VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS - 2002

TERM TEST

COMP 202

Formal Methods of Computer Science

Time Allowed: 50 minutes

Instructions: There are **four** (4) questions. Each question is worth **twenty-five** (25) marks. Answer **all** the questions. Show **all** your working.

Question 1.

The following program takes two integers, a and b, and returns integers x and y such that x is the smaller of a and b, and y is the larger of a and b.

```
begin
\{A_1\}
            if a \leq b then
\{A_2\}
              x := a;
\{A_3\}
              y := b
\{A_4\}
            else
              x := b;
\{A_5\}
\{A_6\}
              y := a
\{A_{7}\}
            fi
\{A_8\}
        end
```

postcondition) for this problem.

(a) Write a formal specification (signature, precondition, and postcondition) for this problem. [6 marks]

(b) Give assertions A_1, \ldots, A_8 that may be used to prove this program correct. You do not need to complete the proof! [12 marks]

(c) Explain how a **loop invariant** may be used in the verification of a while-program. [7 marks]

Question 2.

Let $M_1 = (Q, \Sigma, \delta, q_0, F)$, where

$$Q = \{S_0, S_1, S_2, S_3\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = S_0$$

$$F = \{S_1\}$$

δ	0	1	Λ
S_0	{}	$\{S_2\}$	$\{S_1\}$
S_1	$\{S_1\}$	$\{S_3\}$	{}
S_2	{}	$\{S_2\}$	$\{S_3\}$
S_3	$\{S_1\}$	{}	{}

(a) For each of the following strings state whether it is accepted by M_1 :

- 1. 00
- 2. 10
- 3. 01
- 4. 011
- 5. 11011

[5 marks]

(b) *Outline* the method for constructing an NFA from an NFA with Λ transitions, such that both machines accept the same language. [10 marks]

(c) Find an NFA which accepts the same language as M_1 . [10 marks]

continued...

Question 3.

The following machines M_2 and M_3 accept Language(1) and Language(0) respectively.

Figure 1: M_2

Figure 2: M_3

Draw NFA with Λ transitions which accept the following languages.

(a) $Language(1^*)$	[5 marks]
(b) $Language((1 + 0)^*)$	[5 marks]
(c) $Language(10 + 01)$	[5 marks]
(d) Language $(1 + \emptyset)$	[5 marks]
(e) $Language(0 + \Lambda)$	[5 marks]

Question 4.

(a) *State* Kleene's Theorem.

[5 marks]

(b) The pumping lemma tells us that if *L* is a regular language then there is a number *p*, such that $(\forall s \in L)(|s| \ge p \Rightarrow s = xyz)$, where:

- 1. $(\forall i \ge 0)xy^i z \in L$
- 2. |y| > 0
- 3. $|xy| \leq p$

Outline the proof of the pumping lemma.

[10 marks]

(c) Using the pumping lemma, or otherwise, show that the language $\{1^n 0^n | n \ge 0\}$ is not regular. [10 marks]
