EXAMINATIONS - 2003
END-YEAR

COMP 202

Formal Methods of Computer Science

Time Allowed: 3 Hours
Instructions: There are seven (7) questions, worth fourteen (14) marks each, making ninety-eight (98) marks in total.
Answer all the questions.
You may use printed foreign language dictionaries.
You may not use calculators or electronic dictionaries.

The answers are in boxes.

Question 1.

The following program takes as input two strings, s and t, which are assumed to be the same length (i.e., $|s|=|t|$). Strings are indexed starting from 0 . It is possible to determine from the final value of i whether s and t are in fact the same string.

```
begin
    \(i:=|s|-1 ;\)
    while \(i \geq 0\) and \(s[i]=t[i]\) do
        \(i:=i-1\)
    od
end
```

(a) Give a specification (signature, precondition, and postcondition) for the problem that this program satisfies.
(b) Explain how a loop invariant may be used in the verification of a while-program.
[5 marks]
(c) State a loop invariant that may be used to verify the above program. You do not need to complete the proof.
[5 marks]

Question 2.

$M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- $Q=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$
- $\Sigma=\{a, b\}$
- $q_{0}=S_{0}$
- $F=\left\{S_{3}\right\}$
and δ is given by the table:

δ	a	b
S_{0}	$\left\{S_{1}, S_{2}\right\}$	$\}$
S_{1}	$\left\{S_{1}\right\}$	$\left\{S_{0}, S_{3}\right\}$
S_{2}	$\left\{S_{2}\right\}$	$\left\{S_{0}\right\}$
S_{3}	$\left\{S_{3}\right\}$	$\left\{S_{1}\right\}$

(a) Draw M_{1}.
(b) Find an FA which accepts the same language as M_{1}.

We need to construct an FA M_{2} whose states are sets of states of M_{1}. The alphabet of M_{2} is just that of M_{1}. The start state of M_{2} is the singleton set containing the start state of M_{1}. The transition function for M_{2} on some symbols σ takes us from a set of states of M_{1} to the set of states of M_{1} reachable on σ. The set of states of M_{2} is the set of states reachable on sequences of symbols from the start state of M_{2}. The accepting states of M_{2} are states of M_{2} containing an accepting state of M_{1}.
$M_{2}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where:

- $Q^{\prime}=\left\{\left\{S_{0}\right\},\left\{S_{1}, S_{2}\right\},\{ \},\left\{S_{0}, S_{3}\right\},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{S_{1}\right\},\left\{S_{0}, S_{1}, S_{3}\right\}\right\}$
- $\Sigma^{\prime}=\Sigma$
- $q_{0}^{\prime}=\left\{S_{0}\right\}$
- $F^{\prime}=\left\{\left\{S_{0}, S_{3}\right\},\left\{S_{1}, S_{2}, S_{3}\right\},\left\{S_{0}, S_{1}, S_{3}\right\}\right\}$
and δ^{\prime} is given by the table:

δ^{\prime}	a	b
$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{2}\right\}$	$\}$
$\left\{S_{1}, S_{2}\right\}$	$\left\{S_{1}, S_{2}\right\}$	$\left\{S_{0}, S_{3}\right\}$
$\}$	$\}$	$\}$
$\left\{S_{0}, S_{3}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}\right\}$
$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{0}, S_{1}, S_{3}\right\}$
$\left\{S_{1}\right\}$	$\left\{S_{1}\right\}$	$\left\{S_{0}, S_{3}\right\}$
$\left\{S_{0}, S_{1}, S_{3}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{0}, S_{1}, S_{3}\right\}$

The smallest FA (with a total transition function) which accepts the same language as M_{1} is:
$M_{3}=\left(Q^{\prime \prime}, \Sigma^{\prime}, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$, where:

- $Q^{\prime \prime}=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right\}$
- $\Sigma^{\prime \prime}=\Sigma$
- $q_{0}^{\prime \prime}=\left\{T_{1}\right\}$
- $F^{\prime \prime}=\left\{T_{4}, T_{5}\right\}$
and $\delta^{\prime \prime}$ is given by the table:

δ^{\prime}	a	b
T_{1}	T_{2}	T_{3}
T_{2}	T_{2}	T_{4}
T_{3}	T_{3}	T_{3}
T_{4}	T_{5}	T_{2}
T_{5}	T_{5}	T_{5}

You were not expected to produce the smallest FA, of course.

Question 3.

(a) Let \mathbf{r} and \mathbf{s} be regular expressions, and let $L_{\mathbf{r}}=$ Language(\mathbf{r}) and $L_{\mathbf{s}}=$ Language($\left.\mathbf{s}\right)$.

Give regular expressions which describe the following languages:

1. $L_{\mathrm{r}} \cup L_{\mathrm{s}} \quad \mathrm{r}+\mathrm{s}$
2. $L_{\mathrm{r}}^{*} \mathrm{r}^{*}$
3. $L_{\mathbf{r}} \cap \overline{L_{\mathbf{r}}}$ This is the empty language: \emptyset
(b) Let: $\Sigma=\{a, b\}$
$L_{1}=$ Language $\left(\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}\right)$
$L_{2}=$ Language $\left((\mathbf{b a})^{*}\right)$
$L_{3}=$ Language $\left(\mathbf{a}^{*}+\mathbf{b}^{*}\right)$
L_{1} is every string starting with an a i.e. $\{\mathbf{a}, \mathbf{a a}, \mathbf{a b}, \mathbf{a a a}, \mathbf{a a b}, \mathbf{a b a}, \mathbf{a b b}, \ldots\}$.
L_{2} is sequences of bas i.e. $\{\Lambda$, ba, baba, bababa, babababa, $\ldots\}$
L_{2} is sequences of $\mathbf{b s}$ and sequences of as i.e. $\{\Lambda, \mathbf{a}, \mathbf{b}, \mathbf{a}, \mathbf{b} \mathbf{b}, \mathbf{a} \mathbf{a a}, \mathbf{b} b \mathbf{b}, \ldots\}$
Give a string which:
4. is in L_{1} but not in L_{2} or $L_{3} \mathrm{ab}$
5. is in L_{2} but not in L_{1} or L_{3} ba
6. is in L_{3} but not in L_{1} or L_{2} bb
(c) State Kleene's theorem.

Theorem 1 (Kleene)

A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is generated by a regular grammar.
(d) Either give an example of a finite language which is not regular or show that every finite language is regular.

Every finite language is regular. We prove this by induction on the size of the language. A finite language is a finite set of words. The base case is that we must show that the empty language is regular. The induction step allows us to assume that the language with some word removed from it is a regular language, and asks us show that the language is regular.
Recall that a language is regular iff it can be described by a regular expression (Kleene). Base case: trivial the empty language is described by the regular expression \emptyset.
Induction step. Let L be a regular language, and w be a word (not occurring in L). As L is regular there is a regular expression e such that L is Language (\mathbf{e}). If we can find a regular expression \mathbf{q} such that $\{w\}$ is Language (\mathbf{q}), then $L \cup\{w\}$ will be Language $(\mathbf{e}+$ q). Hence $L \cup\{w\}$ will be regular. Hence the induction step will be proved. Hence we will have shown every finite language is regular.
We show that every singleton language of one string can be described by a regular expression by induction on the length of the string. The base case is where the string is of length 0 , and the induction step is that we show the property holds for strings of length $n+1$ if it holds for strings of length n.
Base case $\{\Lambda\}$ is Language (Λ)
Induction step we show that if σ is a symbol from some alphabet Σ and if $\{\tau\}$ is regular then so is $\{\sigma \tau\}$. If $\{\tau\}$ is regular then there is a regular expression \mathbf{t} such that $\{\tau\}$ is Language (\mathbf{t}). So $\{\sigma \tau\}$ is Language $(\sigma \mathbf{t})$. So the induction step is proved. So every language of just one word is regular, and we have completed the proof that every finite language is regular.
You were not expected to produce this proof in the exam. An informal argument that if L is $\left\{w_{1}, \ldots, w_{n}\right\}$, then it L is Language $\left(\mathbf{w}_{\mathbf{1}}+\ldots+\mathbf{w}_{\mathbf{n}}\right)$ was sufficient.

Question 4.

Consider the context free grammar

$$
\begin{array}{ll}
(1,2) & S \rightarrow a S \mid T \\
(3,4,5) & T \rightarrow a S b S|U| \Lambda \\
(6) & U \rightarrow b
\end{array}
$$

(a) List the nullable nonterminals.
(b) List the unit productions.
(c) Find an equivalent grammar with no unit productions.
(d) Give two different leftmost derivations of the string $a a b b$.
(e) Find an equivalent unambiguous grammar.
(f) Using your grammar from part (e), draw a parse tree for the string aabb. [2 marks]

Question 5.

The following is a context-free grammar for a fragment of HTML: the markup language used for web documents. Nonterminal symbols are written in Italics; terminal symbols are enclosed in "quotation marks".

$$
\begin{aligned}
(1,2) & \text { Doc } \rightarrow \text { Element Doc } \mid \text { Element } \\
(3) & \text { Element } \rightarrow "<\mathrm{OL}>" \text { List " }</ \mathrm{OL}>" \\
(4) & \text { Element } \rightarrow "<\mathrm{UL}>" \text { List " }</ \mathrm{UL}>" \\
(5,6,7) & \text { Element } \rightarrow " \mathrm{a} "|" \mathrm{~b} "| \text { " } \mathrm{c} " \\
(8,9) & \text { List } \rightarrow "<\mathrm{LI}>" \text { Element List } \mid \Lambda
\end{aligned}
$$

Thus, the nonterminals of the grammar are $\{$ Doc, Element, List $\}$, and the terminals are $\{$ " $<\mathrm{OL}>$ ", " $</ \mathrm{OL}>$ ", " $<\mathrm{UL}>$ ", " $</ \mathrm{UL}>$ ", " $<\mathrm{LI}>$ ", "a", "b", "c"\}.
(a) Explain what it means for a grammar to be in LL(1) form.
(b) Show that the above grammar is not in LL(1) form.
(c) Rewrite the grammar so that it is in LL(1) form.
(d) Complete the ParseList procedure whose heading appears below, for a recursivedescent parser to recognize the List nonterminal. You may assume that procedures ParseDoc and ParseElement for recognizing the other nonterminals are already written. The parameter $s s$, providing the input for the parser, is a sequence of terminal symbols. You do not need to return a parse tree.
procedure ParseList (in out $s s$)
begin
end

Question 6.

(a) Define a pushdown automaton that accepts each of the following languages:
(i) The language described by the regular expression $\mathbf{a}^{*} \mathbf{b}^{+}$
(ii) The language of even-length palindromes, $\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
(iii) The language consisting of strings over the alphabet $\{a, b\}$ with the same number of a s and $b \mathrm{~s}$, but occurring in any order
(iv) The language $\left\{a^{m} b^{n} c^{m+n} \mid m, n \geq 1\right\}$
(b) Define a pushdown automaton that accepts the language generated by the following grammar, using a bottom-up (shift-reduce) strategy.

$$
\begin{aligned}
& S \rightarrow T U \mid \Lambda \\
& T \rightarrow a S \mid S b \\
& U \rightarrow a U \mid a
\end{aligned}
$$

Question 7.

(a) Let L_{1} and L_{2} be regular languages. State whether it is possible to write a program which decides whether L_{1} and L_{2} are the same language. Justify your answer.
[4 marks]
Yes. If two languages are equal then the set of strings in one but not the other is empty. In other words $\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(L_{2} \cap \overline{L_{1}}\right)=\emptyset$ If L_{1} and L_{2} are regular then so is $\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(L_{2} \cap \overline{L_{1}}\right)$. It is decidable whether a regular language is empty.
(b) Give an example of a language which is:
(i) context-free but not regular $\left\{a^{n} b^{n} \mid n \geq 0\right\}$
(ii) computable but not context-free $\left\{w w \mid w \in\{a, b\}^{*}\right\}$
(iii) computably enumerable but not computable

$$
A_{\mathrm{TM}}=\{(T, w) \mid w \in \operatorname{accept}(T)\} \text { (see lecture notes) }
$$

(iv) not computably enumerable $\overline{A_{\mathrm{TM}}}$ (see lecture notes)

