box, ans);

}

11

Question 5. Traversing Graphs [12 marks]

You are writing a travel app that helps customers to navigate in a train network containing
multiple train stations. You can use a graph to represent the train network where each node
represents a train station. Two stations are considered ‘neighbours’ if they are connected
directly in the graph (without any other station/nodes in between). The Station class has the
following methods:

Station class :
public String getName(); // get the name of the Station
public Set<Station> getNeighbours(); // get the set of neighbouring stations

5.a. [6 marks]

Complete the following isConnected() method which returns true if two Stations are con-
nected, directly or indirectly, in the network and returns false otherwise.

public boolean isConnected(Station s1, Station s2){

return isConnected(sl, s2, new HashSet<Station>());

public boolean isConnected(Station s1, Station s2) {
// Create a set to keep track of visited stations during DFS
Set<Station> visited = new HashSet<>();

// Start DFS from sl to see if it can reach s2
return dfs(sl, s2, visited);

private boolean dfs(Station current, Station target, Set<Station> visited) {
// If we have reached the target station, they are connected
if (current == target) {
return true;

// Mark the current station as visited
visited.add(current);

// Iterate through neighbors of the current station

for (Station neighbor : current.getNeighbors()) {
// If the neighbor has not been visited, recursively check if it can reach the
< target

12

if (!visited.contains(neighbor) && dfs(neighbor, target, visited)) {
return true;

// If no path 1is found after exploring neighbors, return false
return false;

5.b. [6 marks]

Complete the following withinDistance() method, which should return a set of train stations
reachable from the starting station (start) while considering a maximum number (maxDist)
of intermediate stations that can be traversed.

public Set<Station> withinDistance(Station start, int maxDist) {

return withinDistance(start, maxDist, ©, new HashSet<Station>());

public Set<Station> withinDistance(Station start,
int maxDist,
int currentDist,
Set<Station> within) {
if (currentDist <= maxDist) {
within.add(start);
}
if (currentDist > maxDist) {
return within;

for (Station stn : start.getNeighbours()) {
withinDistance(stn, maxDist, currentDist + 1, within);

}

return within;

13

Question 6. Binary Search [8 marks]

6.a. [4 marks]

A music store has a collection of albums sorted by release date. If the store has 1,024 albums
and uses binary search to find an album, what is the maximum number of comparisons the
store would need to make?

ANSWER: 10 (i.e. log2 of 1,024)

6.b. [4 marks]

Consider the sequence [10, 20, 30, 40, 50, 60, 70, 80, 90]. If you're searching for the number 35
using binary search, how many comparisons will you need before determining that 35 is not
in the list?

ANSWER: 3 comparisons (First 50, then 30, then 40)

14

Question 7. Heaps [8 marks]

Background: In this course, we have studied the “heap”: a complete binary tree, imple-
mented using an array, that maintains the heap property. For a max heap, every parent node
has a value greater than or equal to any of its children.

Suppose you have a max heap that was created as follows:

private List<Integer> heap = new ArraylList<>();

And which has since then been populated with several integer values.

Below is a method that inserts a value into the Max Heap. It uses a helper method
pushUp(index) which ensures the heap property is maintained after the insertion. Complete
the pushUp(index) method.

public void insert(int value) {
heap.add(value); // add to the end of the heap
pushUp(heap.size() - 1); // start pushing up from the lLast position (where the new
< value was added)

private void pushUp(int index) {
//Answer
if(index == @) return; // root of the heap, nothing to push up

int parentIndex = (index - 1) / 2;

if(heap.get(parentIndex) < heap.get(index)) {
// swap parent with current value
int temp = heap.get(parentIndex);
heap.set(parentIndex, heap.get(index));
heap.set(index, temp);

pushUp(parentIndex);

15

	Test Instructions
	Question 1. Properties of Collections [20 marks]
	1.a. [4 marks]
	1.b. [4 marks]
	1.c. [4 marks]
	1.d. [4 marks]
	1.e. [4 marks]

	Question 2. Using Collections [22 marks]
	2.a. [3 marks]
	2.b. [8 marks]
	2.c. [6 marks]
	2.d. [5 marks]

	Question 3. Cost of Algorithms [20 marks]
	3.a. [5 marks]
	3.b. [5 marks]
	3.c. [5 marks]
	3.d. [5 marks]

	Question 4. General Trees [30 marks]
	4.a. [10 marks]
	4.b. [10 marks]
	4.c. [10 marks]

	Question 5. Traversing Graphs [12 marks]
	5.a. [6 marks]
	5.b. [6 marks]

	Question 6. Binary Search [8 marks]
	6.a. [4 marks]
	6.b. [4 marks]

	Question 7. Heaps [8 marks]

