VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS — 2002

TERM TEST

COMP 202

Formal Methods of Computer Science

Time Allowed: 50 minutes
Instructions: There are four (4) questions.
Each question is worth twenty-five (25) marks.
Answer all the questions.
Show all your working.

Question 1.

The following program takes two integers, a and b, and returns integers x and y such that x is the smaller of a and b, and y is the larger of a and b.

begin	
$\left\{A_{1}\right\}$	if $a \leq b$ then
$\left\{A_{2}\right\}$	$x:=a ;$
$\left\{A_{3}\right\}$	$y:=b$
$\left\{A_{4}\right\}$	else
$\left\{A_{5}\right\}$	$x:=b ;$
$\left\{A_{6}\right\}$	$y:=a$
$\left\{A_{7}\right\}$	fi
$\left\{A_{8}\right\}$	end

postcondition) for this problem.
(a) Write a formal specification (signature, precondition, and postcondition) for this problem.
[6 marks]
(b) Give assertions A_{1}, \ldots, A_{8} that may be used to prove this program correct. You do not need to complete the proof!
[12 marks]
(c) Explain how a loop invariant may be used in the verification of a while-program. [7 marks]

Question 2.

Let $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{0,1\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{1}\right\}
\end{aligned}
$$

δ	0	1	Λ
S_{0}	$\}$	$\left\{S_{2}\right\}$	$\left\{S_{1}\right\}$
S_{1}	$\left\{S_{1}\right\}$	$\left\{S_{3}\right\}$	$\}$
S_{2}	$\}$	$\left\{S_{2}\right\}$	$\left\{S_{3}\right\}$
S_{3}	$\left\{S_{1}\right\}$	$\}$	$\}$

(a) For each of the following strings state whether it is accepted by M_{1} :

1. 00
2. 10
3. 01
4. 011
5. 11011
(b) Outline the method for constructing an NFA from an NFA with Λ transitions, such that both machines accept the same language.
(c) Find an NFA which accepts the same language as M_{1}.
[10 marks]
continued...

Question 3.

The following machines M_{2} and M_{3} accept Language(1) and Language(0) respectively.

Figure 1: M_{2}

Figure 2: M_{3}

Draw NFA with Λ transitions which accept the following languages.
(a) Language ($\mathbf{1}^{*}$)
(b) Language $\left((\mathbf{1}+\mathbf{0})^{*}\right)$
(c) Language $(\mathbf{1 0}+\mathbf{0 1})$
(d) Language $(\mathbf{1}+\emptyset)$ [5 marks]
(e) Language $(0+\boldsymbol{\Lambda})$

Question 4.

(a) State Kleene's Theorem.
(b) The pumping lemma tells us that if L is a regular language then there is a number p, such that $(\forall s \in L)(|s| \geq p \Rightarrow s=x y z)$, where:

1. $(\forall i \geq 0) x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Outline the proof of the pumping lemma.
(c) Using the pumping lemma, or otherwise, show that the language $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$ is not regular.

