
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2007

END YEAR

COMP103

Introduction to

Data Structures and Algorithms CONTAINS SOLUTIONS!!!

Time Allowed: 3 Hours

Instructions: 1. Attempt all of the questions.
2. Read each question carefully before attempting it. (Suggestion: You do not have to
answer the questions in the order shown. Do the questions you find easiest first.)
3. This examination will be marked out of 180 marks, so allocate approximately 1
minute per mark.
4. Write your answers in the boxes in this test paper and hand in all sheets.
5. Non-electronic Foreign Language — English translation dictionaries are permit-
ted.
6. Calculators are allowed.
7. There is documentation on the relevant Java classes and interfaces at the end of
the exam paper.

WARNING: THIS COPY CONTAINS SOLUTIONS!!!

Questions Marks

1. Basic Questions [20]

2. Programming with Sets [25]

3. Using Collections [25]

4. Algorithms and Collections [25]

5. All About Trees [29]

6. Priority Queues [20]

7. Hashing [20]

8. Graphs [16]

COMP103 continued...

Question 1. Basic Questions [20 marks]

(a) [2 marks] What is the name of a good algorithm for finding an item in a sorted array of items.

Binary Search

(b) [2 marks] What is the maximum number of comparisons the algorithm may perform if searching
for an item in a sorted array of 1,000,000 items?

20(= ⌈log2(1, 000, 000 + 1)⌉)

(c) [2 marks] State two differences between a Set collection and a Queue collection.

A Set does not keep items in order, you can remove any item, and you cannot
have duplicate items in a set.
A Queue keeps items in order, you can only remove the item at the front of the
queue, and you can have duplicate items in a queue.

(d) [2 marks] Consider the following field declarations:

private List<LogEntry> logs;
private Comparator<LogEntry> comp;

Using an appropriate method from the Java libraries, write a Java statement that would sort the
LogEntrys in logs according to the comparator.

Collections.sort(logs, comp);

(e) [2 marks] State one advantage of HeapSort over QuickSort.

HeapSort has a worst case cost of O(n log(n)) so it never takes O(n2)whereas
Quicksort has a worst case cost of O(n2), even though its average case cost is
faster.

(Question 1 continued on next page)

COMP103 2 continued...

Student ID: .

(Question 1 continued)

(f) [2 marks] Can a Priority Queue contain multiple items with the same priority?

Yes.

(g) [2 marks] Why does it not make sense to do an in-order traversal of a Ternary Tree?

The in-order traversal visits the node between visiting its left and right subtrees.
In a ternary tree, there are three children, and therefore there is a not just a single
point between the children.

(h) [2 marks] What kinds of Hash Table implementations allow you to safely store and retrieve items
with the same hash code?

Any of the hash tables described in the course

(i) [2 marks] State at least two graph properties that a tree has if viewed as a graph?

Rooted, directed, acyclic, connected.

(j) [2 marks] Which implementation of a Set discussed in this course has the best average perfor-
mance for add, remove, and find?

HashSet //(or BitSet, though this isn’t strictly an implementation of Set)

COMP103 3 continued...

Question 2. Programming with Sets [25 marks]

Suppose you are writing a method to determine whether two Sets of Strings are the same, i.e.,
contain the same elements. Since a Set does not impose any ordering on its elements, you cannot
just iterate through the two sets, comparing the elements, since the elements might be in different
orders.

You have constructed the following three EqualSets methods which all work correctly, and are
independent of how the Sets of Strings are implemented; you now have to decide which is best.
Note: The third method uses the sort method from the Arrays class which sorts the elements of an
array using the MergeSort algorithm.

1 public static boolean equalSets1(Set<String> set1, Set<String> set2){
2 if (set1.size () != set2.size ()) return false;
3 for (String elem1 : set1) {
4 boolean found = false;
5 for (String elem2 : set2) {
6 if (elem1.equals(elem2))
7 found = true;
8 }
9 if (! found)

10 return false;
11 }
12 return true;
13 }
14
15 public static boolean equalSets2(Set<String> set1, Set<String> set2){
16 if (set1.size () != set2.size ()) return false;
17 for (String elem1 : set1) {
18 if (! set2.contains(elem1))
19 return false;
20 }
21 return true;
22 }
23
24 public static boolean equalSets3(Set<String> set1, Set<String> set2){
25 if (set1.size () != set2.size ()) return false;
26 String [] array1 = new String [set1.size ()];
27 int i = 0;
28 for (String elem1 : set1) array1[i++] = elem1;
29 Arrays.sort (array1);
30
31 String [] array2 = new String [set2.size ()];
32 int j = 0;
33 for (String elem2 : set2) array2[j++] = elem2;
34 Arrays.sort (array2);
35
36 for (int k = 0; k < array1.length; k++){
37 if (! array1[k]. equals(array2[k]))
38 return false;
39 }
40 return true;
41 }

COMP103 4 continued...

Student ID: .

(Question 2 continued on next page)

COMP103 5 continued...

(Question 2 continued)

(a) [15 marks] Compare the three methods:

• Work out the asymptotic (Big-O) cost of each method, in terms of the size of the sets. Show
your working, and state any assumption that you have to make.

• State whether the methods require additional memory space.

The size method is probably O(1) and at most O(n), and is the same for all the
methods.

equalSets1 has nested for loops, each iterating n times. Therefore, it will call the
equals method n2 times. Therefore, is will be O(n2). It uses no extra memory
space.

equalSets2 has one for loop iterating n times. Therefore, it will call the contains
method n times. contains may be O(1) (if it is a hashSet), O(log(n)) (if it uses a BST
or sorted array with binary search), or O(n) (if it is an unsorted array). Therefore,
it will be O(n), O(n log(n)), or O(n2). It uses no extra memory space.

equalSets3 has to copy each set into an array, which is O(n). It then has to merge-
sort each array, which will be O(n log(n)). Finally, it has a for loop that calls the
equals method n times. Therefore, it is O(n log(n)). It uses 2n extra memory
locations for the two arrays and an additional n locations for mergesort.

(Question 2 continued on next page)

COMP103 6 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 7 continued...

(Question 2 continued)

(b) [4 marks] Explain which method you would use if you did not know how the sets were imple-
mented.

I would use equalSets3 if I didn’t know how the sets were implemented, because
it is at most O(n log(n)). However, it uses significant extra space which might not
be good for very large sets.

(c) [3 marks] Explain why your choice might change if you knew how the sets were implemented.

If I knew that the sets were hashSets, I would definitely use method 2. If the sets
were sorted arrays or BSTs, I would still use method 2 because it requires no extra
space, and might be faster. If I knew that the sets were ArraySets, then I would
use method 3.

(d) [3 marks] The first two methods would not work correctly on bags, but the third method would.
Give an example of two different Bags that the first two methods would say were the same.

bag1: “a”, “b”, “b”, bag2: “a”, “a”, “b”
or bag1: “a”, “b”, “b”, bag2: “a”, “b”, “c”
Note, the bags must be the same size!

COMP103 8 continued...

Student ID: .

Question 3. Using Collections [25 marks]

This question requires you complete three methods for a program for processing enrolment data for
a university. The program reads a file listing the courses that each student is enroling for, and then
prints out a list of schools for each student, and a list of students for each school.

(a) [6 marks] The first method reads the courses-schools.txt file that lists all the courses in
the university and the schools that teach them, and constructs a Map for looking up the school that
teaches a given course. The file has one line for each course, containing the course code and the
abbreviation of the school. For example:

COMP102 SMSCS
COMP103 SMSCS
MATH114 SMSCS
PHYS105 SCPS
TECH102 SCPS
...

Complete the readCourses() method below that will initialise and fill the courseToSchool field.

Documentation for Set, Map, List, etc. is given in the appendix.

courseToSchool = new HashMap<String, String>();

String course = sc.next ();
String school = sc.next ();
courseToSchool.put(course, school);

import java. util .∗;
public class Enrolment{

private Map<String, String> courseToSchool; // map from course name to school name

/∗ Reads a file of school − course pairs into a map indexed by course ∗/

public void readCourses(){

try {

Scanner sc = new Scanner (new File ("courses-schools.txt"));
while (sc.hasNext()){

}

sc.close ();
}

catch(Exception e){System.out.println("readCourses failed");}
}

(Question 3 continued on next page)

COMP103 9 continued...

(Question 3 continued)

The “enrolments.txt” file contains the list of courses that each student has enroled for. Each line of
the file starts with a student ID followed by the course codes. An example file might be

300123 COMP102 COMP103 MATH114 TECH102 BIOL103
300125 BIOL101 BIOL102 BIOL103
300126 COMP102 BIOL101 COMP103 BIOL103
...

(b) [9 marks] The second method should print out the schools that each student needs approval
from. It should not list a school more than once, even if the student is taking several courses from
the school. For example, given the three students above, it should print out

300123: SMSCS SCPS BIO
300125: BIO
300126: SMSCS BIO

Complete the listsOfSchools() method below. For each student, the method will need to read each
course and look up the school in the courseToSchool map. It will need a collection to keep track of
the schools for the current student.

Set<String> goSee = new HashSet<String>();

String school = courseToSchool.get(course);
goSee.add(school); // add automatically rejects duplicates

for (String school : goSee)
System.out.print(school + " ");

System.out.println ();

public void listsOfSchools(){
try {

Scanner sc = new Scanner(new File("enrolments.txt"));
while (sc.hasNext()){

int ID = sc.nextInt (); // read student ID

while (sc.hasNext() && !sc.hasNextInt()){ // read courses

String course = sc.next ();

}

System.out.print(ID+": "); // print out ID and list of schools

}

sc.close ();
}catch(Exception e){System.out.println("listsOfSchools failed");}

}

(Question 3 continued on next page)

COMP103 10 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 11 continued...

(Question 3 continued)

(c) [10 marks] The third method should print out a list for each school containing all the students
taking courses in the school.

Complete the listsOfStudents() method below. The method will need to read the whole of the en-
rolments.txt file, building a data structure that keeps track of all the students taking courses in each
school. It will then print out the list of students for each school.

String school = courseToSchool.get(course);
Set<Integer> students = schoolToIDs.get(school);
if (students == null){

students = new HashSet<Integer>();
schoolToIDs.put(school, students);

}

students.add(ID); // no need to put the set back − it ’ s already there

}

for(String school : schoolToIDs.keySet()){
System.out.print(school +": ");
Set<Integer> students = schoolToIDs.get(school);
for (int ID : students)

System.out.print(ID + " ");

System.out.println ();
or

for (Map.Entry<String, Set<Integer>> entry : schoolToIDs.entrySet()){
System.out.print(entry.key() +": ");
for (int ID : entry.value())

System.out.print(ID + " ");
System.out.println ();

}

public void listsOfStudents(){
try {

// Map with key being a school

Map<String, Set<Integer>> schoolToIDs = new HashMap<String, Set<Integer>>();
Scanner sc = new Scanner (new File ("enrolments.txt"));
while (sc.hasNext()){

int ID = sc.nextInt ();
while (sc.hasNext() && !sc.hasNextInt()){

String course = sc.next ();

}

sc.close ();
// Print out lists

}catch(Exception e){System.out.println("listsOfStudents failed");}
}

COMP103 12 continued...

Student ID: .

Question 4. Algorithms and Collections [25 marks]

(a) [10 marks] For each of the following implementations of a Set, give the Big-O case cost of the
contains, add, and remove methods. State any assumptions you make in the space under the table.

Implementation Cost of contains Cost of add Cost of remove

ArraySet (unsorted) O(n) O(n) O(n)

SortedArraySet O(log(n)) O(n) O(n)

BSTSet (Binary Search Tree) O(log(n)) O(log(n)) O(log(n))

HashSet (linear probing) O(1) O(1) O(1)

HashSet (with k buckets) O(n/k) O(n/k) O(n/k)

Assumptions:

1. Assume that Binary Search Tree in BSTSet is balanced.

2. Assume that a hash table in HashSet (linear probing) is not close to full.

(b) [5 marks] Describe a general approach for turning a recursive algorithm into an iterative one.

One can use an explicit stack data structure to emulate the call stack / activation
stack used implicitly by the recursive algorithm.

(Question 4 continued on next page)

COMP103 13 continued...

(Question 4 continued)

(c) [10 marks] Timing Performance of Bags. The table below gives the results of a timing test for
one of the following four different implementations of Bag.
Note that it is a Bag and not a Set.

• SortedArrayBag: an array of items, kept in sorted order

• TreeBag: an Binary Search Tree of items.

• OpenHashBag: a hash table using open addressing, guaranteed to be at most 80% full.

• BucketHashBag (unsorted): a hash table of 1000 buckets, where each bucket was an ArrayBag
(unorderd array of items).

The test measured the average time (in microseconds) it took to search for an item (both for items
in the Bag and for items not in the Bag) and the average time it took to add a new item to the bag
when the bag contained n items. The test was run with four different values of n.

n µS per search µS per Add

10,000 0.27 0.18
20,000 0.36 0.18
40,000 0.58 0.18
80,000 1.02 0.19

On the basis of this data, say which implementation of Bag it is, give the asymptotic (Big-O) cost of
searching and adding in that implementation, and a justification of why the table must be from that
implementation of Bag rather than any of the other implementations listed.

Implementation: BucketHashBag (unsorted arrays).

Cost: search: O(n/k) =O(n), add: O(1)

Justification: The cost of adding an item is independent of size; therefore, it cannot
be the SortedArrayBag (O(n)) or the TreeBag (O(log(n))), and must be one of the
hash tables.
The cost of searching increases with n, so it cannot be the OpenHashBag, and
therefore must be the BucketHashBag.
Searching in the BucketHashBag involves an initial hash followed by a linear
search through the bucket. The cost of the search is roughly consistent with a
an initial hash cost of .15µS, plust a cost that grows linearly with n.

COMP103 14 continued...

Student ID: .

Question 5. All About Trees [29 marks]

(a) [2 marks] State the Binary Search Tree property as defined in the lectures.

The value in each node is larger than all the values in the left subtree of the node,
and smaller than (or equal to) all the values in the right subtree of the node.

(b) [2 marks] What are the minimum and maximum depths of a binary tree with 31 nodes?

Assume the depth is equal to the number of levels in a tree, and that the root node is at level one.

Minimum Depth: 5

Maximum Depth: 31

(c) [4 marks] Under what condition will a Binary Search Tree have bad performance? Explain why.

Condition: When the BST is unbalanced, so that the maximum depth of the tree is
O(n).

Explanation: When adding a node that belongs near the end of the long

branch, the cost will be O(n). This bad performance can happen

if the items added are already in sorted order.

(Question 5 continued on next page)

COMP103 15 continued...

(Question 5 continued)

(d) [12 marks] Complete the printIndented method below that prints out the contents of a Binary
Search Tree nicely indented, starting at the root node. It should print one node on each line, indented
by the depth of the node. Each node should be followed by its left subtree, then its right subtree.

For example, given the Binary Search Tree on the left, printIndented should print the output on the
right.

H
D
A
F
E

M
K
I
J

L
Q
O
W
Z

root:

H

D

A F

E

M

K

I

J

L

Q

O W

Z

int indent

// Print current node.

for (int i = 0; i < indent; i++)
System.out.print(" ");

System.out.println (this .value);

if (this . left != null)
this . left .printIndented(indent + 1);

if (this . right != null)
this . right .printIndented(indent + 1);

public class BinarySearchTree<E> {

E value;
BinarySearchTree<E> left, right;
...
public void printIndented() {

printIndented (0);
}

public void printIndented() {

}

}

(Question 5 continued on next page)

COMP103 16 continued...

Student ID: .

(Question 5 continued)

(e) [5 marks] The following traversal method does a traversal of a binary tree using a queue.

public static void traversal (TreeNode start) {
Queue<TreeNode> toVisit = new Queue<TreeNode>();
toVisit .enqueue(start);
while (! toVisit . isEmpty()) {

TreeNode current = toVisit .dequeue();
System.out.println(current.value);
if (current .getLeft () !=null)

toVisit .enqueue(current.getLeft());
if (current .getRight() != null)

toVisit .enqueue(current.getRight());
}

}

Suppose traversal is called on the following tree:

D

R

S U

ZNC HWJ

M KT L

E

Draw the contents of the queue immediately after node “N” has been added to the queue.

Queue: K J W C H N

(Question 5 continued on next page)

COMP103 17 continued...

(Question 5 continued)

(f) [4 marks] Write out the order in which nodes would be visited by a depth-first, right-to-left,
post-order traversal of the following general tree.

D

RST V

Z

KL

EM

HG

K V R E M H S G L T Z D

COMP103 18 continued...

Student ID: .

Question 6. Priority Queues [20 marks]

Consider the following two implementations of a priority queue.

Implementation 1: An array of queues, with the array indexed by the priority level, and the
queues having O(1) time complexity for both enqueue and dequeue operations.

Implementation 2: A heap, with O(log(n)) time complexity for both enqueue and dequeue op-
erations.

(a) [5 marks] Which implementation is better when the number of possible priority levels is large?
Explain why.

implementation 2, because implementation 1 would require too large an array

(b) [2 marks] State the property a binary tree must satisfy in order to be a partially ordered binary tree.

The value in each node must be less than (or equal to) the values

in its children.

(c) [4 marks] If a complete partially ordered binary tree is stored in an array, and the index of the
root is 0, what are the indexes of the children and of the parent of the node at index i?

Children: (2 * i + 1) and (2 * i + 2)

Parent: round-down(i / 2)

(Question 6 continued on next page)

COMP103 19 continued...

(Question 6 continued)

The HeapQueue class is an implementation of priority queues using a heap — a complete, partially
ordered binary tree in an array.

Consider the following HeapQueue of integers, where the integer represents the priority (larger
numbers are higher priority).

count

0 1 2 3 4 5 6 7 8 9 10 11
data

11
99 76 84 5 14 8 78 1 4 1 4

(d) [6 marks] Show the state of the HeapQueue if poll() is called twice on it.
Hint: you may find it easier to first draw the heap as a tree.

After 1st poll:

count

data

0 1 2 3 4 5 6 7 8 9 10 11

After 2nd poll:

count

data

0 1 2 3 4 5 6 7 8 9 10 11

(e) [3 marks] Show the state of the HeapQueue if 85 is added to the HeapQueue in its original state
(before the polls in the previous question):

count

data

0 1 2 3 4 5 6 7 8 9 10 11

COMP103 20 continued...

Student ID: .

Question 7. Hashing [20 marks]

(a) [2 marks] Insert the values ’A’, ’B’, and ’C’ into the Hash Table below, using quadratic probing as
defined in the lectures to resolve collisions. Assume that ’A’ hashes to the index 11, ’B’ hashes to 9,
and ’C’ hashes to 6.

0 1 2 3 4 5 6 7 8 9 10 11

T Z X G H J K E

(b) [5 marks] What is the difference between a hash table with buckets and a hash table that uses
(e.g. linear) probing (“open addressing”)? Explain how the adding and searching work differently
in the two different implementations.

A hash table with buckets consists of an array where each cell contains a collec-
tion. When an item hashes to a cell, it is added/searched for in the collection in
that bucket. The asymptotic cost is just the asymptotic cost of the collections in
the buckets (though the hash table gives a speed up by a factor of the number of
buckets).
A hash table with linear probing consists of an array where each cell can contain
a single item. When an item hashes to a cell that already contains a different
item, the probing will look at adjacent cells until it finds an empty cell (or a cell
containing the item). The asymptotic cost is O(1), as long as the table is not too
full.

(Question 7 continued on next page)

COMP103 21 continued...

(Question 7 continued)

(c) [8 marks] Complete the add method below for a Hash Table implementation of a Set that uses
quadratic probing as defined in lectures. add should return true if the element was inserted suc-
cessfully, otherwise it should return false.
Assume there are no deletions performed on this Hash Table.
Use the hash function provided and assume that hash returns an index within the bounds of the
table array.

int i = this .hash(element);
for (int p = 0; p ∗ p < table.length); p++){

if (table [(i + p ∗ p) % table.length] == null) {

table [(i + p ∗ p) % table.length] = element;
return true;

}

}

return false;

public class HashSet<E> {

public E[] table ;
public int hash(E element) {

return (element.hashCode() % table.length);
}

...
public boolean add(E element) {

ensureCapacity(); // Ensure the table is at most 70% full .

}

...
}

(Question 7 continued on next page)

COMP103 22 continued...

Student ID: .

(Question 7 continued)

(d) [5 marks] The ParkingTicket class below specifies objects that store information about parking
tickets. Complete the hashCode method so that ParkingTicket objects can be stored in a Hash Set.
State any assumptions you make.

int t = ((((year ∗ 12) + month) ∗ 30 + day) ∗ 24 + hour) ∗ 60 + min;
return t ∗ (firstName+lastName+streetName).hashCode();

}

public class ParkingTicket {

private String firstName; // Details of the person who got the ticket .

private String lastName;
private String streetName; // Details of where illegal parking occurred .

private int year; // Date when the ticket was issued .

private int month;
private int day;
private int fine ; // amount of the fine .

public int hashCode() {

}

}

COMP103 23 continued...

Question 8. Graphs [16 marks]

(a) [2 marks] To turn a tree traversal algorithm into a graph traversal algorithm, one change you
would usually make is to use an additional Set data structure. What would this Set contain at any
given point during a graph traversal?

The nodes that have already been visited during the traversal

(b) [4 marks] Draw the adjacency matrix representation of the following undirected, weighted
graph. Assume that the edge weights are positive, so that you can use –1 to denote the absence
of an edge.

C
D

B

A

3

9

9

9

E

F

G

69

4

7

1

58

A

B

C

E

D

1

2

3

4

0

1 2 3 40

1

2

3

4

0

F

G

5

6

5 6

5

6

(Question 8 continued on next page)

COMP103 24 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 25 continued...

(Question 8 continued)

(c) [10 marks] [Hard] Write a method that draws the contents of a graph that is implemented using
a GraphNode class given below. The value field of each node contains a character which should be
displayed in a circle representing the node. The node should be connected to its neighbours using
lines from the centre of the current node to the centre of its neighbouring nodes. You should take
care of the spacing of the nodes of the graph.

public class GraphNode {

public char value;
public Set<GraphNode> edges;

}

...
public void draw(GraphNode firstNode, DrawingCanvas canvas) {

}

...

COMP103 26

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 27 continued...

(You may detach this page)

Appendices

Possibly useful formulas:

• 1 + 2 + 3 + 4 + · · · + k = k(k+1)
2

• 1 + 2 + 4 + 8 + · · · + 2k = 2k+1 − 1

• a + (a + b) + (a + 2b) + · · ·+ (a + kb) = (2a+kb)(k+1)
2

• a + as + as2 + as3 + · · ·+ ask = ask+1−a
s−1

Table of base 2 logarithms:

n 1 2 4 8 16 32 64 128 256 512 1024 1,048,576
log2(n) 0 1 2 3 4 5 6 7 8 9 10 20

Brief (and simplified) specifications of relevant interfaces and classes.

public class Random
public int nextInt (int n); // return a random integer between 0 and n−1

public double nextDouble(); // return a random double between 0.0 and 1.0

public interface Iterator <E>

public boolean hasNext();
public E next ();
public void remove();

public interface Iterable<E> // Can use in the ”for each” loop

public Iterator <E> iterator();

public interface Comparable<E> // Can compare this to another E

public int compareTo(E o);

public interface Comparator<E> // Can use this to compare two E’s

public int compare(E o1, E o2);

DrawingCanvas class:
public void drawLine(int x, int y, int u, int v) // Draws line from (x, y) to (u, v)

public void drawOval(int x, int y, int wd, int ht) // Draws outline of oval

public void drawString(String str , int x, int y) // Prints str at (x, y)

public interface Collection<E>

public boolean isEmpty();
public int size ();
public boolean contains(Object item);
public boolean add(E item); // returns false if failed to add item

public Iterator <E> iterator();

public interface List<E> extends Collection<E>

// Implementations : ArrayList

public E get(int index);
public void set(int index, E element);
public void add(int index, E element);
public void remove(int index);
public void remove(Object element);

public interface Set extends Collection<E>

// Implementations : ArraySet, SortedArraySet , HashSet

public boolean contains(Object element);
public boolean add(E element);
public boolean remove(Object element);

public interface Queue<E> extends Collection<E>

// Implementations : ArrayQueue, LinkedList

public E peek (); // returns null if queue is empty

public E poll (); // returns null if queue is empty

public boolean offer (E element);

public class Stack<E> implements Collection<E>

public E peek (); // returns null if stack is empty

public E pop (); // returns null if stack is empty

public E push (E element); // returns element

public interface Map<K, V>

// Implementations : HashMap, TreeMap, ArrayMap

public V get(K key); // returns null if no such key

public V put(K key, V value); // returns old value , or null

public V remove(K key); // returns value removed, or null

public boolean containsKey(K key);
public Set<K> keySet(); // returns set of all keys in Map

public Collection<V> values(); // returns collection of all values

public Set<Map.Entry<K, V>> entrySet(); // returns set of (key−value) pairs

public class Arrays
public static <E> void sort(E[] ar, Comparator<E> comp);

public class Collections {

public static <E> void sort(List<E> list, Comparator<E> comp);

