
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2009

END YEAR

COMP103
Introduction to

Data Structures and Algorithms

SOLUTIONS

Time Allowed: 3 Hours

Instructions: 1. Attempt all of the questions.

2. Read each question carefully before attempting it. (Suggestion: You do not have to
answer the questions in the order shown. Do the questions you find easiest first.)

3. This examination will be marked out of 180 marks, so allocate approximately one
minute per mark.

4. Write your answers in the boxes in this test paper and hand in all sheets.

5. Non-electronic translation dictionaries are permitted.

6. Calculators are allowed.

7. Documentation on relevant Java classes and interfaces is at the end of the paper.

Questions Marks

1. Basic Questions [20]

2. Using Collections [26]

3. Implementing Collections [15]

4. Linked Structures [24]

5. Trees and Graphs [40]

6. Binary Search Trees [20]

7. Partially Ordered Trees and Heaps [35]

COMP103 continued...

Question 1. Basic Questions [20 marks]

Apart from Bag and Map, the basic collection types we have looked at are

• Set

• List

• Stack

• Queue

(a) [2 marks] Which of the above types restrict access to the collection?

Stack and Queue

(b) [2 marks] Which of the above types allow duplicates in the collection?

List, Stack and Queue

(c) [2 marks] What is the best case ”big-O” cost of insertion sort, on an array of n items?

O(n)

(d) [2 marks] What is the worst case ”big-O” cost of insertion sort, on an array of n items?

O(n2)

(e) [4 marks] Name TWO sorting algorithms whose average case ”big O” cost is O(n log n) but
whose worst case is O(n2).

QuickSort (worst case is a bad pivot choice) and TreeSort (worst case is the tree
was built from a list that was already in order, or reverse order).

(Question 1 continued on next page)

COMP103 2 continued...

Student ID: .

(Question 1 continued)

(f) [2 marks] Give TWO properties that are desirable to have in a hash function.

• property:

• property:

fast to compute, and likely to have few collisions

(g) [4 marks] Why is it important to ensure that a hash table does not get too full?

When a hash table gets too full you get lots of collisions and look-up time de-
grades to become linear.

(h) [2 marks] What happens to a Java object when it is no longer referenced by any other objects?

Its position in memory becomes available for other uses (”garbage collection”).

COMP103 3 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 4 continued...

Student ID: .

Question 2. Using collections [26 marks]

(a) [6 marks] Suppose that you want to determine whether two Sets of Strings are equal, i.e., contain
the same elements. Since a Set does not impose any ordering on its elements, you cannot just iterate
through the two sets, comparing the elements, because the elements might have been stored in
different orders.

Complete the equalSets method below. Your method should work independently of how the Sets
of Strings are implemented.

if (set1.size () != set2.size ()) return false;
for (String item : set1) {

if (! set2.contains(item))
return false;

}
return true;

public static boolean equalSets(Set<String> set1, Set<String> set2) {

}

(Question 2 continued on next page)

COMP103 5 continued...

(Question 2 continued)

A local trust owns a small hall, which they make available to community groups in the evenings.
They would like a simple system for keeping track of reservations for use of the hall. Only one
group can have use of the hall on a given evening. The program consists of a class BookingSystem,
which begins by initialising a map as follows:

public class BookingSystem {
private Map <Date, String> bookings = new HashMap<Date, String>();

The class now needs to have three methods, for making, checking, and summarizing bookings.

(b) [5 marks]

Complete the checkBooking method, which takes a date, and either prints out who has reserved the
hall on that date, or prints out that there is no booking for that date.

if (bookings.containsKey(date)) {
System.out.println(date + " reserved for " + bookings.get(date));
}
else {

System.out.println("No booking on " + date);
}

public void checkBooking(Date date) {

}

(c) [5 marks] Complete the makeBooking method, which takes a date and name, and either makes
the booking and prints out that the booking has been made, or prints out that the date has already
been booked. Note that Data has a toString method.

if (bookings.containsKey(date)) {
System.out.printf ("%s is already booked\n", date);

}
else {

bookings.put(date, name);
System.out.printf ("Reservation made for %s\n", date);

}

public void makeBooking(Date date, String name) {

}

(Question 2 continued on next page)

COMP103 6 continued...

Student ID: .

(Question 2 continued)

(d) [10 marks] Complete the bookingSummary method, which prints out a summary of who has
bookings in the system. It should print out the name of each group with bookings in the system,
and along with the number of bookings that group has in the system. Note that each group’s name
should only be printed once.

Map<String, Integer> summary = new HashMap<String, Integer>();
for(String name: bookings.values()) {

if (! summary.containsKey(name))
summary.put(name, 0);

int count = summary.get(name);
summary.put(name, count+1);

}
for(Map.Entry<String, Integer> ent: summary.entrySet()) {

System.out.println(ent.getKey() + ": " + ent.getValue());
}

public void bookingSummary() {

}

COMP103 7 continued...

Question 3. Implementing collections [15 marks]

For this question, you are to complete some of the methods of an ArrayQueue class, which imple-
ments a queue using an array. In this implementation, the head of the queue is to be the first element of
the array, and count is the number of elements in the queue.

The header and fields of the class are given below:

public class ArrayQueue <E> extends AbstractQueue<E> {
private static int INITIALCAPACITY = 8;
private int count = 0;
private E[] data;

(a) [3 marks] Complete the following constructor, which should just initialise the data field.

data = (E[]) new Object[INITIALCAPACITY];

public ArrayQueue() {

}

(b) [2 marks] Complete the isEmpty method, which returns true if and only if the queue is empty.

return count == 0;

public boolean isEmpty() {

}

(c) [3 marks] Complete the following offer method, which adds a value onto the end of the queue.
Assume that ArrayQueue has an ensureCapacity() method, which “doubles and copies” the data
array if the current one is full.

ensureCapacity();
data[count++] = item;

public void offer (E item) {

}

(Question 3 continued on next page)

COMP103 8 continued...

Student ID: .

(Question 3 continued)

(d) [7 marks] Complete the following poll method which removes and returns the value at the head
of the queue if the queue is not empty, and otherwise throws an EmptyQueueException.

if (isEmpty()) // check it ’ s not empty
throw new EmptyQueueException();

E item = data [0]; // remembers the item at the head
for (int i=1; i<count; i++) // move everything else down

data[i−1] = data[i];
count−−; // decrement count
return item;

public E poll () {

}

COMP103 9 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 10 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 11 continued...

Question 4. Linked Structures [24 marks]

The following class can be used to represent a simple linked list:

public class LinkedNode <E> {
private E value;
private LinkedNode<E> next;
public LinkedNode(E item, LinkedNode<E> nextNode) {

value = item;
next = nextNode;

}
public E get() { return value; }
public LinkedNode<E> next() {

return next;
}
public void set(E item) {

value = item;
}
public void setNext(LinkedNode<E> nextNode) {

next = nextNode;
}

}

(a) [6 marks] Complete the length method, which takes a LinkedNode as an argument and returns
the length of the list starting at that node.

public int length(LinkedNode n) {

}

if (n == null) return 0;
return length(n.next ())+1;

OR:

int l = 0;
while (n != null) {

l++;
n = n.next ();

}
return l ;

COMP103 12 continued...

Student ID: .

(b) [8 marks] Complete the append method, which takes two LinkedNode arguments. Each of these
is assumed to be the start of a separate linked list (i.e. the two lists have no nodes in common). The
append method returns a list containing all of the nodes of the first list followed by all of the nodes
of the second list. If the first list is non-empty, its last node should be modified to point to the first
node of the second list; if the first list is empty, append should return the second list.

public LinkedNode append(LinkedNode l1, LinkedNode l2) {

}

if (l1 == null) return l2 ;
LinkedNode p = l1;
while (p.next() != null)

p = p.next ();
p.setNext(p);
return p;

(c) [4 marks] What is the ”big-O” cost of your append method, as a function of the lengths, n1 and
n2, of the two lists?

The method is linear in the length of the first list, i.e. O(n1).

(d) [6 marks] Explain how the representation of linked lists can be modified so that the append
method is more efficient.

If you store pointers to the head and tail nodes of the list, append can be imple-
mented in constant time.
You just need to set the tail node of the first list to point to the head of the first list,
and make the tail pointer for the result point to the tail node of the second list.

COMP103 13 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 14 continued...

Student ID: .

Question 5. Trees and Graphs [40 marks]

(a) [8 marks] Consider the following tree:

mb c

f

h

j

n

s

u z

k

da e

q

r

(i) [1 mark] Which node is the root of the tree?
f

(ii) [2 marks] How many leaves does the tree have?
9

(iii) [1 mark] Which node is the parent of node q?
e

(iv) [2 marks] Which nodes are the children of node a?
s, k

(v) [2 marks] Which nodes has the most children?
d

COMP103 15 continued...

(b) [15 marks]

The fringe of a tree is the sequence obtained by collecting up the labels on the leaves in the order
they are visited during a left-to-right depth first traversal.

(i) [3 marks] What is the fringe of the tree shown in part (a) above?

s u z b j h m n r

(ii) [12 marks] Complete the printFringe method, which takes a tree as an argument and prints out
its fringe.

You should assume that the Tree class has methods:

public String label (); // Returns the label at the root
public List<Tree> subtrees(); // Returns the list of subtrees

public void printFringe(Tree t) {

}

if (t == null) return;
if (t .subtrees().size () == 0) {

System.out.printf ("%s ", t.label ());
}
else {

for (Tree s: t .subtrees())
printFringe (s);

}

(c) [5 marks] Suppose you now want to print the fringe of a directed graph, where a node is on the
fringe if it has no successors (outward edges). Assume that the Tree class is replaced by a Graph
class with a successors method that returns a list of successors in place of the subtrees method.

What additional change(s) would you need to make to the printFringe method?

You need to avoid following cycles in the graph, which would cause the method
to go into an infinite loop. To do this, you need to keep a set of nodes that have
already been visited. Add each node to the set when it is visited, and in the loop
test whether s has been visited before making the recursive call.

COMP103 16 continued...

Student ID: .

(d) [12 marks]

The reflection of a tree is the mirror image of the given tree, and can be constructed by recursively
reversing the list of subtrees of every node.

For example, the following diagram shows a tree and its reflection.

m q

e e

q

f

d a

k sbm c jb c

f

js k

da

Complete the reflect method, which takes a tree as an argument and returns its reflection.

You should assume that the Tree class has the following constructor, which returns a tree with l at
its root and subtrees s:

public Tree(String l , List<Tree> s)

public Tree reflect (Tree t) {

}

if (t == null) return t ;
List<Tree> s = t.subtrees();
List<Tree> r = new LinkedList<Tree>();
for (int i = 0; i < s.size (); i++) {

r .add(0, reflect (s.get(i)));
}
return new Tree(t.label (), r);

COMP103 17 continued...

Question 6. Binary Search Trees [20 marks]

(a) [8 marks] What ordering property must be satisfied by the labels of a Binary Search Tree?

All of the labels in the left subtree must be less than the label at the root, and all of
the labels in the right subtree must be greater than (or equal to, if duplicates are
allowed) the label at the root.

(b) [4 marks] Show the effect of adding the values j, c, r, s (in that order) to the following Binary
Search Tree.

t

k

e

b i

g

u

c

k

te

b i r u

sjg

COMP103 18 continued...

Student ID: .

(c) [2 marks] Show the effect of deleting d from the following Binary Search Tree.

g

k

t

r u

s y

da

b

e

i

y

k

e t

b i r u

a g s

(d) [2 marks] Show the effect of deleting i from the following Binary Search Tree.

g

k

t

r u

s y

da

b

e

i

y

k

e t

gb ur

da s

COMP103 19 continued...

(e) [2 marks] Show the effect of deleting t from the following Binary Search Tree.

g

k

t

r u

s y

da

b

e

i

s

k

e u

yrib

a d g

(f) [2 marks] Show the effect of deleting k from the following Binary Search Tree.

g

k

t

r u

s y

da

b

e

i

y

r

e t

b i s u

gda

COMP103 20 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 21 continued...

Question 7. Partially Ordered Trees and Heaps [35 marks]

A Partially Ordered Tree is a binary tree used to represent a set in way that allows fast implementa-
tions of operations to add an element and to remove the smallest element of the set.

(a) [6 marks] What ordering property must be satisfied by the labels of a Partially Ordered Tree?

The label at every node must be smaller than all of the labels of its subtrees.

(b) [6 marks] Show the effect of adding values 5, 3 and 2 (in that order) to the following Partially
Ordered Tree. You should show the tree resulting after each insertion.

8

4

6

6

4

5 8

6

3

4 8

5

8

2

4 3

6 5

COMP103 22 continued...

Student ID: .

(c) [6 marks] Show the effect of removing the smallest value three times starting with the following
Partially Ordered Tree. You should show the tree resulting after each removal.

7

1

3 2

5 4 8

8

2

73

5 4

8

3

4 7

5

8

4

75

COMP103 23 continued...

(d) [17 marks] A heap is an array implementation of a complete Partially Ordered Tree. In a heap:

(i) [3 marks] What is the index of the parent of the node with index k?

(k− 1)/2

(ii) [4 marks] What are the indexes of children of the node with index k?

2k + 1 and 2k + 2

(iii) [10 marks] Suppose you want to be able to remove the largest element of the set, as well as the
smallest. Explain how you can find and remove the largest element in a set represented as a heap,
and give the cost of this operation.

The largest element in a heap must be a leaf. Thus, if s is the size of the heap, the
maximum must have an index between (s + 1)/2 and s− 1. A complete binary
tree containing n elements may have up to n/2 leaves, so finding the maximum
has O(n) cost. The maximum can then be replaced by the rightmost leaf and
bubbled up like an ordinary insertion, which has O(log n) cost. Thus the whole
operation has O(n) cost.

COMP103 24

Student ID: .

Appendices

Possibly useful formulae:

• 1 + 2 + 3 + 4 + · · ·+ k = k(k+1)
2

• 1 + 2 + 4 + 8 + · · ·+ 2k = 2k+1 − 1

Table of base 2 logarithms:

n 1 2 4 8 16 32 64 128 256 512 1024 1,048,576
log2(n) 0 1 2 3 4 5 6 7 8 9 10 20

Brief (and simplified) specifications of relevant interfaces and classes.

public class Random
public int nextInt (int n); // return a random integer between 0 and n−1
public double nextDouble(); // return a random double between 0.0 and 1.0

public interface Iterator <E>
public boolean hasNext();
public E next ();
public void remove();

public interface Iterable<E> // Can use in the ”for each” loop
public Iterator<E> iterator();

public interface Comparable<E> // Can compare this to another E
public int compareTo(E o);

public interface Comparator<E> // Can use this to compare two E’s
public int compare(E o1, E o2);

DrawingCanvas class:
public void drawLine(int x, int y, int u, int v) // Draws line from (x, y) to (u, v)
public void drawOval(int x, int y, int wd, int ht) // Draws outline of oval
public void drawString(String str , int x, int y) // Prints str at (x, y)

COMP103 25 continued...

public interface Collection<E>
public boolean isEmpty();
public int size ();
public boolean contains(Object item);
public boolean add(E item); // returns false if failed to add item
public Iterator<E> iterator();

public interface List<E> extends Collection<E>
// Implementations: ArrayList
public E get(int index);
public void set(int index, E element);
public void add(int index, E element);
public void remove(int index);
public void remove(Object element);

public interface Set extends Collection<E>
// Implementations: ArraySet, SortedArraySet, HashSet
public boolean contains(Object element);
public boolean add(E element);
public boolean remove(Object element);

public interface Queue<E> extends Collection<E>
// Implementations: ArrayQueue, LinkedList
public E peek (); // returns null if queue is empty
public E poll (); // returns null if queue is empty
public boolean offer (E element);

public class Stack<E> implements Collection<E>
public E peek (); // returns null if stack is empty
public E pop (); // returns null if stack is empty
public E push (E element); // returns element

public interface Map<K, V>
// Implementations: HashMap, TreeMap, ArrayMap
public V get(K key); // returns null if no such key
public V put(K key, V value); // returns old value , or null
public V remove(K key); // returns value removed, or null
public boolean containsKey(K key);
public Set<K> keySet(); // returns set of all keys in Map
public Collection<V> values(); // returns collection of all values
public Set<Map.Entry<K, V>> entrySet(); // returns set of (key−value) pairs

Scanner class:
public boolean hasNext() // Returns true if there is more to read
public boolean hasNextInt() // Returns true if the next token is an integer
public String next() // Returns the next token (chars up to a space / line)
public String nextLine() // Returns string of chars up to next newline
public int nextInt () // Returns the integer value of the next token

