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Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: There are seven (7) questions, worth fourteen (14) marks each,
making ninety-eight (98) marks in total.
Answer all the questions.

You may use printed foreign language dictionaries.
You may not use calculators or electronic dictionaries.
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The answers are in boxes.

Question 1.

The following program takes as input two strings, s and t, which are assumed to be
the same length (i.e., |s| = |t|). Strings are indexed starting from 0. It is possible to
determine from the final value of i whether s and t are in fact the same string.

begin
i := |s| − 1;
while i ≥ 0 and s[i] = t[i] do

i := i− 1
od

end

(a) Give a specification (signature, precondition, and postcondition) for the problem
that this program satisfies. [4 marks]

(b) Explain how a loop invariant may be used in the verification of a while-program.
[5 marks]

(c) State a loop invariant that may be used to verify the above program. You do not
need to complete the proof. [5 marks]

Question 2.

M1 = (Q, Σ, δ, q0, F ), where:

• Q = {S0, S1, S2, S3}

• Σ = {a, b}

• q0 = S0

• F = {S3}
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and δ is given by the table:

δ a b
S0 {S1, S2} {}
S1 {S1} {S0, S3}
S2 {S2} {S0}
S3 {S3} {S1}

(a) Draw M1. [4 marks]

(b) Find an FA which accepts the same language as M1. [10 marks]
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We need to construct an FA M2 whose states are sets of states of M1. The alphabet
of M2 is just that of M1. The start state of M2 is the singleton set containing the start
state of M1. The transition function for M2 on some symbols σ takes us from a set of
states of M1 to the set of states of M1 reachable on σ. The set of states of M2 is the set
of states reachable on sequences of symbols from the start state of M2. The accepting
states of M2 are states of M2 containing an accepting state of M1.
M2 = (Q′, Σ′, δ′, q′

0, F
′), where:

• Q′ = {{S0}, {S1, S2}, {}, {S0, S3}, {S1, S2, S3}, {S1}, {S0, S1, S3}}

• Σ′ = Σ

• q′
0 = {S0}

• F ′ = {{S0, S3}, {S1, S2, S3}, {S0, S1, S3}}

and δ′ is given by the table:
δ′ a b
{S0} {S1, S2} {}
{S1, S2} {S1, S2} {S0, S3}
{} {} {}
{S0, S3} {S1, S2, S3} {S1}
{S1, S2, S3} {S1, S2, S3} {S0, S1, S3}
{S1} {S1} {S0, S3}
{S0, S1, S3} {S1, S2, S3} {S0, S1, S3}

The smallest FA (with a total transition function) which accepts the same language as
M1 is:
M3 = (Q′′, Σ′, δ′′, q′′

0 , F
′′), where:

• Q′′ = {T1, T2, T3, T4, T5}

• Σ′′ = Σ

• q′′
0 = {T1}

• F ′′ = {T4, T5}

and δ′′ is given by the table:
δ′ a b
T1 T2 T3

T2 T2 T4

T3 T3 T3

T4 T5 T2

T5 T5 T5

You were not expected to produce the smallest FA, of course.
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Question 3.

(a) Let r and s be regular expressions, and let Lr = Language(r) and Ls = Language(s).

Give regular expressions which describe the following languages:

1. Lr ∪ Ls r + s

2. L∗
r r∗

3. Lr ∩ Lr This is the empty language: ∅ [3 marks]

(b) Let: Σ = {a, b}
L1 = Language(a(a + b)∗)
L2 = Language((ba)∗)
L3 = Language(a∗ + b∗)

L1 is every string starting with an a i.e. {a, aa, ab, aaa, aab, aba, abb, . . .}.
L2 is sequences of bas i.e. {Λ,ba,baba,bababa,babababa, . . .}
L2 is sequences of bs and sequences of as i.e. {Λ, a,b, aa,bb, aaa,bbb, . . .}

Give a string which:

1. is in L1 but not in L2 or L3 ab

2. is in L2 but not in L1 or L3 ba

3. is in L3 but not in L1 or L2 bb [3 marks]

(c) State Kleene’s theorem. [4 marks]

Theorem 1 (Kleene)
A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is generated by a regular grammar.

(d) Either give an example of a finite language which is not regular or show that every
finite language is regular. [4 marks]
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Every finite language is regular. We prove this by induction on the size of the lan-
guage. A finite language is a finite set of words. The base case is that we must show
that the empty language is regular. The induction step allows us to assume that the
language with some word removed from it is a regular language, and asks us show
that the language is regular.
Recall that a language is regular iff it can be described by a regular expression
(Kleene). Base case: trivial the empty language is described by the regular expres-
sion ∅.
Induction step. Let L be a regular language, and w be a word (not occurring in L). As
L is regular there is a regular expression e such that L is Language(e). If we can find a
regular expression q such that {w} is Language(q), then L∪ {w} will be Language(e +
q). Hence L ∪ {w} will be regular. Hence the induction step will be proved. Hence
we will have shown every finite language is regular.
We show that every singleton language of one string can be described by a regular
expression by induction on the length of the string. The base case is where the string
is of length 0, and the induction step is that we show the property holds for strings of
length n + 1 if it holds for strings of length n.
Base case {Λ} is Language(Λ)
Induction step we show that if σ is a symbol from some alphabet Σ and if {τ} is
regular then so is {στ}. If {τ} is regular then there is a regular expression t such that
{τ} is Language(t). So {στ} is Language(σt). So the induction step is proved. So every
language of just one word is regular, and we have completed the proof that every
finite language is regular.
You were not expected to produce this proof in the exam. An informal argument that
if L is {w1, . . . , wn}, then it L is Language(w1 + . . . + wn) was sufficient.

Question 4.

Consider the context free grammar

(1, 2) S → aS | T
(3, 4, 5) T → aSbS | U | Λ
(6) U → b

(a) List the nullable nonterminals. [1 mark]

(b) List the unit productions. [1 mark]

(c) Find an equivalent grammar with no unit productions. [4 marks]

(d) Give two different leftmost derivations of the string aabb. [2 marks]

(e) Find an equivalent unambiguous grammar. [4 marks]

(f) Using your grammar from part (e), draw a parse tree for the string aabb. [2 marks]
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Question 5.

The following is a context-free grammar for a fragment of HTML: the markup lan-
guage used for web documents. Nonterminal symbols are written in Italics; terminal
symbols are enclosed in “quotation marks”.

(1, 2) Doc → Element Doc | Element
(3) Element → “<OL>” List “</OL>”
(4) Element → “<UL>” List “</UL>”

(5, 6, 7) Element → “a” | “b” | “c”
(8, 9) List → “<LI>” Element List | Λ

Thus, the nonterminals of the grammar are {Doc,Element ,List}, and the terminals
are {“<OL>”, “</OL>”, “<UL>”, “</UL>”, “<LI>”, “a”, “b”, “c”}.

(a) Explain what it means for a grammar to be in LL(1) form. [3 marks]

(b) Show that the above grammar is not in LL(1) form. [2 marks]

(c) Rewrite the grammar so that it is in LL(1) form. [4 marks]

(d) Complete the ParseList procedure whose heading appears below, for a recursive-
descent parser to recognize the List nonterminal. You may assume that procedures
ParseDoc and ParseElement for recognizing the other nonterminals are already writ-
ten. The parameter ss, providing the input for the parser, is a sequence of terminal
symbols. You do not need to return a parse tree.

procedure ParseList (in out ss)
begin
· · ·

end

[5 marks]
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Question 6.

(a) Define a pushdown automaton that accepts each of the following languages:

(i) The language described by the regular expression a∗b+ [2 marks]

(ii) The language of even-length palindromes, {wwR | w ∈ {a, b}∗} [2 marks]

(iii) The language consisting of strings over the alphabet {a, b} with the same number
of as and bs, but occurring in any order [3 marks]

(iv) The language {ambncm+n | m, n ≥ 1} [3 marks]

(b) Define a pushdown automaton that accepts the language generated by the follow-
ing grammar, using a bottom-up (shift-reduce) strategy.

S → TU | Λ
T → aS | Sb
U → aU | a

[4 marks]

Question 7.

(a) Let L1 and L2 be regular languages. State whether it is possible to write a program
which decides whether L1 and L2 are the same language. Justify your answer.

[4 marks]

Yes. If two languages are equal then the set of strings in one but not the other is
empty. In other words (L1 ∩ L2) ∪ (L2 ∩ L1) = ∅ If L1 and L2 are regular then so is
(L1 ∩ L2) ∪ (L2 ∩ L1). It is decidable whether a regular language is empty.

(b) Give an example of a language which is:

(i) context-free but not regular {anbn|n ≥ 0} [1 mark]

(ii) computable but not context-free {ww|w ∈ {a, b}∗} [2 marks]

(iii) computably enumerable but not computable

ATM = {(T, w)|w ∈ accept(T )} (see lecture notes) [3 marks]

(iv) not computably enumerable ATM (see lecture notes) [4 marks]

********************************
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