VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS - 2004

TERM TEST

COMP 202

Formal Methods of Computer Science WITH ANSWERS

Time Allowed: 90 minutes

Instructions: There are four (4) questions. Each question is worth twenty-five (25) marks. Answer all the questions. Show all your working.

Question 1.

The following while-program takes as input an integer x and a sequence a[0..n] of integers. Subject to certain constraints on the inputs, it will return an integer i such that a[i] = x, if such an i exists, and i = -1 otherwise.

```
procedure Find (in x, a; out i);
      begin
\{I_1\}
        i := 0;
\{I_2\}
         while a[i] < x \operatorname{do}
\{I_3\}
            i := i + 1
\{I_4\}
        od;
\{I_5\}
        if a[i] = x then
\{I_6\}
            skip
         else
            i := -1
\{I_7\}
         fi
\{I_8\} end
```

The program may be proved correct using the loop invariant

$$I_2 \stackrel{\triangle}{=} (\forall j \in 0..i - 1)a[j] < x$$

(a) State what properties a and x must have in order that the program behaves as described. [3 marks]

a is non-descending; x is less than or equal to the value of the last element of a.

(b) Write a formal specification (signature, precondition, and postcondition) that this program satisfies. [6 marks]

Input: integer *x*, integer sequence *a* **Output:** integer *i* **Precondition:** $I_1 \triangleq (\forall i \in 0..n - 1)(a[i] \le a[i + 1]) \land x \le a[n]$ **Postcondition:** $I_8 \triangleq x = a[i] \lor (i = -1 \land (\forall j \in 0..n)a[j] \ne x)$

(c) State an assertion I_5 that may be used to verify the program. Hint: What property of *i* does the **if** statement assume? What does the loop guarantee about the values of a[j] for j < i? j > i? [4 marks]

 $I_5 \stackrel{\scriptscriptstyle \triangle}{=} x \le a[i] \land (\forall j \in 0..i - 1)a[j] < x$

(d) Show that the **if** statement is correct: that is, find assertions I_6 and I_7 such that I_6 implies I_8 and $I_7 \land i = -1$ implies I_8 . [6 marks]

 $I_6 \stackrel{\triangle}{=} I_5 \wedge a[i] = x$, which implies I_8 . $I_7 \stackrel{\triangle}{=} I_5 \wedge a[i] \neq x$, which implies $(\forall j \in 0..n)a[j] \neq x$ because a is in non-descending order. Together with i = -1, this implies I_8 . **loop invariant holds initially:** Assume i = 0; show I_2 . [[Proof: Trivial \forall]]

loop invariant maintained by body: Assume I_2 and a[i] < x; show I_2 with i + 1 in place of *i*. [[Proof: $(\forall j \in 0..i - 1)a[j] < x \land a[i] < x$ implies $(\forall j \in 0..i)a[j] < x$]]

postcondition holds on termination: assume I_2 and $a[i] \ge x$; show I_5 . [[Proof: immediate]]

Question 2.

(a) Let $\Sigma = \{a, b\}$. Give regular expressions which describe the following languages over Σ :

(i) All strings $(\mathbf{a} + \mathbf{b})^*$ or $(\mathbf{a}^*\mathbf{b}^*)^*$ amongst others

(ii) All strings of length less than 3 A + a + b + (a + b)(a + b) is one solution

(iii) All strings which contain either *bb* or $aa \left[(\mathbf{a} + \mathbf{b})^* (\mathbf{aa} + \mathbf{bb}) (\mathbf{a} + \mathbf{b})^* \right]$

[5 marks]

[6 marks]

(b) State Kleene's Theorem.

A language is regular *iff* it is accepted by a FA.

A language is regular *iff* it is accepted by an NFA.

A language is regular *iff* it is described by a regular expression.

A language is regular *iff* it is generated by a regular grammar.

(c) Let L_1 and L_2 be regular languages. Show that the following languages are also regular:

(i) L_1^*

If L_1 is regular then by Kleene's theorem there is a regular expression r such that $L_1 = Language(\mathbf{r})$. Then $L_1^* = Language(\mathbf{r}^*)$. So L_1^* is described by a regular expression, so, by Kleene's theorem L_1^* is regular. A similar argument involving machines would do.

(ii) L_1L_2

If L_1 and L_2 are regular then by Kleene's theorem there are regular expressions r and s such that $L_1 = \text{Language}(\mathbf{r})$ and $L_2 = \text{Language}(\mathbf{s})$. Then $L_1L_2 = \text{Language}(\mathbf{rs})$. So L_1L_2 is described by a regular expression, so, by Kleene's theorem L_1L_2 is regular. A similar argument involving machines would do.

(iii) $L_1 + L_2$

If L_1 and L_2 are regular then by Kleene's theorem there are regular expressions **r** and s such that $L_1 = \text{Language}(\mathbf{r})$ and $L_2 = \text{Language}(\mathbf{s})$. Then $L_1 + L_2 = \text{Language}(\mathbf{r} + \mathbf{s})$. So $L_1 + L_2$ is described by a regular expression, so, by Kleene's theorem $L_1 + L_2$ is regular. A similar argument involving machines would do.

[6 marks]

(d) Let M_1 and M_2 be NFA's which accept the languages L_1 and L_2 . Explain how to construct an FA which accepts the language consisting of strings which are in neither L_1 nor L_2 . [8 marks]

We are asked to construct a FA which accepts some language, given some NFA's. First, what is the language? Strings which are in neither L_1 nor L_2 are in the complement of the union of L_1 and L_2 , i.e. we are being asked to find an FA which accepts $\overline{L_1 + L_2}$.

Given the NFA's M_1 and M_2 we can construct NFA's with Λ transitions $M_{1'}$ and $M_{2'}$ which accept L_1 and L_2 respectively. The only change is a trivial one to the transition function.

Next we create a new NFA with Λ transitions M_3 which accepts $L_1 + L_2$. The machine M_3 is created from $M_{1'}$ and $M_{2'}$, by adding a new start state, with Λ transitions to the start states of $M_{1'}$ and $M_{2'}$. Accepting states of $M_{1'}$ and $M_{2'}$ become accepting states of M_3 .

Then we turn M_3 into an FA M_4 , probably by converting it to an intermediate NFA. We are careful to check that the transition function for M_4 is total. (It will be unless we deliberately remove the "black hole" state.) So M_4 is an FA which accepts $L_1 + L_2$. Now we construct M_5 from M_4 by making the accepting states of M_5 be the complement of the accepting states of M_4 . So M_5 an FA which accepts $\overline{L_1 + L_2}$

Question 3.

(a) A finite automaton (FA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$. Describe

- *Q*, A finite set of states.
- Σ , A finite alphabet of symbols.
- δ,

A function $Q \times Sigma \rightarrow Q$. The transition function. Describes how to move from state to state on reading a symbol.

- q_0 , and An element of Q, the start state.
- *F* A subset of *Q*, the accepting states.

[5 marks]

(b) Explain how an FA defines a language.

[3 marks]

The set of strings accepted by the FA is the language it defines. A string is accepted if it labels a path from the start state to an accepting state of the machine.

(c) A generalised non-deterministic finite automaton (GNFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, q_f)$. Describe

- *Q*, A finite set of states.
- Σ , A finite alphabet of symbols.

• δ , A function $Q - q_f \times Q - q_s \rightarrow \text{RegularExpression}$. The transition function. Describes how to move from state to state on reading a string.

- q_s , and An element of Q, the start state.
- q_f An element of Q, the accepting state.

[5 marks]

[3 marks]

(d) Explain how a GNFA defines a language.

The set of strings accepted by the GNFA is the language it defines. A string is accepted if it labels a path from the start state to the accepting state of the machine.

(e) Let M be a finite automaton. Explain how to find a regular expression which describes the language accepted by M. [9 marks]

Two steps:

1. convert M to a GNFA N which accepts the same language as M

2. reduce N to a two state GNFA which accepts the same language as N

1: Construct *N* from *M*. Add two new states q_s and q_f . Add transitions labelled Λ from q_s to the start state of *M* and from the accepting states of *M* to q_f . If there is any state in *M* with transitions to any state of *M* on more than one symbol replace this with a single transition labelled with the sum of the symbols. Now add sufficient transitions to ensure that there is a transition from every state in $Q - q_f$ to every state in $Q - q_s$. Label these new transitions with \emptyset .

2: Remove states from N until only two are left. Pick a state S_{rem} (not q_s or q_f) to remove. For every pair of states S_i and S_j in the reduced machine the transition between them will be labelled $\delta(S_i, S_j) + \delta(S_i, S_{\text{rem}}) \delta(S_{\text{rem}}, S_{\text{rem}})^* \delta(S_{\text{rem}}, S_j)$, where δ is the transition function of the machine being reduced.

When only two states remain the regular expression accepted by the original FA is $\delta(q_s, q_f)$

Question 4.

(a) Let M_3 be an NFA with Λ transitions $(Q, \Sigma, \delta, q_0, F)$, where:

$$Q = \{S_0, S_1, S_2, S_3\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = S_0$$

$$F = \{S_3\}$$

δ	a	b	Λ
S_0	$\{S_0, S_1\}$	$\{S_2\}$	$\{S_3\}$
S_1	$\{S_1, S_2\}$	{}	$\{S_1\}$
S_2	$\{S_3\}$	$\{S_1, S_2\}$	{}
S_3	$\{S_2\}$	$\{S_1\}$	$\{S_0\}$

(i) Draw M_3 .

[4 marks]

(ii) Find $M_4 = (Q', \Sigma', \delta', q'_0, F')$, an NFA which accepts the same language as M_3 . [8 marks]

Key points: M_4 has same states, alphabet, start state as M_3 . Accepting states of M_4 are those of M_3 plus S_0 , as there is a Λ transition from S_0 to S_3 (i.e. M_3 accepts Λ . Transiton function altered to replace paths which consist of a combination of Λ s and single symbol σ by arcs labelled only by σ .

			Q	=	$\{S_0, S_1, S_2, S_3\}$
			Σ	=	$\{a,b\}$
			q_0	=	S_0
			F	=	$\{S_0, S_3\}$
δ		h			
	$\frac{a}{\{S_0, S_1, S_2, S_3\}}$	0	_		
		$\{\mathcal{D}_1,\mathcal{D}_2\}$			
	$\{S_1, S_2\}$				
S_2	$\{S_0, S_3\}$	$\{S_1, S_2\}$			
S_3	$\{S_0, S_1, S_2\}$	$\{S_1, S_2\}$			

(b) Let M_5 be an NFA $(Q, \Sigma, \delta, q_0, F)$, where:

 $Q = \{S_0, S_1, S_2, S_3\}$ $\Sigma = \{a, b\}$ $q_0 = S_0$ $F = \{S_0\}$

continued...

$S_0 \mid \{S_1, S_2\} \mid \{\}$	
$S_1 \mid \{S_3\} \{S_0, S_2\}$	}
$S_2 \mid \{S_3\} \qquad \{\}$	
$S_3 \mid \{S_3\} \qquad \{S_0\}$	

(i) Draw M_5 .

[4 marks]

(ii) Find $M_6 = (Q', \Sigma', \delta', q'_0, F')$, an FA which accepts the same language as M_5 . [9 marks]

Key points: Alphabet remains the same. States of M_6 will be sets of states of M_5 . Start state of M_6 will be set containing just S_0 . Accepting states of M_6 will be states which contain an accepting states of M_5 . Construct the states of M_6 and its transition function in parallel by staring from $\{S_0\}$, and generating new states from $\delta(S_0, \sigma), \sigma \in$ Σ . Continue the process until no new states are generated.
