VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS - 2002

END-YEAR

COMP 202

Formal methods of Computer Science

Time Allowed: 3 Hours
Instructions: There are seven (7) questions, worth fourteen (14) marks each, making 98 marks in total.
Answer all the questions.
You may use printed foreign language dictionaries. You may not use calculators or electronic dictionaries.

The following procedure takes an integer, a, and is intended to return $|a|$, the absolute value of a.

```
procedure \(a b s(\) in \(a\), out \(x)\)
    begin
\(\left\{A_{1}\right\} \quad\) if \(a<0\) then
\(\left\{A_{2}\right\} \quad x:=-a\)
\(\left\{A_{3}\right\} \quad\) elsif \(a>0\) then
\(\left\{A_{4}\right\} \quad x:=a\)
\(\left\{A_{5}\right\} \quad\) fi
\(\left\{A_{6}\right\} \quad\) end
```

(a) Give the specification (signature, precondition and postcondition) that this procedure satisfies.
(b) Briefly outline how to verify that the program meets your specification. [4 marks]
(c) The following is (part of) a definition of a semantic function \mathcal{V} for evaluating Boolean expressions:

$$
\begin{aligned}
& \mathcal{V}(p \text { and } q)= \begin{cases}\mathcal{V}(q), & \text { if } \mathcal{V}(p)=1 \\
0, & \text { otherwise }\end{cases} \\
& \mathcal{V}(\text { not } p)= \begin{cases}1, & \text { if } \mathcal{V}(p)=0 \\
0, & \text { otherwise }\end{cases} \\
& \mathcal{V}(\text { true })=1 \\
& \mathcal{V}(\text { false })=0
\end{aligned}
$$

Extend the definition to handle Boolean variables, v, whose values are determined by a store. Hint: you will need to modify the given clauses as well as adding a new one.
$M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- $Q=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$
- $\Sigma=\{0,1\}$
- $q_{0}=S_{0}$
- $F=\left\{S_{3}\right\}$
and δ is given by the table:

δ	0	1
S_{0}	$\left\{S_{1}, S_{2}\right\}$	$\left\{S_{2}\right\}$
S_{1}	$\}$	$\left\{S_{2}, S_{3}\right\}$
S_{2}	$\left\{S_{3}\right\}$	$\left\{S_{1}, S_{2}\right\}$
S_{3}	$\}$	$\}$

(a) Draw M_{1}.
(b) Find an FA which accepts the same language as M_{1}. Be sure to explain why your FA accepts the same language as the M_{1}.

Question 3.

(a) State Kleene's theorem.
(b) Show that, if L_{1} and L_{2} are regular languages, then so are:

1. $L_{1} \cup L_{2}$
2. $L_{1} L_{2}$
(c) Let \mathbf{r} and s be regular expressions. State which of the following equalities hold:
3. $\mathbf{r}+\mathrm{s}=\mathrm{s}+\mathrm{r}$
4. $\mathrm{rs}=\mathrm{sr}$
5. $\emptyset^{*}=\Lambda^{*}$
6. $\mathbf{r}^{*}+\mathbf{s}^{*}=(\mathbf{r}+\mathbf{s})^{*}$
7. $(\mathbf{r}+\mathbf{s})^{*}=\left(\mathbf{s}^{*} \mathbf{r}^{*}\right)^{*}$

Question 4.

Here are four grammars.

$$
\begin{array}{rlrl}
G_{1}: & S \rightarrow A B & G_{2}: & S \rightarrow T \mid V C \\
& A \rightarrow a \mid a A & & T \rightarrow B \mid a T c \\
& B \rightarrow b \mid b B & B \rightarrow \Lambda \mid b B \\
& & & \\
& & \\
& & \\
& \\
G_{3}: & S \rightarrow a \mid a V \\
& E \rightarrow A \mid B & G_{4}: & S \rightarrow S a S|S b S| c \\
& A \rightarrow a A \mid B & \\
B \rightarrow b B \mid B & &
\end{array}
$$

(a) State which one(s) describe regular languages, and explain why.
(b) State which one(s) describe context free languages, and explain why.
(c) Using G_{4}, give two different leftmost derivations for the string cacbc. [2 marks]
(d) Give an unambiguous grammar, G_{5}, that generates the same language as G_{4}.
(e) Draw a parse tree for the string $c a c b c$, using your grammar G_{5}.

Question 5.

Below is a CFG, G, for a subset of $\{<,>, x\}^{*}$ in which $<$ and $>$ are balanced like the brackets of an arithmetic expression. For example, " $\ll x\rangle>$ " and " $<x<x\rangle<\rangle>$ " are in the language, but " $><$ " and " $<x \gg<$ " are not.

$$
\begin{array}{lll}
S \rightarrow<S^{\prime} & A \rightarrow B A^{\prime} & B \rightarrow x \mid S \\
S^{\prime} \rightarrow>\mid A> & A^{\prime} \rightarrow \Lambda \mid A &
\end{array}
$$

(a) Compute:

1. $\operatorname{first}(S)$
2. $\operatorname{first}(A)$
3. $\operatorname{first}\left(A^{\prime}\right)$
4. follow $\left(A^{\prime}\right)$
(b) Hence, show that G is LL(1).
(c) Define a recursive descent parser for the language defined by G.

The following grammar G defines the language $L=\left\{w c w^{R} \mid w \in\{a, b,\}^{*}\right\}$, where w^{R} is the reverse of w :

$$
S \rightarrow c|a S a| b S b
$$

(a) Give a leftmost derivation of $a b c b a$ using G.
(b) Draw a PDA for L using a bottom-up strategy.

The following PDAs P_{1} and P_{2} define context free languages L_{1} and L_{2} (respectively):

P_{2} :

(c) Describe the languages L_{1} and L_{2}.
(d) Is the concatenation (product) $L_{3}=L_{1} L_{2}$ context free?

If so, draw a PDA for L_{3}. If not, explain why not.
(e) Is the intersection $L_{4}=L_{1} \cap L_{2}$ context free?

If so, draw a PDA for L_{4}. If not, explain why not.

Question 7.

(a) Define the following terms:

1. computable language
2. computably enumerable language
(b) Explain what we mean when we say a problem is decidable.
(c) Describe the halting problem, and show why it is undecidable.
