School of Mathematical and Computing Sciences COMP 202: Formal Methods of Computer Science

Test (14 September, 2000)

Time allowed = 90 minutes
Answer ALL questions

- 1. Understanding regular expressions (15 points total).
- 1(a). (6 points) In each case, find a string of minimum length in $\{0,1\}^*$ not in the language corresponding to the given regular expression.
 - (i) 1*(01)*0* min length string 011
 - (ii) $(0^*|1^*)(0^*|1^*)(0^*|1^*)$ min length string 0101 or 1010
- (iii) 0*(100*)*1* min length string 110
- 1(b). (9 points) Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$.
 - (i) The language of all strings that begin or end with 00 or 11. $(00|11)(0|1)^* \mid (0|1)^*(00|11)$
 - (ii) The language of all strings that do not end with 01. $\lambda \mid 1 \mid (0 \mid 1)^*(0 \mid 11)$
- (iii) The language of all strings containing exactly one occurrence of the string 00. (The string 000 should be viewed as containing two occurrences of 00.) (01|1)*00(10|1)*

2. Designing DFA's (20 points total).

(a) (10 points) Find a DFA that recognises the language $L(\alpha)$ over the alphabet $\Sigma = \{a, b\}$ where α is the the regular expression $(aa|bb)^*(ab|ba)(aa|bb)^*$.

(b) (10 points) Find a DFA that recognizes the language $L(\alpha)$ over the alphabet $\Sigma = \{a, b\}$ where α is the regular expression $(aaa)^*b|(aa)^*b$.

3. Designing an NFA (5 points). Find an NFA, with only four states, that accepts the regular language over the alphabet $\Sigma = \{0, 1\}$ described by the following regular expression. $(01|011|0111)^*$

4. Converting an NFA- λ to a DFA (10 points). Here is an NFA- λ automaton that also accepts $L((01|011|0111)^*)$.

Convert this automaton to an equivalent (complete) deterministic one using the extended version of the subset construction, where we calculate the λ -closure of the current state at each step.

```
\Lambda\{S\} = \{S, A, D, H\}
\Delta(\{S, A, D, H\}, 0) = \{B, E, I\}
\Delta(\{S, A, D, H\}, 1) = \emptyset
\Lambda\{B, E, I\} = \{B, E, I\}
\Delta(\{B, E, I\}, 0) = \emptyset
\Delta(\{B, E, I\}, 1) = \{C, F, J\}
\Lambda\{C, F, J\} = \{C, F, J, S, A, D, H\}
\Delta(\{C, F, J, S, A, D, H\}, 0) = \{B, E, I\}
\Delta(\{C, F, J, S, A, D, H\}, 1) = \{G, K\}
\Lambda\{G,K\} = \{G,K,S,A,D,H\}
\Delta(\{G, K, S, A, D, H\}, 0) = \{B, E, I\}
\Delta(\{G, K, S, A, D, H\}, 1) = \{L\}
\Lambda\{L\} = \{L, S, A, D, H\}
\Delta(\{L, S, A, D, H\}, 0) = \{B, E, I\}
\Delta(\{L, S, A, D, H\}, 1) = \emptyset
\Delta(\emptyset,0) = \emptyset
\Delta(\emptyset,1) = \emptyset
```


5. Understanding the Myhill-Nerode Theorem (20 points total)

Consider the regular language L over the alphabet $\Sigma = \{a, b\}$ represented by the following regular expression

 $a^*b^*|b^*a^*$

(a) (8 points) Draw the minimal (complete) DFA for L. Use the marking algorithm given in lectures to check your diagram. Show your working when applying the marking algorithm.

Marking algorithm:

1st round: mark pairs where one of the pair is final, the other non-final.

Mark
$$(1,6), (2,6), (3,6), (4,6), (5,6)$$
.

2nd round: mark pairs where an already-marked pair can be reached from the current pair under some input symbol.

Mark
$$(1,3)$$
, $(1,5)$, $(2,3)$, $(2,5)$, $(3,4)$, $(3,5)$, $(4,5)$.

3rd round: mark pairs where an already-marked pair can be reached from the current pair under some input symbol.

Mark
$$(1,2),(1,4),(2,4)$$
.

All pairs are marked, so no states can be collapsed together. The DFA given is the unique (up to isomorphism) DFA for L.

(b) (6 points) The Myhill-Nerode relation \equiv_L is defined over Σ^* as follows:

$$x \equiv_L y \stackrel{\text{def}}{\Longleftrightarrow} \forall z \in \Sigma^* (xz \in L \iff yz \in L).$$

In other words, $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

For each of the following pairs of strings x and y, determine if $x \equiv_L y$, where $L = L(a^*b^*|b^*a^*)$. Give justification for your answers.

- (i) x = aa and y = aaax and y are indistinguishable with respect to L: choose $z \in a^*b^*$, then $xz \in L$ and $yz \in L$, choose $z \in \Sigma^*$ such that $z \notin a^*b^*$, then $xz \notin L$ and $yz \notin L$.
- (ii) x = aab and y = ababa x and y are distinguishable with respect to L: choose $z = \lambda$, then $xz \in L$, $yz \notin L$.
- (iii) $x = \lambda$ and y = abx and y are distinguishable with respect to L: choose z = a, then $xz \in L$, $yz \notin L$.

Note that an argument that covers all $z \in \Sigma^*$ is required for (i), while the existence of a single suitable z is all that is required for (ii) and (iii).

(c) (6 points) Give a regular expression to describe each of the equivalence classes of \equiv_L . There is one equivalence class corresponding to each of the states in the minimal DFA for L.

```
 \begin{aligned} & [\lambda] \\ & [aa^*] \\ & [bb^*] \\ & [aa^*bb^*] \\ & [bb^*aa^*] \\ & [(aa^*bb^*a|bb^*aa^*b)(a|b)^*] \end{aligned}
```

6. Using the Myhill-Nerode Theorem (10 points)

Let L be the language over $\{0,1\}^*$ defined as follows:

$$L = \{0^n 10^{2n} \mid n > 0\}$$

Give a proof using the Myhill-Nerode Theorem that L is not regular.

Choose an infinite set of strings from Σ^* , say $\{0^n \mid n > 0\}$.

Now show that these strings are all pairwise distinguishable with respect to L, and, thus, must be in different equivalence classes under \equiv_L . Therefore, \equiv_L does not have finite index, so L cannot be regular.

To show that strings in $\{0^n \mid n > 0\}$ are all pairwise distinguishable with respect to L:

Choose two distinct strings 0^i and 0^j , $i \neq j$. Choose $z = 10^{2i}$, $z \in \Sigma^*$. Now, $xz \in L$ but $yz \notin L$.