

Time Allowed: 90 minutes
$\begin{array}{ll}\text { Instructions: } & \text { There are four (4) questions. } \\ \text { Each question is worth twenty-five (25) marks. } \\ \text { Answer all the questions. } \\ \text { Show all your working. }\end{array}$

Question 1.

The following while-program takes as input an integer x and a sequence $a[0 . . n]$ of integers. Subject to certain constraints on the inputs, it will return an integer i such that $a[i]=x$, if such an i exists, and $i=-1$ otherwise.

```
procedure Find (in \(x, a\); out \(i\) );
    begin
\(\left\{I_{1}\right\} \quad i:=0\);
\(\left\{I_{2}\right\} \quad\) while \(a[i]<x\) do
\(\left\{I_{3}\right\} \quad i:=i+1\)
\{ \(\left.I_{4}\right\}\) od;
\(\left\{I_{5}\right\} \quad\) if \(a[i]=x\) then
\(\left\{I_{6}\right\} \quad\) skip
    else
\(\left\{I_{7}\right\} \quad i:=-1\)
    fi
\(\left\{I_{8}\right\}\) end
```

The program may be proved correct using the loop invariant

$$
I_{2} \triangleq(\forall j \in 0 . . i-1) a[j]<x
$$

(a) State what properties a and x must have in order that the program behaves as described.
a is non-descending; x is less than or equal to the value of the last element of a.
(b) Write a formal specification (signature, precondition, and postcondition) that this program satisfies.
[6 marks]
Input: integer x, integer sequence a
Output: integer i
Precondition: $I_{1} \triangleq(\forall i \in 0 . . n-1)(a[i] \leq a[i+1]) \wedge x \leq a[n]$
Postcondition: $I_{8} \triangleq x=a[i] \vee(i=-1 \wedge(\forall j \in 0 . . n) a[j] \neq x)$
(c) State an assertion I_{5} that may be used to verify the program. Hint: What property of i does the if statement assume? What does the loop guarantee about the values of $a[j]$ for $j<i$? $j>i$?
$I_{5} \triangleq x \leq a[i] \wedge(\forall j \in 0 . . i-1) a[j]<x$
(d) Show that the if statement is correct: that is, find assertions I_{6} and I_{7} such that I_{6} implies I_{8} and $I_{7} \wedge i=-1$ implies I_{8}.
[6 marks]
$I_{6} \triangleq I_{5} \wedge a[i]=x$, which implies I_{8}.
$I_{7} \triangleq I_{5} \wedge a[i] \neq x$, which implies $(\forall j \in 0 . . n) a[j] \neq x$ because a is in non-descending order. Together with $i=-1$, this implies I_{8}.
(e) State the three things that must be proved to verify the loop.
loop invariant holds initially: Assume $i=0$; show I_{2}.
[[Proof: Trivial \forall]]
loop invariant maintained by body: Assume I_{2} and $a[i]<x$; show I_{2} with $i+1$ in place of i.
[[Proof: $(\forall j \in 0 . . i-1) a[j]<x \wedge a[i]<x$ implies $(\forall j \in 0 . . i) a[j]<x]]$
postcondition holds on termination: assume I_{2} and $a[i] \geq x$; show I_{5}.
[[Proof: immediate]]

Question 2.

(a) Let $\Sigma=\{a, b\}$. Give regular expressions which describe the following languages over Σ :
(i) All strings $(\mathbf{a}+\mathbf{b})^{*}$ or $\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)^{*}$ amongst others
(ii) All strings of length less than $3 \triangle \Lambda+\mathbf{a}+\mathbf{b}+(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b})$ is one solution
(iii) All strings which contain either $b b$ or $a a(\mathbf{a}+\mathbf{b})^{*}(\mathbf{a a}+\mathbf{b b})(\mathbf{a}+\mathbf{b})^{*}$
(b) State Kleene's Theorem.

A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is described by a regular expression.
A language is regular iff it is generated by a regular grammar.
(c) Let L_{1} and L_{2} be regular languages. Show that the following languages are also regular:
(i) L_{1}^{*}

If L_{1} is regular then by Kleene's theorem there is a regular expression \mathbf{r} such that $L_{1}=$ Language (r). Then $L_{1}^{*}=$ Language $\left(\mathbf{r}^{*}\right)$. So L_{1}^{*} is described by a regular expression, so, by Kleene's theorem L_{1}^{*} is regular. A similar argument involving machines would do.
(ii) $L_{1} L_{2}$

If L_{1} and L_{2} are regular then by Kleene's theorem there are regular expressions \mathbf{r} and s such that $L_{1}=$ Language (\mathbf{r}) and $L_{2}=$ Language(s). Then $L_{1} L_{2}=$ Language(rs). So $L_{1} L_{2}$ is described by a regular expression, so, by Kleene's theorem $L_{1} L_{2}$ is regular. A similar argument involving machines would do.
(iii) $L_{1}+L_{2}$

If L_{1} and L_{2} are regular then by Kleene's theorem there are regular expressions \mathbf{r} and s such that $L_{1}=\operatorname{Language}(\mathbf{r})$ and $L_{2}=\operatorname{Language}(\mathbf{s})$. Then $L_{1}+L_{2}=\operatorname{Language}(\mathbf{r}+\mathbf{s})$. So $L_{1}+L_{2}$ is described by a regular expression, so, by Kleene's theorem $L_{1}+L_{2}$ is regular. A similar argument involving machines would do.
(d) Let M_{1} and M_{2} be NFA's which accept the languages L_{1} and L_{2}. Explain how to construct an FA which accepts the language consisting of strings which are in neither L_{1} nor L_{2}.

We are asked to construct a FA which accepts some language, given some NFA's. First, what is the language? Strings which are in neither L_{1} nor L_{2} are in the complement of the union of L_{1} and L_{2}, i.e. we are being asked to find an FA which accepts $\overline{L_{1}+L_{2}}$.
Given the NFA's M_{1} and M_{2} we can construct NFA's with Λ transitions $M_{1^{\prime}}$ and $M_{2^{\prime}}$ which accept L_{1} and L_{2} respectively. The only change is a trivial one to the transition function.
Next we create a new NFA with Λ transitions M_{3} which accepts $L_{1}+L_{2}$. The machine M_{3} is created from $M_{1^{\prime}}$ and $M_{2^{\prime}}$, by adding a new start state, with Λ transitions to the start states of $M_{1^{\prime}}$ and $M_{2^{\prime}}$. Accepting states of $M_{1^{\prime}}$ and $M_{2^{\prime}}$ become accepting states of M_{3}.
Then we turn M_{3} into an FA M_{4}, probably by converting it to an intermediate NFA. We are careful to check that the transition function for M_{4} is total. (It will be unless we deliberately remove the "black hole" state.) So M_{4} is an FA which accepts $L_{1}+L_{2}$. Now we construct M_{5} from M_{4} by making the accepting states of M_{5} be the complement of the accepting states of M_{4}. So M_{5} an FA which accepts $\overline{L_{1}+L_{2}}$

Question 3.

(a) A finite automaton (FA) is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$. Describe

- Q, A finite set of states.
- Σ, A finite alphabet of symbols.
- δ,

A function $Q \times$ Sigma $\rightarrow Q$. The transition function. Describes how to move from state to state on reading a symbol.

- q_{0}, and An element of Q, the start state.
- F A subset of Q, the accepting states.

(b) Explain how an FA defines a language.	[5 marks]
[3 marks]	

The set of strings accepted by the FA is the language it defines. A string is accepted if it labels a path from the start state to an accepting state of the machine.
(c) A generalised non-deterministic finite automaton (GNFA) is a 5-tuple ($Q, \Sigma, \delta, q_{s}, q_{f}$). Describe

- Q, A finite set of states.
- Σ, A finite alphabet of symbols.
- δ, A function $Q-q_{f} \times Q-q_{s} \rightarrow$ RegularExpression. The transition function. Describes how to move from state to state on reading a string.
- q_{s}, and An element of Q, the start state.
- q_{f} An element of Q, the accepting state.
(d) Explain how a GNFA defines a language.

The set of strings accepted by the GNFA is the language it defines. A string is accepted if it labels a path from the start state to the accepting state of the machine.
(e) Let M be a finite automaton. Explain how to find a regular expression which describes the language accepted by M.
[9 marks]

Two steps:

1. convert M to a GNFA N which accpets the same language as M
2. reduce N to a two state GNFA which accpets the same language as N
3. Construct N from M. Add two new states q_{s} and q_{f}. Add transitions labelled Λ from q_{s} to the start state of M and from the accepting states of M to q_{f}. If there is any state in M with transitions to any state of M on more than one symbol replace this with a single transition labelled with the sum of the symbols. Now add sufficient transitions to ensure that there is a transition from every state in $Q-q_{f}$ to every state in $Q-q_{s}$. Label these new transitions with \emptyset.
4. Remove states from N until only two are left. Pick a state $S_{\text {rem }}$ (not q_{s} or q_{f}) to remove. For every pair of states S_{i} and S_{j} in the reduced machine the transition between them will be labelled $\delta\left(S_{i}, S_{j}\right)+\delta\left(S_{i}, S_{\mathrm{rem}}\right) \delta\left(S_{\mathrm{rem}}, S_{\mathrm{rem}}\right)^{*} \delta\left(S_{\mathrm{rem}}, S_{j}\right)$, where δ is the transition function of the machine being reduced.
When only two states remain the regular expression accepted by the original FA is $\delta\left(q_{s}, q_{f}\right)$

Question 4.

(a) Let M_{3} be an NFA with Λ transitions $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{a, b\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{3}\right\}
\end{aligned}
$$

δ	a	b	Λ
S_{0}	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}\right\}$	$\left\{S_{3}\right\}$
S_{1}	$\left\{S_{1}, S_{2}\right\}$	$\}$	$\left\{S_{1}\right\}$
S_{2}	$\left\{S_{3}\right\}$	$\left\{S_{1}, S_{2}\right\}$	$\}$
S_{3}	$\left\{S_{2}\right\}$	$\left\{S_{1}\right\}$	$\left\{S_{0}\right\}$

(i) Draw M_{3}.
(ii) Find $M_{4}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, an NFA which accepts the same language as M_{3}.

Key points: M_{4} has same states, alphabet, start state as M_{3}. Accepting states of M_{4} are those of M_{3} plus S_{0}, as there is a Λ transition from S_{0} to S_{3} (i.e. M_{3} accepts Λ. Transiton function altered to replace paths which consist of a combination of $\Lambda \mathrm{s}$ and single symbol σ by arcs labelled only by σ.

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{a, b\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{0}, S_{3}\right\}
\end{aligned}
$$

δ	a	b
S_{0}	$\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}, S_{2}\right\}$
S_{1}	$\left\{S_{1}, S_{2}\right\}$	$\}$
S_{2}	$\left\{S_{0}, S_{3}\right\}$	$\left\{S_{1}, S_{2}\right\}$
S_{3}	$\left\{S_{0}, S_{1}, S_{2}\right\}$	$\left\{S_{1}, S_{2}\right\}$

(b) Let M_{5} be an NFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{a, b\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{0}\right\}
\end{aligned}
$$

δ	a	b
S_{0}	$\left\{S_{1}, S_{2}\right\}$	$\}$
S_{1}	$\left\{S_{3}\right\}$	$\left\{S_{0}, S_{2}\right\}$
S_{2}	$\left\{S_{3}\right\}$	$\}$
S_{3}	$\left\{S_{3}\right\}$	$\left\{S_{0}\right\}$

(i) Draw M_{5}.
(ii) Find $M_{6}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, an FA which accepts the same language as M_{5}.

Key points: Alphabet remains the same. States of M_{6} will be sets of states of M_{5}. Start state of M_{6} will be set containing just S_{0}. Accepting states of M_{6} will be states which contain an accepting states of M_{5}. Construct the states of M_{6} and its transition function in parallel by staring from $\left\{S_{0}\right\}$, and generating new states from $\delta\left(S_{0}, \sigma\right), \sigma \in$ Σ. Continue the process until no new states are generated.

	$\begin{aligned} Q^{\prime} & =\{\{ \\ \Sigma^{\prime} & =\{a \\ q_{0}^{\prime} & =\{ \\ F^{\prime} & =\{\{ \end{aligned}$	$\begin{aligned} & \left.S_{0}\right\},\left\{S_{1}, S_{2}\right\},\{ \\ & b\} \\ & b\} \\ & \left.\left.S_{0}\right\},\left\{S_{0}, S_{2}\right\}\right\} \end{aligned}$
	a	b
$\left\{S_{0}\right\}$	$\left\{S_{1}, S_{2}\right\}$	\{\}
$\left\{S_{1}, S_{2}\right\}$	$\left\{S_{3}\right\}$	$\left\{S_{0}, S_{2}\right\}$
\{\}	\{\}	\{\}
$\left\{S_{3}\right\}$	$\left\{S_{3}\right\}$	$\left\{S_{0}\right\}$
$\left\{S_{0}, S_{2}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	\{\}
$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{3}\right\}$	$\left\{S_{0}, S_{2}\right\}$

The language involved is Language $\left(\left(\mathbf{a a}^{*} \mathbf{b}\right)^{*}\right)$.
The minimal FA (with a total transition function) which accepts this language is:

$$
\begin{aligned}
Q^{\prime \prime} & =\left\{T_{0}, T_{1}, T_{2}\right\} \\
\Sigma^{\prime \prime} & =\{a, b\} \\
q_{0}^{\prime \prime} & =T_{0} \\
F^{\prime \prime} & =\left\{T_{0}\right\}
\end{aligned}
$$

δ	a	b
T_{0}	T_{1}	T_{2}
T_{1}	T_{1}	T_{0}
T_{2}	T_{2}	T_{2}

