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EXAMINATIONS — 2003
TERM TEST

COMP 202

Formal Methods of Computer Science
WITH ANSWERS

Time Allowed: 50 minutes

Instructions: There are four (4) questions.
Each question is worth twenty-five (25) marks.
Answer all the questions.
Show all your working.
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Question 1.

The following while-program P takes two integers, a and b, and returns integers x
and y such that x is the smaller of a and b, and y is the larger of a and b.

begin
if a ≤ b then

x := a;
y := b

else
x := b;
y := a

fi
end

(a) Write a formal specification (signature, precondition, and postcondition) for this
problem. [6 marks]

Input: integers a and b
Output: integers x and y
Precondition: true
Postcondition: {x, y} = {a, b} ∧ x ≤ y

(b) The following equations may be used to define the semantics of part of the lan-
guage of while-programs.

M(v := e,S) = update(S, v,V(e,S)) (1)
M(T ; U,S) = M(U,M(T,S)) (2)

M(if c then T else U fi,S) =
{M(T,S), if V(c,S) = true
M(U,S), otherwise (3)

(i) Briefly describe each of the following:

1. M,

2. S,

3. update,

4. V . [8 marks]

M semantic function for commands: map a store to a new store
S a store: a mapping from variables to values
update a function that takes a store S, a variable name v, and a value x, and

produces a new store that maps x to v and is otherwise the same as S
V semantic function for expressions: map a store to a value
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(ii) Use the definitions to calculate the final store if the program P above is run with
inputs a = 4 and b = 3. Show all your working. [11 marks]

M(if a ≤ b then x := a; y := b else x := b; y := a fi, {(a, 4), (b, 3)})
= M(x := b; y := a, {(a, 4), (b, 3)}) since V(a ≤ b, {(a, 4), (b, 3)}) = false

= M(y := a,M(x := b, {(a, 4), (b, 3)}))
= M(y := a, {(a, 4), (b, 3), (x, 3)})
= {(a, 4), (b, 3), (y, 4), (x, 3)}
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Question 2.

(a) State Kleene’s Theorem. [6 marks]

A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is described by a regular expression.
A language is regular iff it is generated by a regular grammar.

(b) Outline the method for constructing an FA from an NFA, such that both machines
accept the same language. [9 marks]

See Lecture notes.

(c) Let M1 = (Q, Σ, δ, q0, F ), where

Q = {S0, S1, S2, S3}
Σ = {0, 1}
q0 = S0

F = {S1}

δ 0 1
S0 {S0, S1} {S2}
S1 {} {S3}
S2 {S1, S3} {}
S3 {S2} {S1}

Find an FA which accepts the same language as M1. [10 marks]
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Let M ′
1 = (Q′, Σ′, δ′, q′0, F

′), where

Q′ = {{S0}, {S0, S1}, {S2}, {S2, S3}, {}, {S1, S2, S3}, {S1}, {S1, S3}, {S3}}}
Σ′ = Σ

q′0 = {S0}
F ′ = {{S0, S1}, {S1, S2, S3}, {S1}, {S1, S3}}

δ′ 0 1
{S0} {S0, S1} {S2}
{S0, S1} {S0, S1} {S2, S3}
{S2} {S1, S3} {}
{S2, S3} {S1, S2, S3} {S1}
{} {} {}
{S1, S2, S3} {S1, S2, S3} {S1, S3}
{S1} {} {S3}
{S1, S3} {S2} {S1, S3}
{S3} {S2} {S1}

Note: {} may be omitted.
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Question 3.

(a) Given an alphabet Σ = {0, 1}, draw NFA with Λ transitions which accept the
following languages:

(i) Language(10∗) [3 marks]

ONMLHIJKS−
0

1 // ONMLHIJKS+
1

0
ss

(ii) Language(1 + 0) [3 marks]

ONMLHIJKS+
1

ONMLHIJKS−
0

1

>>}}}}}}}}}

0
  A

AA
AA

AA
AA

ONMLHIJKS+
2

(iii) Language((0 + 1)∗(1∗0∗)∗) [4 marks]

GFED@ABCS1

Λ

��
ONMLHIJKS−

0

0

DD

1

��

Λ // ONMLHIJKS+
3

1

�� Λ ++ GFED@ABCS4

0

��

Λ
ll

GFED@ABCS2

Λ

ZZ

(iv) Language((1 + 0)1(1 + 0)∗) [4 marks]

GFED@ABCS1

Λ

��@
@@

@@
@@

@@
GFED@ABCS5

Λ

��
ONMLHIJKS−

0

1

>>~~~~~~~~~

0
  @

@@
@@

@@
@@

GFED@ABCS3
1 // ONMLHIJKS+

4

1

DD

0

��GFED@ABCS2

Λ

??��������� GFED@ABCS6

Λ

ZZ

(b) Let M2 = (Q, Σ, δ, q0, F ), where

Q = {S1, S2, S3}
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Σ = {0, 1}
q0 = S1

F = {S1, S3}

δ 0 1
S1 S3 S2

S2 S3

S3 S2 S1

Find a regular expression which describes the language accepted by M2. Show all
your working. [11 marks]

Construct a GNFA M ′
2 = (Q′, Σ′, δ′, q′i, q

′
f ), where

Q′ = {Si, S1, S2, S3, Sf}
Σ′ = Σ

q′0 = Si

q′f = Sf

δ′ S1 S2 S3 Sf

Si Λ ∅ ∅ ∅
S1 ∅ 1 0 Λ
S2 ∅ ∅ 0 ∅
S3 1 0 ∅ Λ

Now remove states from M ′
2.

M ′′
2 = (Q′′, Σ′′, δ′′, q′′i , q

′′
f ), where

Q′′ = {Si, S2, S3, Sf}
Σ′′ = Σ

q′′0 = Si

q′′f = Sf

δ′′ S2 S3 Sf

Si ∅+ Λ∅∗1 ∅+ Λ∅∗0 ∅+ Λ∅∗Λ
S2 ∅+ ∅∅∗1 0 + ∅∅∗0 ∅+ ∅∅∗Λ
S3 0 + 1∅∗1 ∅+ 1∅∗0 Λ + 1∅∗Λ

Simplifies to:
δ′′ S2 S3 Sf

Si 1 0 Λ
S2 ∅ 0 ∅
S3 0 + 11 10 Λ + 1
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M ′′′
2 = (Q′′′, Σ′′′, δ′′′, q′′′i , q′′′f ), where

Q′′′ = {Si, S3, Sf}
Σ′′′ = Σ

q′′′0 = Si

q′′′f = Sf

δ′′′ S3 Sf

Si 0 + 1∅∗0 Λ + 1∅∗∅
S3 10 + (0 + 11)∅∗0 Λ + 1 + (0 + 11)∅∗∅

Simplifies to:
δ′′′ S3 Sf

Si 0 + 10 Λ
S3 10 + (0 + 11)0 Λ + 1

M ′′′′
2 = (Q′′′′, Σ′′′′, δ′′′′, q′′′′i , q′′′′f ), where

Q′′′′ = {Si, Sf}
Σ′′′′ = Σ

q′′′′0 = Si

q′′′′f = Sf

δ′′′′ Sf

Si Λ + (0 + 10)(10 + (0 + 11)0)∗(Λ + 1)
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Question 4.

(a) The pumping lemma tells us that if L is a regular language then there is a number
p, such that (∀s ∈ L)(|s| ≥ p ⇒ s = xyz), where:

1. (∀i ≥ 0)xyiz ∈ L

2. |y| > 0

3. |xy| ≤ p

Outline the proof of the pumping lemma. [8 marks]

The explanation for lectures appears as the next box. The key points that I was looking
for were really to say that if the language is regular then there is an FA which accepts
it, to mention the pigeon-hole principle, and hence, for sufficiently long strings in the
language they can be split and pumped as the PL requires.
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We have three things to prove corresponding to conditions 1, 2 and 3 in the pumping
lemma. Let:

• M = (Q, Σ, δ, q0, F ) be a FA which accepts L,

• p be the number of states in M (i.e. p = 2Q)

• s = s1s2 . . . sn−1sn be a string in L such that n ≥ p

• r1 = q0

• ri+1 = δ(ri, si), 1 ≤ i ≤ n

Then the sequence r1r2 . . . rnrn+1 is the sequence of states that the machine goes
through to accept s. The last state rn+1 is an accepting state.
This sequence has length n + 1, which is greater than p. The pigeonhole principle tells
us that in the first p + 1 items in r1r2 . . . rnrn+1 one state must occur twice.
We suppose it occurs second as rl and first as rj .
Notice: l 6= j, and l ≤ p + 1.
Now let:

• x = s1 . . . sj−1

• y = sj . . . sl−1

• z = sl . . . sn

So:

• x takes M from r1 to rj

• y takes M from rj to rj

• z takes M from rj to rn+1

Hence M accepts xyiz, i ≥ 0. Thus we have shown that condition 1 of the pumping
lemma holds.
Because l 6= j we know that |y| 6= 0. Thus we have shown that condition 2 of the
pumping lemma holds.
Because l ≤ p + 1 we know that |xy| ≤ p. Thus we have shown that condition 3 of the
pumping lemma holds.
Hence the pumping lemma holds.

(b) Give an example of a non-regular language, and explain why it is non-regular.
[8 marks]
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Example: {1n0n|n ≥ 0}
Proof: We begin the proof by assuming that this is a regular language, so there is some
machine N which accepts it.
Hence, by the pumping lemma, there must be some integer k, such that the string 0k1k

can be pumped to give a string which is also accepted by N .
We let xyz = 0k1k, and show that xyyz is not in {0n1n|n ≥ 0}
There are three cases to consider:

1. y is a sequence of 0s

2. y is a sequence of 0s followed by a sequence of 1s

3. y is a sequence of 1s

In case 1 xyyz will have more 0s than 1s, and so xyyz 6∈ L.
In case 3 xyyz will have more 1s than 0s, and so xyyz 6∈ L.
In case 2 xyyz will have two occurrences of the substring 01, and so xyyz 6∈ L.
So in each case the assumption that {0n1n|n ≥ 0} is regular leads to a contradiction.
So {0n1n|n ≥ 0} is not regular.

(c) Let M3 = (Q, Σ, δ, q0, F ), where

Q = {S0, S1, S2, S3, S4, S5}
Σ = {0, 1}
q0 = S0

F = {S5}

δ 0 1
S0 S2 S3

S1 S1 S1

S2 S5 S1

S3 S5 S4

S4 S4 S4

S5 S5 S5

(i) Draw M3. [2 marks]
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(ii) Find the smallest FA which accepts the same language as M3. Show all your
working. [7 marks]
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Split the states of M3 into equivalence classes, depending on whether we can reach an
accepting state using using strings of increasing length:

Λ {S5} {S0, S1, S2, S3, S4}
0 {S5} {S2, S3} {S0, S1, S4}
1 {S5} {S2, S3} {S0, S1, S4}

00 {S5} {S2, S3} {S0} {S1, S4}
10 {S5} {S2, S3} {S0} {S1, S4}
01 {S5} {S2, S3} {S0} {S1, S4}
11 {S5} {S2, S3} {S0} {S1, S4}

000 {S5} {S2, S3} {S0} {S1, S4}
010 {S5} {S2, S3} {S0} {S1, S4}
001 {S5} {S2, S3} {S0} {S1, S4}
011 {S5} {S2, S3} {S0} {S1, S4}
100 {S5} {S2, S3} {S0} {S1, S4}
110 {S5} {S2, S3} {S0} {S1, S4}
101 {S5} {S2, S3} {S0} {S1, S4}
111 {S5} {S2, S3} {S0} {S1, S4}

• If you test the strings in different orders (e.g. 11 before 00) there will be minor
differences in the table.

• The picture should tell you that this full table need not be written out.

• {S1, S4} contains no accepting state, and only has transitions into itself, and so
can be omitted.

Let M ′
3 = (Q′, Σ′, δ′, q′0, F

′), where

Q′ = {{S5}, {S2, S3}, {S0}}
Σ′ = {0, 1}
q′0 = {S0}
F ′ = {{S5}}

δ 0 1
{S0} {S2, S3} {S2, S3}
{S2, S3} {S5}
{S5} {S5} {S5}

For what it is worth, the language accepted is Language((1 + 0)0(1 + 0)∗).

********************************
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