
Family Name: . Other Names: .

ID Number: .

COMP103 Test

19 August, 2010

Instructions

• Time: 45 minutes.

• Answer all the questions.

• There are 45 marks in total.

• Write your answers in the boxes in this test paper and hand in all sheets.

• Every box with a heavy outline requires an answer.

• If you do not understand a question, ask for clarification.

• There is java documentation at the end of the exam paper that you may find useful.

Marks

1. Various topics [10] 1

2. Using Collections [15] 2

3. Implementing Collections [14] 3

4. Recursion and Sorting [6] 4

Total:

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 (Terms Test) 2 continued...

Student ID: .

Question 1. Various topics [10 marks]

(a) [2 marks] You can read the contents of a file with a Scanner and push the lines onto a Stack.
When you pop the items from the Stack and print them, they appear in the reverse order. Why does
this happen?

(b) [3 marks] Consider SortedArraySet. Explain why in this implementation the asymptotic (“big
O”) cost for contains() is O(log n) but is O(n) for remove().

(c) [3 marks] Explain the differences between Set, Map and Bag.

(d) [2 marks] In Java, you can have two methods with the same name. What conditions must be
satisfied for this to happen, and what is the concept called?

COMP 103 (Terms Test) 3 continued...

Student ID: .

Question 2. Using Collections [15 marks]

The for each loop is a shorthand for an iterator. Here is an example of a for each loop:

for (Fish f : basket) {
f .wriggle ();

}

(a) [4 marks] In the box below, expand the above for each loop using an iterator explicitly.

Iterator itr = basket. iterator ();
while (itr .hasNext())

itr .next (). wriggle ();

.

(b) [2 marks] What type does basket have to be for the for each loop to work?

(c) [2 marks] In the box below, fix the error(s) in the following declaration:

List <String> myList = new List <String> ;

List <String> myList = new ArrayList <String> ();

corrected version:

.

(Question 2 continued on next page)

COMP 103 (Terms Test) 4 continued...

Student ID: .

(Question 2 continued)

Consider code that stores the lines of text from a file using a Stack, and then reverses that Stack:

Stack <Line> mystack = new Stack <Line> ();

// the stack then has various Lines added to it by the scanner .
:
:

mystack = reverseStack(mystack);

(d) [7 marks] In the box below, complete the reverseStack method, that takes a Stack of Line objects
as a parameter, and returns a Stack that has the same lines but in the reversed order.
You may assume the Line class exists.

public Stack <Line> reverseStack (Stack <Line> mys) {

// make a second stack
Stack <Line> st = new Stack <Line> ();

// pop off items from the original stack into the new one
while (!mys.isEmpty()) {

st .push(mys.pop());
}

return st ;

}

public ...

}

COMP 103 (Terms Test) 5 continued...

Student ID: .

Question 3. Implementing Collections [14 marks]

A Priority Queue is a special queue that is not FIFO (first-in-first-out). Instead, items are added
in the queue based on their priority, and the item returned by poll or peek is always the one with
highest priority.

A common internal data structure to implement different Collections is an Array. For example, you
have used an Array to implement an ArrayList, or an ArrayQueue.

Now consider using an Array to implement a ArrayPriorityQueue, as shown below:

public ArrayPriorityQueue <E> extends AbstractQueue <E> {

private static int INITIALCAPACITY = 10;
private int count = 0;
private E[] data;

public ArrayPriorityQueue(){ data = (E[]) new Object[INITIALCAPACITY];}
public boolean isEmpty(){return count == 0;}
public int size () { return count;}

/∗∗ Ensure data array has sufficient number of elements
∗ to add a new element ∗/

private void ensureCapacity () {...} // assume done

/∗∗ Find and returns the index (between 0 and count) of where an element is in the dataarray ,
∗ based on the priority (or where it ought to be .) ∗/

private int findIndex(Object itm){...} // assume done
:
public E poll (){} // not done yet .
public boolean offer(E item){} // not done yet .

}

(Question 3 continued on next page)

COMP 103 (Terms Test) 6 continued...

Student ID: .

(Question 3 continued)

(a) [8 marks] Complete the offer method below, for the ArrayPriorityQueue implementation. You
may assume the findIndex method is available, which returns the index of where an item should be
in the ArrayPriorityQueue.

Note: The priority is automatically handled by the findIndex method. Also assume ensureCapacity
is available.

if (item==null)
return false;

ensureCapacity();
int index = findIndex(item);
for(int i=count; i>index; i−−)

data[i] = data[i−1];
data[index] = item;
count++;
return true;

public boolean offer (E item) {

}

(b) [6 marks] Complete the poll method for ArrayPriorityQueue.

if (isEmpty())
return null ;

E item = data[count−1];
data[count−1] = null;
count−−;
return item;

public E poll (){

}

COMP 103 (Terms Test) 7 continued...

Student ID: .

Question 4. Recursion and Sorting [6 marks]

(a) [2 marks] A “brick-wall” consists of a brick with two half size brick-walls on top. The following
code draws such a wall, using recursion:

public void brickWall (int x, int y, int wd){
drawBrick(x, y, wd);
if (wd > 10) {

int w = wd/2; // width of next smaller brick
brickWall(x, y−10, w); // left half
brickWall(x+w, y−10, w); // right half

}
}

In the brick-wall image below, write a digit inside the circle on each brick, showing the order in
which they’re drawn by the above method.

(Question 4 continued on next page)

COMP 103 (Terms Test) 8 continued...

Student ID: .

(Question 4 continued)

(b) [2 marks] Consider the array shown in the first row below. In the next two rows, show the array
after the first two iterations of the outer loop of SelectionSort.

S C N P Q A M R B

(c) [2 marks] The cost of QuickSort is O(n log n) provided a sensible choice of pivot is made. But if
QuickSort is implemented by simply using the first point in the array as the pivot, its cost increases
from O(n log n) to O(n2), in one particular scenario. What is that scenario?

COMP 103 (Terms Test) 9

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 103 (Terms Test) 10 continued...

Appendix (may be removed)

Brief (and simplified) specifications of some relevant interfaces and classes.

public interface Iterator <E>
public boolean hasNext();
public E next ();
public void remove();

public interface Iterable<E> // Can use in the ”for each” loop
public Iterator<E> iterator();

public interface Comparable<E> // Can compare this to another E
public int compareTo(E o);

public interface Comparator<E> // Can use this to compare two E’s
public int compare(E o1, E o2);

public interface Collection<E>
public boolean isEmpty();
public int size ();
public boolean add();
public Iterator<E> iterator();

public interface List<E> extends Collection<E>
// Implementations: ArrayList
public E get(int index);
public void set(int index, E element);
public void add(E element);
public void add(int index, E element);
public void remove(int index);
public void remove(Object element);

public interface Set extends Collection<E>
// Implementations: ArraySet, SortedArraySet, HashSet
public boolean contains(Object element);
public boolean add(E element);
public boolean remove(Object element);

public interface Queue<E> extends Collection<E>
// Implementations: ArrayQueue, LinkedList
public E peek (); // returns null if queue is empty
public E poll (); // returns null if queue is empty
public boolean offer (E element);

public class Stack<E> implements Collection<E>
public E peek (); // returns null if stack is empty
public E pop (); // returns null if stack is empty
public E push (E element);

public interface Map<K, V>
// Implementations: HashMap, TreeMap, ArrayMap
public V get(K key); // returns null if no such key
public void put(K key, V value);
public void remove(K key);
public Set<Map.Entry<K, V>> entrySet();

