VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS - 2003

TERM TEST

COMP 202
Formal Methods of Computer Science
WITH ANSWERS

Time Allowed: 50 minutes
Instructions: There are four (4) questions.
Each question is worth twenty-five (25) marks.
Answer all the questions.
Show all your working.

Question 1.

The following while-program P takes two integers, a and b, and returns integers x and y such that x is the smaller of a and b, and y is the larger of a and b.

```
begin
    if }a\leqb\mathrm{ then
        x:=a;
        y:=b
    else
        x:= b;
        y:=a
    fi
end
```

(a) Write a formal specification (signature, precondition, and postcondition) for this problem.

Input: integers a and b
Output: integers x and y
Precondition: true
Postcondition: $\{x, y\}=\{a, b\} \wedge x \leq y$
(b) The following equations may be used to define the semantics of part of the language of while-programs.

$$
\begin{align*}
\mathcal{M}(v:=e, \mathcal{S}) & =\operatorname{update}(\mathcal{S}, v, \mathcal{V}(e, \mathcal{S})) \tag{1}\\
\mathcal{M}(T ; U, \mathcal{S}) & =\mathcal{M}(U, \mathcal{M}(T, \mathcal{S})) \tag{2}\\
\mathcal{M}(\text { if } c \text { then } T \text { else } U \text { fi, } \mathcal{S}) & = \begin{cases}\mathcal{M}(T, \mathcal{S}), & \text { if } \mathcal{V}(c, \mathcal{S})=\text { true } \\
\mathcal{M}(U, \mathcal{S}), & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

(i) Briefly describe each of the following:

1. \mathcal{M},
2. \mathcal{S},
3. update,
4. \mathcal{V}.
```
M semantic function for commands: map a store to a new store
S a store: a mapping from variables to values
update a function that takes a store \mathcal{S}}\mathrm{ , a variable name v, and a value }x\mathrm{ , and
    produces a new store that maps x}\mathrm{ to v}\mathrm{ and is otherwise the same as }\mathcal{S
V semantic function for expressions: map a store to a value
```

(ii) Use the definitions to calculate the final store if the program P above is run with inputs $a=4$ and $b=3$. Show all your working.

$$
\begin{aligned}
& \mathcal{M}(\text { if } a \leq b \text { then } x:=a ; y:=b \text { else } x:=b ; y:=a \text { fi, }\{(a, 4),(b, 3)\}) \\
= & \mathcal{M}(x:=b ; y:=a,\{(a, 4),(b, 3)\}) \text { since } \mathcal{V}(a \leq b,\{(a, 4),(b, 3)\})=\text { false } \\
= & \mathcal{M}(y:=a, \mathcal{M}(x:=b,\{(a, 4),(b, 3)\})) \\
= & \mathcal{M}(y:=a,\{(a, 4),(b, 3),(x, 3)\}) \\
= & \{(a, 4),(b, 3),(y, 4),(x, 3)\}
\end{aligned}
$$

Question 2.

(a) State Kleene's Theorem.
[6 marks]
A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is described by a regular expression.
A language is regular iff it is generated by a regular grammar.
(b) Outline the method for constructing an FA from an NFA, such that both machines accept the same language.
[9 marks]
See Lecture notes.
(c) Let $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{0,1\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{1}\right\}
\end{aligned}
$$

δ	0	1
S_{0}	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}\right\}$
S_{1}	$\}$	$\left\{S_{3}\right\}$
S_{2}	$\left\{S_{1}, S_{3}\right\}$	$\}$
S_{3}	$\left\{S_{2}\right\}$	$\left\{S_{1}\right\}$

Find an FA which accepts the same language as M_{1}.
[10 marks]

```
Let \(M_{1}^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)\), where
    \(\left.Q^{\prime}=\left\{\left\{S_{0}\right\},\left\{S_{0}, S_{1}\right\},\left\{S_{2}\right\},\left\{S_{2}, S_{3}\right\},\{ \},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{S_{1}\right\},\left\{S_{1}, S_{3}\right\},\left\{S_{3}\right\}\right\}\right\}\)
    \(\Sigma^{\prime}=\Sigma\)
    \(q_{0}^{\prime}=\left\{S_{0}\right\}\)
    \(F^{\prime}=\left\{\left\{S_{0}, S_{1}\right\},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{S_{1}\right\},\left\{S_{1}, S_{3}\right\}\right\}\)
\begin{tabular}{l|ll}
\(\delta^{\prime}\) & 0 & 1 \\
\hline\(\left\{S_{0}\right\}\) & \(\left\{S_{0}, S_{1}\right\}\) & \(\left\{S_{2}\right\}\) \\
\(\left\{S_{0}, S_{1}\right\}\) & \(\left\{S_{0}, S_{1}\right\}\) & \(\left\{S_{2}, S_{3}\right\}\) \\
\(\left\{S_{2}\right\}\) & \(\left\{S_{1}, S_{3}\right\}\) & \(\}\) \\
\(\left\{S_{2}, S_{3}\right\}\) & \(\left\{S_{1}, S_{2}, S_{3}\right\}\) & \(\left\{S_{1}\right\}\) \\
\(\}\) & \(\}\) & \(\}\) \\
\(\left\{S_{1}, S_{2}, S_{3}\right\}\) & \(\left\{S_{1}, S_{2}, S_{3}\right\}\) & \(\left\{S_{1}, S_{3}\right\}\) \\
\(\left\{S_{1}\right\}\) & \(\}\) & \(\left\{S_{3}\right\}\) \\
\(\left\{S_{1}, S_{3}\right\}\) & \(\left\{S_{2}\right\}\) & \(\left\{S_{1}, S_{3}\right\}\) \\
\(\left\{S_{3}\right\}\) & \(\left\{S_{2}\right\}\) & \(\left\{S_{1}\right\}\)
\end{tabular}
```

Note: $\}$ may be omitted.

Question 3.

(a) Given an alphabet $\Sigma=\{0,1\}$, draw NFA with Λ transitions which accept the following languages:
(i) Language ($\mathbf{1 0}^{*}$)

(ii) Language $(\mathbf{1}+\mathbf{0})$

(iii) Language $\left((\mathbf{0}+\mathbf{1})^{*}\left(\mathbf{1}^{*} \mathbf{0}^{*}\right)^{*}\right)$

(iv) Language $\left((\mathbf{1}+\mathbf{0}) \mathbf{1}(\mathbf{1}+\mathbf{0})^{*}\right)$

(b) Let $M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
Q=\left\{S_{1}, S_{2}, S_{3}\right\}
$$

$$
\begin{aligned}
\Sigma & =\{0,1\} \\
q_{0} & =S_{1} \\
F & =\left\{S_{1}, S_{3}\right\}
\end{aligned}
$$

δ	0	1
S_{1}	S_{3}	S_{2}
S_{2}	S_{3}	
S_{3}	S_{2}	S_{1}

Find a regular expression which describes the language accepted by M_{2}. Show all your working.
Construct a GNFA $M_{2}^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{i}^{\prime}, q_{f}^{\prime}\right)$, where

$$
\begin{aligned}
Q^{\prime} & =\left\{S_{i}, S_{1}, S_{2}, S_{3}, S_{f}\right\} \\
\Sigma^{\prime} & =\Sigma \\
q_{0}^{\prime} & =S_{i} \\
q_{f}^{\prime} & =S_{f}
\end{aligned}
$$

δ^{\prime}	S_{1}	S_{2}	S_{3}	S_{f}
S_{i}	Λ	\emptyset	\emptyset	\emptyset
S_{1}	\emptyset	1	0	Λ
S_{2}	\emptyset	\emptyset	0	\emptyset
S_{3}	1	0	\emptyset	Λ

Now remove states from M_{2}^{\prime}.

$$
M_{2}^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma^{\prime \prime}, \delta^{\prime \prime}, q_{i}^{\prime \prime}, q_{f}^{\prime \prime}\right) \text {, where }
$$

$$
\begin{aligned}
Q^{\prime \prime} & =\left\{S_{i}, S_{2}, S_{3}, S_{f}\right\} \\
\Sigma^{\prime \prime} & =\Sigma \\
q_{0}^{\prime \prime} & =S_{i} \\
q_{f}^{\prime \prime} & =S_{f}
\end{aligned}
$$

$\delta^{\prime \prime}$	S_{2}	S_{3}	S_{f}
S_{i}	$\emptyset+\Lambda \emptyset^{*} 1$	$\emptyset+\Lambda \emptyset^{*} 0$	$\emptyset+\Lambda \emptyset^{*} \Lambda$
S_{2}	$\emptyset+\emptyset \emptyset^{*} 1$	$0+\emptyset \emptyset^{*} 0$	$\emptyset+\emptyset \emptyset^{*} \Lambda$
S_{3}	$0+1 \emptyset^{*} 1$	$\emptyset+1 \emptyset^{*} 0$	$\Lambda+1 \emptyset^{*} \Lambda$

Simplifies to:

$\delta^{\prime \prime}$	S_{2}	S_{3}	S_{f}
S_{i}	1	0	Λ
S_{2}	\emptyset	0	\emptyset
S_{3}	$0+11$	10	$\Lambda+1$

$$
\begin{aligned}
M_{2}^{\prime \prime \prime}=\left(Q^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}, \delta^{\prime \prime \prime}, q_{i}^{\prime \prime \prime}, q_{f}^{\prime \prime \prime}\right), \text { where } & \\
Q^{\prime \prime \prime} & =\left\{S_{i}, S_{3}, S_{f}\right\} \\
\Sigma^{\prime \prime \prime} & =\Sigma \\
q_{0}^{\prime \prime \prime} & =S_{i} \\
q_{f}^{\prime \prime \prime} & =S_{f}
\end{aligned}
$$

$\delta^{\prime \prime \prime}$	S_{3}	S_{f}
S_{i}	$0+1 \emptyset^{*} 0$	$\Lambda+1 \emptyset^{*} \emptyset$
S_{3}	$10+(0+11) \emptyset^{*} 0$	$\Lambda+1+(0+11) \emptyset^{*} \emptyset$

Simplifies to:

$\delta^{\prime \prime \prime}$	S_{3}	S_{f}
S_{i}	$0+10$	Λ
S_{3}	$10+(0+11) 0$	$\Lambda+1$

$M_{2}^{\prime \prime \prime \prime}=\left(Q^{\prime \prime \prime \prime}, \Sigma^{\prime \prime \prime \prime}, \delta^{\prime \prime \prime \prime}, q_{i}^{\prime \prime \prime \prime}, q_{f}^{\prime \prime \prime \prime}\right)$, where

$$
\begin{aligned}
Q^{\prime \prime \prime \prime} & =\left\{S_{i}, S_{f}\right\} \\
\Sigma^{\prime \prime \prime \prime} & =\Sigma \\
q_{0}^{\prime \prime \prime \prime} & =S_{i} \\
q_{f}^{\prime \prime \prime \prime} & =S_{f}
\end{aligned}
$$

$$
\begin{array}{l|l}
\delta^{\prime \prime \prime \prime} & S_{f} \\
\hline S_{i} & \Lambda+(0+10)(10+(0+11) 0)^{*}(\Lambda+1) \\
\hline
\end{array}
$$

Question 4.

(a) The pumping lemma tells us that if L is a regular language then there is a number p, such that $(\forall s \in L)(|s| \geq p \Rightarrow s=x y z)$, where:

1. $(\forall i \geq 0) x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Outline the proof of the pumping lemma.
The explanation for lectures appears as the next box. The key points that I was looking for were really to say that if the language is regular then there is an FA which accepts it, to mention the pigeon-hole principle, and hence, for sufficiently long strings in the language they can be split and pumped as the PL requires.

We have three things to prove corresponding to conditions 1.2 and 3 in the pumping lemma. Let:

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a FA which accepts L,
- p be the number of states in M (i.e. $p=2^{Q}$)
- $s=s_{1} s_{2} \ldots s_{n-1} s_{n}$ be a string in L such that $n \geq p$
- $r_{1}=q_{0}$
- $r_{i+1}=\delta\left(r_{i}, s_{i}\right), 1 \leq i \leq n$

Then the sequence $r_{1} r_{2} \ldots r_{n} r_{n+1}$ is the sequence of states that the machine goes through to accept s. The last state r_{n+1} is an accepting state.
This sequence has length $n+1$, which is greater than p. The pigeonhole principle tells us that in the first $p+1$ items in $r_{1} r_{2} \ldots r_{n} r_{n+1}$ one state must occur twice.
We suppose it occurs second as r_{l} and first as r_{j}.
Notice: $l \neq j$, and $l \leq p+1$.
Now let:

- $x=s_{1} \ldots s_{j-1}$
- $y=s_{j} \ldots s_{l-1}$
- $z=s_{l} \ldots s_{n}$

So:

- x takes M from r_{1} to r_{j}
- y takes M from r_{j} to r_{j}
- z takes M from r_{j} to r_{n+1}

Hence M accepts $x y^{i} z, i \geq 0$. Thus we have shown that condition 1 of the pumping lemma holds.
Because $l \neq j$ we know that $|y| \neq 0$. Thus we have shown that condition 2 of the pumping lemma holds.
Because $l \leq p+1$ we know that $|x y| \leq p$. Thus we have shown that condition 3 of the pumping lemma holds.
Hence the pumping lemma holds.
(b) Give an example of a non-regular language, and explain why it is non-regular.
[8 marks]

Example: $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$
Proof: We begin the proof by assuming that this is a regular language, so there is some machine N which accepts it.
Hence, by the pumping lemma, there must be some integer k, such that the string $0^{k} 1^{k}$ can be pumped to give a string which is also accepted by N.
We let $x y z=0^{k} 1^{k}$, and show that xyyz is not in $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
There are three cases to consider:

1. y is a sequence of 0 s
2. y is a sequence of 0 s followed by a sequence of 1 s
3. y is a sequence of 1 s

In case 1 xyyz will have more 0 s than 1 s, and so $x y y z \notin L$.
In case 3 xyyz will have more 1 s than 0 s, and so $x y y z \notin L$.
In case $2 x y y z$ will have two occurrences of the substring 01 , and so $x y y z \notin L$.
So in each case the assumption that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is regular leads to a contradiction. So $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.
(c) Let $M_{3}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\} \\
\Sigma & =\{0,1\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{5}\right\}
\end{aligned}
$$

δ	0	1
S_{0}	S_{2}	S_{3}
S_{1}	S_{1}	S_{1}
S_{2}	S_{5}	S_{1}
S_{3}	S_{5}	S_{4}
S_{4}	S_{4}	S_{4}
S_{5}	S_{5}	S_{5}

(i) Draw M_{3}.

(ii) Find the smallest FA which accepts the same language as M_{3}. Show all your working.

Split the states of M_{3} into equivalence classes, depending on whether we can reach an accepting state using using strings of increasing length:

Λ	$\left\{S_{5}\right\}$	$\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}$		
0	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}, S_{1}, S_{4}\right\}$	
1	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}, S_{1}, S_{4}\right\}$	
00	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
10	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
01	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
11	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
000	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
010	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
001	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
011	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
100	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
110	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
101	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$
111	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{4}\right\}$

- If you test the strings in different orders (e.g. 11 before 00) there will be minor differences in the table.
- The picture should tell you that this full table need not be written out.
- $\left\{S_{1}, S_{4}\right\}$ contains no accepting state, and only has transitions into itself, and so can be omitted.

Let $M_{3}^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where

$$
\begin{aligned}
Q^{\prime} & =\left\{\left\{S_{5}\right\},\left\{S_{2}, S_{3}\right\},\left\{S_{0}\right\}\right\} \\
\Sigma^{\prime} & =\{0,1\} \\
q_{0}^{\prime} & =\left\{S_{0}\right\} \\
F^{\prime} & =\left\{\left\{S_{5}\right\}\right\}
\end{aligned}
$$

δ	0	1
$\left\{S_{0}\right\}$	$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{2}, S_{3}\right\}$
$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{5}\right\}$	
$\left\{S_{5}\right\}$	$\left\{S_{5}\right\}$	$\left\{S_{5}\right\}$

For what it is worth, the language accepted is Language $\left((\mathbf{1}+\mathbf{0}) \mathbf{0}(\mathbf{1}+\mathbf{0})^{*}\right)$.

