
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2010

MID YEAR

COMP103
Introduction to

Data Structures and Algorithms

SOLUTIONS

Time Allowed: 3 Hours

Instructions: 1. Attempt all of the questions.

2. Read each question carefully before attempting it. (Suggestion: You do not have to
answer the questions in the order shown. Do the questions you find easiest first.)

3. This examination will be marked out of 180 marks, so allocate approximately one
minute per mark.

4. Write your answers in the boxes in this test paper and hand in all sheets.

5. Non-electronic translation dictionaries are permitted.

6. Calculators are allowed.

7. Documentation on some relevant Java classes, interfaces, and exceptions can be
found at the end of the paper.

Questions Marks

1. Basic Questions [17]

2. Using Collections [24]

3. Implementing Collections [20]

4. Linked Structures [18]

5. Trees, and Binary Search Trees [35]

6. Partially Ordered Trees and Heaps [29]

7. Various topics: costs, sorting, hashing [37]

COMP103 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP103 2 continued...

Student ID: .

Question 1. Basic Questions [17 marks]

(a) [2 marks] Which of the basic Collection types (Bag, Set, List, Stack, Queue, Map) would be best
for representing the waiting line at an airline check-in desk?

A queue

(b) [3 marks] In a full binary tree with N nodes, how many of those are leaf nodes?

(N + 1)/2 (or 2 marks for “about half”)

(c) [2 marks] Why is it a bad idea to implement a Stack with a Linked List in which the top of the
Stack is at the end of the List?

pop and push become O(n), as you have to go through the list to the end

(d) [2 marks] A SortedArraySet is a better implementation to use than a plain (unsorted) Array-
Set, because it speeds up the contains() operation. Why is this operation substantially faster in
SortedArraySet?

Since the array is sorted, the Binary Search algorithm can be used.

(e) [2 marks] Why are add and remove operations not significantly faster in a SortedArraySet than
in ArraySet?

Because they both require moving (on average) half the other items up or down
in the array, in order to keep the array sorted. (cf. ArraySet: just needs a swap)

(f) [6 marks] Consider the cost of contains in different implementations of Set. Give one implemen-
tation where the cost is O(n), one that has a cost of O(log n), and one that has a cost of O(1).

O(n): ArraySet or LinkedList.

O(logn): SortedArraySet, or BSTSet (if balanced)

O(1): HashSet, or BitSet

COMP103 3 continued...

Question 2. Using collections [24 marks]

A supermarket system uses a Map from barcodes (stored as Integers) to shopping items. Shopping
items are represented by the following very simple class:

public class ShopItem{
private String description ;
private double cost;

public ShopItem(String description, double cost) {
this . description = description ;
this .cost = cost;

}
public String getDescription() { return this . description ; }
public void setDescription(String desc) { this . description = desc; }
public double getCost() { return this .cost; }
public void setCost(double c) { this .cost = c; }

}

(a) [12 marks] When a shopping trolley arrives at a check-out in the supermarket, items in the
trolley have their barcodes read into a List.

Complete the code for a method CountCodes(), which takes a List of barcodes as input. Your method
should return a Map from barcodes present in the List to counts of the occurrences of that barcode.
Both of these are Integers. The map should contain one entry for each unique barcode that appears
in the List.

// make a new Map
Map<Integer,Integer> newmap = new HashMap<Integer, Integer>();

for (Integer c: codes) {
// if it ’ s already in the map, increment the count
if (newmap.containsKey(c)) {

int count = newmap.get(c);
newmap.put(c,count+1);

}
// if it ’ s not yet in the map, make a new map entry for it .
else newmap.put(c,1);

}
// return it
return(newmap);

public Map <Integer,Integer> CountCodes (List<Integer> codes)
{

}

COMP103 4 continued...

Student ID: .

(b) [12 marks] Complete the PrintBill method below, which takes the Map returned by CountCodes
and the supermarket’s Map from barcodes to shopping items (Integer to ShopItem). The method
generates a printout with one line for each type of item giving the item’s description, the number of
such items, and the per-item cost. This is followed by a final line giving the total cost. For example,
if the supermarket’s map is:

005 ---> Milk, 4.00
115 ---> Biscuits, 4.00
233 ---> Bread, 3.50
442 ---> Jaffas, 1.80
733 ---> Bag of Oranges, 8.50

and the map returned by CountCodes is

115 ---> 1
233 ---> 2

then PrintBill should print this:

Biscuits 1 $4.00
Bread 2 $3.50
TOTAL: $11.00

double total=0.0;
for (int c: myTrolley.keySet()) {

ShoppingItem item = codemap.get(c);
int num = trolley .get(c);
System.out.printf ("%10s %4d %5.2f\n",item.getDescription(),num,item.getCost());
total += num ∗ item.getCost();

}
System.out.printf ("Total: %5.2f\n",total);
return;

public void PrintBill (Map<Integer,Integer> trolley, Map<Integer,ShopItem> codemap) {

}

COMP103 5 continued...

Question 3. Implementing Collections [20 marks]

(a) [4 marks] Each Collection type needs to be Iterable, which means their class must provide an
Iterator. Give TWO reasons for making the items in a collection Iterable.

1: The collection needs to be able to go through itself in some order

2: If it’s Iterable, we can use the “for each” syntax.

Consider the following code for a Pseudo Random Number generator:

public class RandNumIterator implements Iterator <Integer> {
private int num=1;
public boolean hasNext() {

return true;
}
public Integer next() {

num = (num ∗ 92863) % 104729 + 1;
return num;
}
:
:
}

(b) [2 marks] Why does this code include a method hasNext(), when all it does is return true?

hasNext is required as it is in the Iterator interface

(c) [6 marks] Complete the method below, that uses RandNumIterator to put 100 random integers
into a List, which it returns.

Iterator <Integer> rng = new RandNumIterator(); // make the iterator
List <Integer> rngList = new ArrayList <Integer>(); // make a list
for (int i=0; i<100; i++) rngList .add(rng.next ());

return rngList ;

public List <Integer> numberList () {

}

COMP103 6 continued...

Student ID: .

(d) [8 marks] ArrayList is an implementation of List that has two fields:

public class ArrayList <E> extends AbstractList <E> {
private E[] data;
private int count;

:
}

Complete the code for the remove method of ArrayList, that removes the item at a specified index.
The method should check that the index is valid, and should return the item that is removed.

if (index < 0 || index >= count)
throw new IndexOutOfBoundsException();

E ans = data[index];
for (int i=index+1; i<count; i++)

data[i−1]=data[i];
count−−;
data[count]=null;
return ans;

public E remove (int index) {

}

COMP103 7 continued...

Question 4. Linked Structures [18 marks]

This question uses a LinkedNode class, like the one in lectures, which defines objects that contain a
value and a reference to another LinkedNode. The class is as follows:

public class LinkedNode <E>{
private E value;
private LinkedNode<E> next;

public LinkedNode(E item, LinkedNode<E> nextNode){ // CONSTRUCTOR
value = item;
next = nextNode;

}
public E getValue(){ return value; }
public LinkedNode<E> getNext(){ return next; }
public void setNext(LinkedNode<E> n){ next = n; }

}

In your answers below, you should use the getValue(), getNext(), and setNext() methods, rather
than the value and next fields.

Suppose myList is a reference to the first LinkedNode<String> in a linked list. For example it might
contain:

(a) [6 marks] By using the methods in LinkedNode, write a single statement that will insert the
string “A” at the third position of the list refered to be myList. For the example above, mylist should
insert “A” between “H” and “T”. You may assume that the linked list has at least 4 items in it.

mylist .getNext().setNext(new LinkedNode<String>("A", mylist.getNext().getNext()));

(b) [4 marks] Similarly, write a single statement that will remove the item at the second position of
the list. For the example above, mylist should remove the item “H”. Again, you may assume that
the linked list has at least 4 items in it.

mylist .setNext(mylist .getNext().getNext());

COMP103 8 continued...

Student ID: .

Linked lists composed of LinkedNodes could be used as a full List implementation, but to do so it
is necessary to be able to call methods on a List that is empty. In lectures we mainly discussed the
option of using a ”header” class for this reason. But we also considered denoting an empty list by a
node with its next field set to the node itself, as indicated here:

To allow this, we first add an alternative constructor to the LinkedNode class above:

/∗ Alternative constructor : makes a new, empty, list ∗/
public LinkedNode() {

next = this ;
}

(c) [8 marks] Complete the code for an addAtEnd() method for the LinkedNode class, which should
use recursion to add a new item to the end of the list (of which the current LinkedNode is the start).
Make sure your method copes with the case of an empty list, as described above.

if (next == this) {
next=null;
value=item;

}
else if (next == null)

next=new LinkedNode<E>(item,null);
else

next.addAtEnd(item);

public void addAtEnd(E item) {

}

COMP103 9 continued...

Question 5. Trees, and Binary Search Trees [35 marks]

The next four questions concern the following tree:

(a) [2 marks] What is the depth of the tree shown above?

4: the length of the longest path from the root to a leaf.

(b) [3 marks] List the order in which the nodes in the tree will be visited by a breadth first traversal.

D VBAG TSFKXL RQJ C

(c) [3 marks] List the order in which the nodes in the tree will be visited by a pre-order depth first
traversal.

D V T S F B A K X R Q J C G L

(d) [3 marks] List the order in which the nodes in the tree will be visited by a pre-order, depth first
traversal, implemented iteratively with a stack, assuming that the children of a node are put on the stack in
left-to-right order.

D G L A X J C Q R K B V F S T

COMP103 10 continued...

Student ID: .

(e) [5 marks] In the box below, show a tree consisting of 5 nodes A, B, C, D and E, for which a
pre-order traversal yeilds the ordering ABCDE, but a post-order traversal gives BDECA.

A
/ \

B C
/ \

D E

(f) [5 marks] Draw the tree that would result from adding nodes to an empty Binary Search Tree in
the following order:
G, V, F, S, Y, D, E, A, T, Q

G
/ \

/ \
/ \

F V
/ / \

/ / \
D S Y

/ \ / \
A E Q T

(g) [1 mark] Is your tree (above) a complete tree?

(if it’s correct...) no: e.g. the node F has no right child etc.

(h) [5 marks] What is the ordering property that defines a Binary Search Tree?

All of the items in the left subtree of a node must be less than the item at the node,
which must be less than all of the items in the right subtree. Note it is not enough
to say that the left child must be less than the one at the node and the right must
be greater !

COMP103 11 continued...

(i) [8 marks] Consider the remove operation on a Binary Search Tree. If the node being removed
has only one child then it is fairly obvious what to do: simply “pulling up” that child results in a
tree that is still a valid BST.

What should you do when removing a node that has two children? In your explanation, make it
clear why this still results in a valid BST. (Hint: You may find that drawing an example helps).

Note: do not give java code for this question.

As per lecture 25, slide 15.

COMP103 12 continued...

Student ID: .

Question 6. Partially Ordered Trees and Heaps [29 marks]

Consider the following Partially Ordered Tree (POT):

(a) [3 marks] Draw the tree as a heap, in the row of boxes below.
(A Heap is a partially ordered binary tree, implemented in an array).

D H G J K Z Q M P N

(b) [3 marks] Redraw the POT tree after the following operations have been carried out:
Add ”V”, Add ”F”.

D
H F

J K G Q
M P N V Z

(c) [3 marks] Redraw the tree from your previous answer after removing an element (poll).

F
H G

J K Z Q
M P N V

COMP103 13 continued...

(d) [10 marks] Complete the method below, which takes an array data of given size and a Com-
parator comp, and checks that the array is a valid Heap.

// doesn’ t need recursion : just go through the 1st
// half of data , checking the children (if they exist)

for (int i=0;i<=size/2;i++) {
int child1 = 2∗i+1;
if (child1 < size)

if (data[child1] != null)
if (comp.compare(data[child1],data[i])>0) return false;

int child2 = 2∗i+2;
if (child2 < size)

if (data[child2] != null)
if (comp.compare(data[child2],data[i])>0) return false;

}
return true;
// A shorter alternative is to work through 2nd half of
// the array , checking that data [(i−1)/2] > data[i] everywhere.

public boolean heapChecker(E[] data, int size, Comparator <E> comp) {

}

For the next four questions, consider the code for HeapSort given below, which sorts the items in
the array data using a two-stage process. Both stages use pushDown, which is a recursive method:
it finds the largest child and, if the current node is smaller, it performs a swaps and then calls
pushdown on that child.

public void HeapSort(E[] data, int size, Comparator <E> comp) {
for (int i=(size−1)/2; i>=0;i−−) // HEAPIFY

pushDown(i,data,size,comp);
while (size>0) { // IN−PLACE DEQUEUEING

size−−;
swap(data,size,0);
pushDown(0,data,size,comp);

}
}

COMP103 14 continued...

Student ID: .

(e) [3 marks] The loop labelled ”HEAPIFY” begins only half-way through the array, and works
back to the beginning of the array. Explain why this is so. (Hint: It may help if you refer to the implicit
tree that the array is representing).

We are pushing down every item in the implicit tree: there is no need to push
down the leaves, which make up the second half of the array.

(f) [3 marks] What is the asymptotic (“big-O”) cost of the step labelled ”HEAPIFY”?

Heapify is O(n).

(g) [2 marks] What is the average-case asymptotic (“big-O”) cost of HeapSort overall?

O(n log n)

(h) [2 marks] What is the worst-case asymptotic (“big-O”) cost of HeapSort overall?

O(n log n)

COMP103 15 continued...

Question 7. Various topics: costs, sorting, hashing [37 marks]

The following printNums method prints out integers.

public void printNums(int n) {
while (n > 0) {

System.out.printf ("%d ", n);
n = n/2;
}
}

(a) [2 marks] When called with printNums(20) what would the output be?

20 10 5 2 1

(b) [3 marks] What is the asymptotic (“big-O”) cost of printNums(n) as a function of n, and why?

O(log n). The number of times you can halve n (giving a positive int).

The following printNumsAltered method also prints out integers.

public void printNumsAltered(int n) {
while (n > 0) {

for (int k=0; k<n; k++)
System.out.printf ("%d ", k);

System.out.println(" ");
n = n/2;
}
}

(c) [3 marks] Show the output that would be produced by printNumsAltered(10)

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4
0 1
0

(d) [4 marks] What is the asymptotic (“big-O”) cost of printNumsAltered(n) as a function of n?
Include a brief explanation of why this is so.

O(n).
The complexity is the inner loop: the print statement.
n + n/2 + n4 . . . = 2n.

COMP103 16 continued...

Student ID: .

(e) [6 marks] Suppose you are given the list 2, 1, 20, 13, 18, 5, 19. In the box below, list the swaps
carried out, and the order that this results in, when the above list is sorted by SelectionSort. Use the
following format for your answers:

swap 2-1, leaving 1 2 20 13 18 5 19
swap ...
swap ...
swap ..., leaving 1 2 5 13 18 19 20

swap 2-1, leaving 1 2 20 13 18 5 19
swap 5-20, leaving 1 2 5 13 18 20 19
swap 20-19, leaving 1 2 5 13 18 19 20

(f) [6 marks] Write code for a recursive method that makes onions with layers specified as Strings,
like this:

• onion(4, ”(” , ”)”) should produce the line (((())))

• onion(4,”-”,”+”) should produce the line - - - - + + + +

System.out.print(str1);
if (layers>1) onion(layers−1,str1,str2);
System.out.print(str2);

// NB: many many students gave ”while” instead of ” if ” !

public void onion(int layers , String str1 , String str2) {

}

(g) [4 marks] What would onion(4,” ”, ”+ -”) produce?

+ - + - + - + -

COMP103 17 continued...

(h) [2 marks] Name the two general approaches used to deal with collisions in a Hash Set.

Buckets, and probing.

(i) [3 marks] In a HashSet it is normal to increase the capacity when the array is only 70% full. Why
don’t we wait until it is 100% full?

Because this causes too many collisions, which results in performance becoming
slow: O(n), just like an unsorted ArraySet, or a Linked List

(j) [4 marks] What is wrong with the following Hash function?

public int hashcode(String key) {
int hash = 1;
char [] characters = key.toCharArray();
for (int i=0; i < characters.length; i++)

hash = hash + (int) (characters[i] ∗ 256 ∗ Math.random());
return (hash % data.length); // where data is the hash table ’ s array .

}

Every time a value is hashed, it will produce a different random value: since this
is unlikely to be where the item was stored, this is about as hopeless procedure
for a hash table as you can get! NB. very few students got this correct.

COMP103 18

Student ID: .

Appendices

Possibly useful formulae:

• 1 + 2 + 3 + 4 + · · ·+ k = k(k+1)
2

• 1 + 2 + 4 + 8 + · · ·+ 2k = 2k+1 − 1

Table of base 2 logarithms:

n 1 2 4 8 16 32 64 128 256 512 1024 1,048,576
log2(n) 0 1 2 3 4 5 6 7 8 9 10 20

Some common exceptions.

• UnsupportedOperationException

• NullPointerException

• IndexOutOfBoundsException

Brief (and simplified) specifications of relevant interfaces and classes.

public class Random
public int nextInt (int n); // return a random integer between 0 and n−1
public double nextDouble(); // return a random double between 0.0 and 1.0

public interface Iterator <E>
public boolean hasNext();
public E next ();
public void remove();

public interface Iterable<E> // Can use in the ”for each” loop
public Iterator<E> iterator();

public interface Comparable<E> // Can compare this to another E
public int compareTo(E o);

public interface Comparator<E> // Can use this to compare two E’s
public int compare(E o1, E o2);

COMP103 19 continued...

public interface Collection<E>
public boolean isEmpty();
public int size ();
public boolean contains(Object item);
public boolean add(E item); // returns false if failed to add item
public Iterator<E> iterator();

public interface List<E> extends Collection<E>
// Implementations: ArrayList
public E get(int index);
public void set(int index, E element);
public void add(int index, E element);
public E remove(int index); // returns the item that was at index
public boolean remove(Object element); // returns true if element was removed

public interface Set extends Collection<E>
// Implementations: ArraySet, SortedArraySet, HashSet
public boolean contains(Object element);
public boolean add(E element);
public boolean remove(Object element);

public interface Queue<E> extends Collection<E>
// Implementations: ArrayQueue, LinkedList
public E peek (); // returns null if queue is empty
public E poll (); // returns null if queue is empty
public boolean offer (E element);

public class Stack<E> implements Collection<E>
public E peek (); // returns null if stack is empty
public E pop (); // returns null if stack is empty
public E push (E element); // returns element

public interface Map<K, V>
// Implementations: HashMap, TreeMap, ArrayMap
public V get(K key); // returns null if no such key
public V put(K key, V value); // returns old value , or null
public V remove(K key); // returns value removed, or null
public boolean containsKey(K key);
public Set<K> keySet(); // returns set of all keys in Map
public Collection<V> values(); // returns collection of all values
public Set<Map.Entry<K, V>> entrySet(); // returns set of (key−value) pairs

Scanner class:
public boolean hasNext() // Returns true if there is more to read
public boolean hasNextInt() // Returns true if the next token is an integer
public String next() // Returns the next token (chars up to a space / line)
public String nextLine() // Returns string of chars up to next newline
public int nextInt () // Returns the integer value of the next token

