
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2008

END YEAR

COMP103
Introduction to

Data Structures and Algorithms

SOLUTIONS

Time Allowed: 3 Hours

Instructions: 1. Attempt all of the questions.
2. Read each question carefully before attempting it. (Suggestion: You do not have to
answer the questions in the order shown. Do the questions you find easiest first.)
3. This examination will be marked out of 180 marks, so allocate approximately 1
minute per mark.
4. Write your answers in the boxes in this test paper and hand in all sheets.
5. Non-electronic translation dictionaries are permitted.
6. Calculators are allowed.
7. Documentation on relevant Java classes and interfaces is at the end of the paper.

Questions Marks

1. Basic Questions [20]

2. Implementing Collections [26]

3. Using Collections [30]

4. Trees [28]

5. Binary Search Trees [20]

6. Partially Orderd Trees and Priority Queues [23]

7. Hashing [19]

8. Graphs [14]

COMP103 continued...

Question 1. Basic Questions [20 marks]

(a) [2 marks] Suppose we start with an empty queue and carry out the following operations in
order: offer(P), offer(Q), offer(R), poll(), offer(P). Draw the queue after these have been carried out.

Queue

(b) [2 marks] What is the best-case asymptotic (’big-O’) cost of insertion sort?

O(n)

(c) [2 marks] What is the average-case asymptotic cost of selection sort?

O(n2)

(d) [2 marks] Name the general strategy that enables both MergeSort and QuickSort to sort a list
efficiently.

“Divide and conquer”. (nb. Just ’recursion’ is not good enough).

(e) [2 marks] How many comparisons are required to find a node in a binary search tree if it contains
n items and is perfectly balanced?

log(n)

(Question 1 continued on next page)

COMP103 2 continued...

Student ID: .

(Question 1 continued)

(f) [2 marks] Which kind of traversal will visit all the values in a Binary Search Tree in their natural
order (smallest to largest)?

In-order Depth First Traversal

(g) [2 marks] If you were using a linked list to implement a Stack, would you make the top of the
Stack be the first node of the list or the last node of the list? Explain why.

Make it the first node of the list. You always operate on the top of the stack, so if
you make that the end of the list it’ll take n steps every time you operate on the
stack, compared to just one if the top of the stack is the front of the list.

(h) [2 marks] What is a leaf node of a tree?

A node with no children.

(i) [2 marks] State the property that must hold for each node in a Partially Ordered Tree.

The value in the node must be greater than the values in both its children. (Or
every node must be less than its children, depending on the “direction” of the
tree.)

(j) [2 marks] What is the difference between a directed graph and an undirected graph?

In a directed graph, the edges have a direction; in an undirected graph, the edges
do not have a direction.

COMP103 3 continued...

Question 2. Implementing Collections [26 marks]

In lectures we considered the List implementation ArrayList, whose class definition would begin
with the declaration of three fields:

public class ArrayList <E> extends AbstractList <E> {
private E[] data;
private int count=0;
private static final int INITIALCAPACITY=16;

(a) [3 marks] It would then continue by giving a constructor - complete the code for this.

data = (E[]) new Object[INITIALCAPACITY];

public ArrayList () {

}

(b) [12 marks] Complete the code for the following add method for the ArrayList class, which adds
the specified element at the specified index. Remember to

• check whether the index is sensible: if it isn’t, throw an IndexOutOfBoundsException excep-
tion.

• make appropriate use of (but don’t write!) the ensureCapacity() method that ArrayList has.

if (index<0 || index>count)
throw new IndexOutOfBoundsException();

ensureCapacity();
for (int i=count; i>index; i−−) // move items up

data[i] = data[i−1];
data[index] = item; // inserts the new item
count++; // increment count

public void add(int index, E item) {

}

(Question 2 continued on next page)

COMP103 4 continued...

Student ID: .

(Question 2 continued)

(c) [3 marks] Lists in java have a method called addAll, which adds all the items from another
collection to a list.

addAll is required by the List interface, but it is not necessary to provide an implementation for it in
the ArrayList class definition. Explain why not.

An implementation (in terms of multiple calls to add) is given in the AbstractList
abstract class. This means addAll can be carried out provided we specify add in
the ArrayList class.

(d) [4 marks] Write a version of addAll for the ArrayList class that adds all the items in a collection
to the list.

for (E item : other)
add(item);

public void addAll(Collection<E> other) {

}

(e) [4 marks] An efficient version of addAll for an arrayList would only expand the data array once,
to be large enough to hold all the items from the collection. Explain why the efficient version would
be considerably faster than a simple version that repeatedly called the add method.

If the collection being added was many times the size of the list, the simple version
will have to double and copy many times, where as the efficient version could
immediately increase the data array to be large enough to hold all the items and
would therefore only have to copy each item (in each list) once instead of having
to copy many of them twice or more.

COMP103 5 continued...

Question 3. Using Collections [30 marks]

(a) [10 marks] Complete the code for the following reverseNums method, which is passed a scanner
to a file containing only integers. The method uses a stack and returns a list consisting of the integers
from the file but in the reverse order.

You will need to create a stack, use the scanner to get the ints, and then build up a list to be returned.

// create stack
Stack <Integer> myNums = new Stack <Integer> ();

// use scanner to get the ints
while (sc.hasNextInt())

myNums.push(sc.nextInt());

// create and build up list
List <Integer> revNums = new ArrayList <Integer> ();
while (!myNums.isEmpty())

revNums.add(myNums.pop());

return revNums;

public List <Integer> reverseNums(Scanner sc) {

}

(Question 3 continued on next page)

COMP103 6 continued...

Student ID: .

(Question 3 continued)

The rest of this question requires you to complete two methods for processing information about
hotel bookings in Wellington.

Suppose you are given a file listing the hotels followed by strings indicating the different rooms
they have available. For example:

HILTON rm1 rm2 cheapo8 deluxe presidentialA presidentialB
DUXTON dux1 dux2 dux3 dux4 dux5 new1 new2
DAYTON da1 da2
HOLIDAYINN holA holB holC holD holE holF holG holH

Assume that no two rooms are given the same name.

(b) [8 marks] Complete the readRoomsAndHotels method below, which is passed a Scanner to the
above data file, and constructs a Map with rooms as the keys and hotel names as the values in the
roomHotelMap field.

private Map <String, String> roomHotelMap;

Your method should initialise the roomHotelMap field appropriately.

roomHotelMap = new HashMap <String, String> ();
while (sc.hasNext()) {

String hotelName = sc.next();
String rooms = sc.nextLine();
Scanner ln = new Scanner(rooms);
while (ln .hasNext())

roomHotelMap.put(ln.next(), hotelName);
}

public void readRoomsAndHotels(Scanner sc) {

}

(Question 3 continued on next page)

COMP103 7 continued...

(Question 3 continued)

(c) [12 marks] A second data file gives the bookings of hotel rooms around Wellington on a given
day. Each line has a room and the name of the person who has booked it:

rm1 Bob Smith
dux4 Mary Jones
cheapo8 Helen Clarke
presidentialA Bob Smith
holB Barack Obama
holE John Key
da2 John McCain

From this file and the information in roomHotelMap, we would like to find the names of people who
have booked rooms in each hotel.

Complete the hotelsToGuests() method on the facing page that is passed a Scanner to a bookings
file (as above) and then prints out the set of all the people booked in each hotel. Note that a person
might book more than one room in a hotel, but should only be listed at most once for each hotel.

For example, given the bookings file above, the method should print out

DUXTON Mary Jones,
DAYTON John McCain,
HOLIDAYINN John Key, Barack Obama,
HILTON Bob Smith, Helen Clarke,

Hint, you may want to construct a Map, with hotels as the keys, and sets of people as the values.

(Question 3 continued on next page)

COMP103 8 continued...

Student ID: .

(Question 3 continued)

Map <String, Set<String>> hotelBookings = new HashMap <String, Set<String>> ();
while (sc.hasNext()) {

String room = sc.next();
String name = sc.nextLine().trim ();
// get the hotel from the bed
String hotel = roomHotelMap.get(room);
if (hotelBookings.get(hotel)==null)

hotelBookings.put(hotel, new HashSet<String>());
hotelBookings.get(hotel).add(name);

}
for (String hotel : hotelBookings.keySet()){

System.out.printf ("%12s ", hotel);
for (String guest : hotelBookings.get(hotel))

System.out.print(guest+", ");
System.out.println ();

}

public void hotelsToGuests(Scanner sc) {

}

COMP103 9 continued...

Question 4. Trees [28 marks]

(a) [2 marks] Draw a tree with 9 nodes that is NOT a binary tree and has four levels of nodes.

There are many such trees, here is one.

(A)
/ \

/ \
(B) (C)

/ | \ |
/ | \ |

(D) (E) (F) (G)
| |
| |

(H) (I)

.

.

(Question 4 continued on next page)

COMP103 10 continued...

Student ID: .

(Question 4 continued)

(b) [9 marks] Consider the following (binary) tree.

Q

W T

S X R G

E Z A V B F C D

Show the order that the nodes would be visited by a

(i) [3 marks] Pre-order Depth First Traversal

Q W S E Z X A V T R B F G C D

(ii) [3 marks] in-order Depth First Traversal

E S Z W A X V Q B R F T C G D

(iii) [3 marks] Breadth First Traversal

Q W T S X R G E Z A V B F C D

(c) [3 marks] If a binary tree has n nodes, and every node either has two children or no children,
how many leaves are there in the tree? (Hint: you may want to draw some examples).

(n + 1)/2

(Question 4 continued on next page)

COMP103 11 continued...

(Question 4 continued)

Consider the following TreeNode class that defines nodes for a general tree. Each node has a list of
children. The class provides a constructor and two methods: getValue, and getChildren.

public class TreeNode <E> {

private E value;
private List<TreeNode<E>> children;

public TreeNode(E v){
value = v;
children = new ArrayList<TreeNode<E>>();

}
public E getValue(){

return value;
}
public List<TreeNode<E>> getChildren(){

return children ;
}

}

(d) [4 marks] Suppose a variable myTree contains a TreeNode that is the root of a large tree where
the root of the tree has at least four children. Complete the following java statement that would
print out the value in the third child of the root node.

System.out.println(myTree.getChildren().get(2).getValue());

(e) [6 marks] Complete the following leftmost method that will return the value in the leftmost node
of a tree.

if (tree!=null){
while (! tree .getChildren(). isEmpty()){

tree = tree .getChildren().get (0);
}
return tree .getValue();

}

public E leftmost(TreeNode<E> tree){

}

(Question 4 continued on next page)

COMP103 12 continued...

Student ID: .

(Question 4 continued)

(f) [4 marks] Complete the following printPostOrderDFT method that will print out the values in
the nodes of a tree using a post-order depth first traversal.

Hint: use a recursive method, not an iterative method.

if (tree!=null){
for (TreeNode<E> child : tree.getChildren()) {

printPostOrderDFT(child);
}
System.out.println(tree .getValue());

}

public void printPostOrderDFT(TreeNode<E> tree){

}

COMP103 13 continued...

Question 5. Binary Search Trees [20 marks]

(a) [10 marks] For each of the following trees, say whether they are Binary Search Trees or not. If a
tree is not, explain why not. The nodes contain integer values.

Tree (i):

5

7

9

11

13

15

17

Yes

Tree (ii):

15

5

3

2

7

4

11

9

10

13

16

17

18

19

21

No, because it is not a binary tree (root has three children)

(Question 5 continued on next page)

COMP103 14 continued...

Student ID: .

(Question 5 continued)

Tree (iii):

32

23 27

20 21

13 17 12 16

19 22

15 1810 14

8 11

No, because it is not ordered for a BST: each node is larger than both subtrees,
insteadh of larger than its left subtree and smaller than its right subtree

Tree (iv):

32

27 89

21 33 41 97

13 24 28 35 40 56 95 100

No, because 33 (and 35) is greater than 32, but it is in the left subtree under 32.

(Question 5 continued on next page)

COMP103 15 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 16 continued...

Student ID: .

(Question 5 continued)

(b) [4 marks] Show the tree that would be generated by inserting the following values (in order)
into the Binary Search Tree below.

72, 71, 23, 47, 49, 70, 25, 18

48

/ \
(23) (72)
/ \ / \

(18) (47) (71)
/ /

(25) (49)
\
(70)

(c) [3 marks] What is the average asymptotic (“Big-O”) cost of inserting an item into a well balanced
Binary Search Tree containing n nodes? Briefly justify your answer.

O(log(n)). In a well balanced binary tree with n nodes, the height of the tree
will be log(n). Half the nodes are on the bottom level, which will require log(n)
comparisons.

(d) [3 marks] What is the least number of comparisons that could possibly be required to insert an
item into a BST tree that contains n nodes? Justify your answer by giving an example of a tree and
an item leading to this case.

One. If the root had only one child, and the item being inserted needed to be the
other child. The item would only need to be compared with the root value. For
example, inserting H into the following tree:

(M)
\
(S)
/ \

(P) (V)
/ \ / \

etc . . . (another n-4 nodes)

COMP103 17 continued...

Question 6. Partially Ordered Trees and Priority Queues [23 marks]

(a) [3 marks] Draw a balanced, partially ordered, binary tree containing the following values:

13 18 45 14 27 38 10 31

(45)
/ \

(27) (38)
/ \ / \

(18) (14) (13) (31)
/

(10)

There are lots of other possiblities also.

(Question 6 continued on next page)

COMP103 18 continued...

Student ID: .

(Question 6 continued)

(b) [6 marks] A heap is a partially ordered binary tree implemented in an array. Suppose a heap
contains the following 13 values:

98
0

75
1

34
2

61
3

54
4

30
5

31
6

20
7

13
8

45
9

26
10

29
11

Show the sequence of changes to fix up the heap if the largest item (98) is removed from the heap.
Each step should show the result after one swap. You may not need all the steps given.

step 1: 29
0

75
1

34
2

61
3

54
4

30
5

31
6

20
7

13
8

45
9

26
10

29
11

step 2: 75
0

29
1

34
2

61
3

54
4

30
5

31
6

20
7

13
8

45
9

26
10

29
11

step 3: 75
0

61
1

34
2

29
3

54
4

30
5

31
6

20
7

13
8

45
9

26
10

29
11

step 4:
0 1 2 3 4 5 6 7 8 9 10 11

step 5:
0 1 2 3 4 5 6 7 8 9 10 11

step 6:
0 1 2 3 4 5 6 7 8 9 10 11

(c) [4 marks] Suppose you need a Priority Queue for items whose priority can be any double value.
Explain why a heap is a better data structure for implementing the Priority Queue than a sorted
array or an array of ordinary Queues (one Queue for each priority).

A heap is very efficient in both time and space. It uses just enough space for the
items, and it has O(log(n)) time for enqueuing (“offer”) and dequeuing (“poll”).
A sorted array would take O(n) time to enqueue (though only O(1) time to de-
queue), and an array of Sets would take too much space — you could not make
enough sets for all the possible priorities.

(Question 6 continued on next page)

COMP103 19 continued...

(Question 6 continued)

(d) [10 marks] The POTree class below represents a Partially Ordered Tree using a binary tree struc-
ture. It contains one field for the root of the tree and a private class for the nodes:

public class POTree{

private POTNode root;

private class POTNode {
public int value;
public POTNode left;
public POTNode right;

public POTNode(int v){
value = v;

}
}

:

Write a method called check for the POTree class that checks that the tree in the root field is a
proper Partially Ordered Tree. check should return true if the tree is OK, and false otherwise. You
may define helper methods if you wish.

Hint: do a recursive traversal of the tree, checking each node.

return check(root);
}
public boolean check(POTNode node){

if (node. left !=null){
if (node.value < node.left.value || !check(node.left))

return false;
}
if (node.right!=null){

if (node.value < node.right.value || !check(node.right))
return false;

}
return true;

public boolean check(){

}

COMP103 20 continued...

Student ID: .

Question 7. Hashing [19 marks]

(a) [4 marks] When two items hash to the same index of the data array, a Hash Set must resolve
the collision in some way. Explain the difference between resolving the collision by probing and by
using buckets.

With probing, the Hash Set will look for an alternative cell in the array to store the
item. With buckets, it will store a set in each cell and simply add the item to the
set in cell that it hashes to.

(b) [4 marks] A Hash Set with any kind of probing builds up “runs”, but quadratic probing is
generally better than linear probing. Explain why quadratic probing is better than linear probing.

With linear probing, the runs join up to make long runs for all the cells in the
run. Long runs make adding or finding expensive. With quadratic probing, the
runs from different starting points do not join up since they each take a different
sequence of steps. That means the runs do not get as long.

(c) [3 marks] Why is it important to ensure that a Hash Set using probing is not allowed to get too
full?

If the hash set is too full, then the probing may take a long time to find an empty
cell.

(Question 7 continued on next page)

COMP103 21 continued...

(Question 7 continued)

(d) [8 marks] Suppose you are writing a program that needs to store a set of Person objects, and
you have decided to use a HashSet. The fields of a Person object are shown below. The important
information that identifies an individual is in the name, dateOfBirth, countryOfBirth, and birthCer-
tificateNumber fields.

public class Person{
private final String name;
private final Date dateOfBirth;
private final String countryOfBirth;
private final long birthCertificateNumber;

private String currentAddress; // may change
private long phoneNumber; // may change
private String citizenship ; // may change

:

The other fields in a Person object (like currentAddress) may change over time without changing
the identity of the person. The hashCode of a Person object should always be the same, even when
these other fields change. Also, two Person objects that have the same values in the identifying
fields should be considered to be the same person, and should therefore have the same hashCode
(and be equal).

Complete the following hashCode and equals methods for the Person class. You may assume that
the String and Date classes have appropriate hashCode functions.

return ((name.hashCode∗1023+dateOfBirth.hashCode())∗1023 +
countryOfBirth.hashCode())∗ 1023 + birthCertificateNumber;

public int hashCode(){

}

(Question 7 continued on next page)

COMP103 22 continued...

Student ID: .

(Question 7 continued)

if (! obj instanceof Person)
return false;

Person other = (Person) obj;
return (name.equals(other.name) &&

dateOfBirth.equals(other.dateOfBirth) &&
countryOfBirth.equals(other.countryOfBirth) &&
birthCertificateNumber == other.birthCertificateNumber);

public boolean equals(Object obj){

}

COMP103 23 continued...

Question 8. Graphs [14 marks]

(a) [4 marks] Draw a diagram (circles and lines) of the directed graph corresponding to the follow-
ing adjacency list representation of a graph. The array on the left contains the node labels.

0

1

2

3

4

Ant

Bee

Cat

Dog

Eel

0

1

2

3

4

1

2

3

2

0 4 2

4

3

0

(Question 8 continued on next page)

COMP103 24 continued...

Student ID: .

(Question 8 continued)

(b) [4 marks] Draw a diagram (circles and lines) of the weighted undirected graph corresponding
to the following adjacency matrix representation of a graph. The array on the left contains the node
labels.

0

1

2

3

4

Ant

Bee

Cat

Dog

Eel

0

1

2

3

4

0 1 2 3 4

18

18

43

43

21

21

47

47

38

38

(Question 8 continued on next page)

COMP103 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 26 continued...

Student ID: .

(Question 8 continued)

(c) [6 marks] Complete the following reachable method that will return true if there is a path from
one node to another node in a directed, unweighted graph represented by an adjacency list, and will
return false if there is no such path. Assume the following declarations for two fields containing the
graph:

private String [] nodes;
private List<Integer>[] edges;

Assume that the arrays have been constructed and filled.

boolean [] visited = new boolean [nodes.length];
Queue<Integer> todo = new LinkedList<Integer>();
todo. offer (node1);
while (! todo.isEmpty()){

int node = todo.poll ();
if (node == node2)

return true;
visited [node] = true;
for(int neighbour : edges[node]){

if (! visited [neighbour])
todo. offer (neighbour);

}
}
return false;

public boolean reachable(int node1, int node2){

}

COMP103 27

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 28 continued...

(You may detach this page)

Appendices

Possibly useful formulas:

• 1 + 2 + 3 + 4 + · · · + k = k(k+1)
2

• 1 + 2 + 4 + 8 + · · · + 2k = 2k+1 − 1

• a + (a + b) + (a + 2b) + · · · + (a + kb) = (2a+kb)(k+1)
2

• a + as + as2 + as3 + · · · + ask = ask+1−a
s−1

Table of base 2 logarithms:

n 1 2 4 8 16 32 64 128 256 512 1024 1,048,576
log2(n) 0 1 2 3 4 5 6 7 8 9 10 20

Brief (and simplified) specifications of relevant interfaces and classes.

public class Random
public int nextInt (int n); // return a random integer between 0 and n−1
public double nextDouble(); // return a random double between 0.0 and 1.0

public interface Iterator <E>

public boolean hasNext();
public E next ();
public void remove();

public interface Iterable<E> // Can use in the ”for each” loop
public Iterator <E> iterator();

public interface Comparable<E> // Can compare this to another E
public int compareTo(E o);

public interface Comparator<E> // Can use this to compare two E’s
public int compare(E o1, E o2);

DrawingCanvas class:
public void drawLine(int x, int y, int u, int v) // Draws line from (x, y) to (u, v)
public void drawOval(int x, int y, int wd, int ht) // Draws outline of oval
public void drawString(String str , int x, int y) // Prints str at (x, y)

public interface Collection<E>

public boolean isEmpty();
public int size ();
public boolean contains(Object item);
public boolean add(E item); // returns false if failed to add item
public Iterator <E> iterator();

public interface List<E> extends Collection<E>

// Implementations: ArrayList
public E get(int index);
public void set(int index, E element);
public void add(int index, E element);
public void remove(int index);
public void remove(Object element);

public interface Set extends Collection<E>

// Implementations: ArraySet, SortedArraySet, HashSet
public boolean contains(Object element);
public boolean add(E element);
public boolean remove(Object element);

public interface Queue<E> extends Collection<E>

// Implementations: ArrayQueue, LinkedList
public E peek (); // returns null if queue is empty
public E poll (); // returns null if queue is empty
public boolean offer (E element);

public class Stack<E> implements Collection<E>

public E peek (); // returns null if stack is empty
public E pop (); // returns null if stack is empty
public E push (E element); // returns element

public interface Map<K, V>

// Implementations: HashMap, TreeMap, ArrayMap
public V get(K key); // returns null if no such key
public V put(K key, V value); // returns old value , or null
public V remove(K key); // returns value removed, or null
public boolean containsKey(K key);
public Set<K> keySet(); // returns set of all keys in Map
public Collection<V> values(); // returns collection of all values
public Set<Map.Entry<K, V>> entrySet(); // returns set of (key−value) pairs

Scanner class:
public boolean hasNext() // Returns true if there is more to read
public boolean hasNextInt() // Returns true if the next token is an integer
public String next() // Returns the next token (chars up to a space / line)
public String nextLine() // Returns string of chars up to next newline
public int nextInt () // Returns the integer value of the next token

