```
COMP 202 Formal Methods of Computer Science WITH ANSWERS
```

Time Allowed: 90 minutes
Instructions: There are five (5) questions.
Each question is worth twenty (20) marks.
Answer all the questions.
Show all your working.

Question 1.

The following while-program takes as input an integer n and a sequence $a[0 . . n-1]$ of integers. It will return an integer m that is the value of the minimum element in the sequence.

```
procedure Min (in n,a; out m);
    begin
{I } i i:=0;
{I } j j:=0;
{I2} while i<n do
{I_} if }a[j]<a[i] the
{I4} j:=i
{I5} else
{I6} skip;
{I7} i:= i+1;
{I8} m:=a[j]
{I9} end
```

The following loop invariant may be used to prove the program correct:

$$
I_{2} \triangleq n>0 \wedge 0 \leq i \leq n \quad \wedge \quad((\forall k \in 0 . . i-1) a[j] \leq a[k])
$$

(a) Write a formal specification (signature, precondition, and postcondition) that this program satisfies.
[4 marks]
Input: integer n, integer sequence a
Output: integer m
Precondition: $I_{0} \triangleq n>0$
Postcondition: $I_{9} \triangleq((\forall k \in 0 . . n-1) m \leq a[k]) \wedge((\exists k \in 0 . . n-1) m=a[k])$
(b) Here are proof laws for assignment (:=) and sequence (;):

$$
\{Q[e / x]\} x:=e\{Q\} \quad \frac{\{P\} S_{1}\{Q\}\{Q\} S_{2}\{R\}}{\{P\} S_{1} ; S_{2}\{R\}}
$$

i. State what needs to be proved to show that I_{2} holds upon entry to the loop.

$$
\left\{I_{0}\right\} i:=0 ; j:=0\left\{I_{2}\right\}
$$

ii. Use the laws given above to show that I_{2} holds upon entry to the loop.
$I_{1} \triangleq n>0 \wedge i=0$.
By the assignment law, $\left\{I_{0}\right\} i:=0\left\{I_{1}\right\}$, since $I_{1}[0 / i]$ is equivalent to I_{0}.
By the assignment law, $\left\{I_{1}\right\} j:=0\left\{I_{2}\right\}$, since $I_{2}[0 / j]$ is equivalent to I_{1}. Thus, by the sequence law, $\left\{I_{0}\right\} i:=0 ; j:=0\left\{I_{2}\right\}$.
(c) Assume that the loop invariant is correctly maintained by the loop body, so that I_{2} still holds after the last iteration of the loop.
i. State an assertion I_{8} that may be used to verify the program.

Hint: What property of j is required to show $\left\{I_{8}\right\} m:=a[j]\left\{I_{9}\right\}$?
$I_{8} \triangleq((\forall k \in 0 . . n-1) a[j] \leq a[k]) \wedge((\exists k \in 0 . . n-1) a[j]=a[k])$
ii. Hence, show that the program is correct.

The loop invariant holds before the loop by (b) above.
The loop invariant is maintained by the body by assumption.
Hence, upon exit from the loop, $I_{2} \wedge i \geq n$ holds. But this implies $i=n$ and hence I_{8}.

Question 2.

Let L_{1} be the language defined by the FA $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where $Q=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}, \quad \Sigma=\{a, b\}, \quad q_{0}=S_{0}, \quad F=\left\{S_{3}\right\}, \quad$ and

δ	a	b
S_{0}	S_{1}	S_{0}
S_{1}	S_{2}	S_{3}
S_{2}	S_{3}	S_{1}
S_{3}	S_{4}	S_{4}
S_{4}	S_{4}	S_{4}

(a) Draw M_{1}.

(b) For each of the following strings, state if it is accepted or rejected by M_{1}. (Remember: showing your working may gain you partial credit for incorrect answers.)
i. $b a a b b$
ii. babaa
iii. $a a b b a$
iv. aababaa
v. aaaa
[10 marks]
i. accept: the sequence of transitions is $S_{0}, b, S_{0}, a, S_{1}, a, S_{2}, b, S_{1}, b, S_{3}$ and $S_{3} \in F$.
ii. reject: $S_{0}, b, S_{0}, a, S_{1}, b, S_{3}, a, S_{4}, a, S_{4}$ and $S_{4} \notin F$.
iii. reject: $S_{0}, a, S_{1}, a, S_{2}, b, S_{1}, b, S_{3}, a, S_{4}$ and $S_{4} \notin F$.
iv. accept: $S_{0}, a, S_{1}, a, S_{2}, b, S_{1}, b, a, S_{2}, b, S_{1}, a, S_{2}, a, S_{3}$ and $S_{3} \in F$.
v. reject: $S_{0}, a, S_{1}, a, S_{2}, a, S_{3}, a, S_{4}$ and $S_{4} \notin F$.
(c) Describe the language L_{1}.

$$
L_{1}=\text { Language }\left(\mathbf{b}^{*} \mathbf{a}(\mathbf{a b})^{*}(\mathbf{b}+\mathbf{a a})\right) .
$$

Question 3.

Let L_{2} be the language defined by the NFA $M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
$Q=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}, \quad \Sigma=\{a, b\}, \quad q_{0}=S_{0}, \quad F=\left\{S_{1}, S_{3}\right\}, \quad$ and

δ	a	b
S_{0}	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}\right\}$
S_{1}	$\}$	$\left\{S_{3}\right\}$
S_{2}	$\left\{S_{1}, S_{3}\right\}$	$\}$
S_{3}	$\left\{S_{2}\right\}$	$\left\{S_{1}\right\}$

(a) State Kleene's Theorem.

A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is described by a regular expression.
A language is regular iff it is generated by a regular grammar.
(b) Draw M_{2}.

(c) Find an FA which accepts L_{2}.
[10 marks]

Let $M_{2}^{\prime}=(Q$ $\begin{aligned} & Q^{\prime} \\ & \Sigma^{\prime} \\ & q_{0}^{\prime} \\ & F^{\prime} \end{aligned}$	$\begin{aligned} & \left.\Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right) \\ = & \left\{\left\{S_{0}\right\},\left\{S_{0}\right.\right. \\ = & \Sigma \\ = & \left\{S_{0}\right\} \\ = & \left\{S_{0}, S_{1}\right\},\{ \end{aligned}$	where $\left.S_{1}\right\},\left\{S_{2}\right\}$ $\left.S_{2}, S_{3}\right\},\left\{S_{1}\right.$
δ^{\prime}	a	b
$\left\{S_{0}\right\}$	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}\right\}$
$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}, S_{3}\right\}$
$\left\{S_{2}\right\}$	$\left\{S_{1}, S_{3}\right\}$	\{\}
$\left\{S_{2}, S_{3}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}\right\}$
		\{\}
$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}, S_{2}, S_{3}\right\}$	$\left\{S_{1}, S_{3}\right\}$
$\left\{S_{1}\right\}$	\{\}	$\left\{S_{3}\right\}$
$\left\{S_{1}, S_{3}\right\}$	$\left\{S_{2}\right\}$	$\left\{S_{1}, S_{3}\right\}$
$\left\{S_{3}\right\}$	$\left\{S_{2}\right\}$	$\left\{S_{1}\right\}$

Note: $\}$ may be omitted.

Question 4.

(a) Outline the method for constructing a NFA from a NFA with Λ transitions, such that both machines accept the same language.

See Lecture notes.
Main points:

- same states
- same alphabet
- same initial state
- same non- Λ transitions
- for every transition $B \xrightarrow{x} C$, add transitions $A \xrightarrow{x} D$ if B is reachable from A on Λ-transitions alone, and D is reachable from C on Λ-transitions alone. (That is, if D is reachanble from A by a sequence of Λ-transitions, followed by an x-transition, followed by another sequence of Λ-transitions.)
- same final states, with the addition that the initial state is final if there is a path to any final state on Λ-transitions alone.
(b) Given an alphabet $\Sigma=\{a, b\}$, draw NFA with Λ transitions which accept the following languages:

iii. Language $\left((\mathbf{a}+\mathbf{b})^{*}\left(\mathbf{b}^{*} \mathbf{a}^{*}\right)^{*}\right)$

iv. Language $\left((\mathbf{b}+\mathbf{a}) \mathbf{b}(\mathbf{b}+\mathbf{a})^{*}\right)$

[12 marks]

Question 5.

(a) Let L_{3} and L_{4} be regular languages. Show:
i. $L_{3} \cup L_{4}$ is regular.

By Kleene's theorem, there exist regular expressions \mathbf{r}_{3} and \mathbf{r}_{4} for L_{3} and L_{4}.
Let $\mathbf{r}=\mathbf{r}_{\mathbf{3}}+\mathbf{r}_{\mathbf{4}}$.
This regular expression describes the language $L_{3} \cup L_{4}$, and so by Kleene's theorem the language is regular.
ii. $\overline{L_{3}}$ is regular.

By Kleene's theorem, there exists a total finite automaton M_{3} that accepts L_{3}. Let M_{3}^{\prime} be a FA whose states Q, alphabet Σ, and transition function δ are the same as M_{3} 's, but whose final states are given by $F^{\prime}=Q-F$. Now M_{3}^{\prime} accepts $\overline{L_{3}}$, and so by Kleene's theorem the language is regular.
iii. $\left(L_{3} L_{4}\right)^{*}$ is regular.
[6 marks]
By Kleene's theorem, there exist regular expressions \mathbf{r}_{3} and \mathbf{r}_{4} for L_{3} and L_{4}.
Let $\mathbf{r}=\left(\mathbf{r}_{3} \mathbf{r}_{4}\right)^{*}$.
This regular expression describes the language $\left(L_{3} L_{4}\right)^{*}$, and so by Kleene's theorem the language is regular.
(b) The pumping lemma tells us that if L is a regular language then there is a number p, such that $(\forall s \in L)(|s| \geq p \Rightarrow s=x y z)$, where:

1. $(\forall i \geq 0) x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Outline the proof of the pumping lemma.

The explanation for lectures appears as the next box. The key points that I was looking for were really to say that if the language is regular then there is an FA which accepts it, to mention the pigeon-hole principle, and hence, for sufficiently long strings in the language they can be split and pumped as the PL requires.

We have three things to prove corresponding to conditions 1,2 and 3 in the pumping lemma. Let:

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a FA which accepts L,
- p be the number of states in M (i.e. $p=2^{Q}$)
- $s=s_{1} s_{2} \ldots s_{n-1} s_{n}$ be a string in L such that $n \geq p$
- $r_{1}=q_{0}$
- $r_{i+1}=\delta\left(r_{i}, s_{i}\right), 1 \leq i \leq n$

Then the sequence $r_{1} r_{2} \ldots r_{n} r_{n+1}$ is the sequence of states that the machine goes through to accept s. The last state r_{n+1} is an accepting state.
This sequence has length $n+1$, which is greater than p. The pigeonhole principle tells us that in the first $p+1$ items in $r_{1} r_{2} \ldots r_{n} r_{n+1}$ one state must occur twice.
We suppose it occurs second as r_{l} and first as r_{j}.
Notice: $l \neq j$, and $l \leq p+1$.
Now let:

- $x=s_{1} \ldots s_{j-1}$
- $y=s_{j} \ldots s_{l-1}$
- $z=s_{l} \ldots s_{n}$

So:

- x takes M from r_{1} to r_{j}
- y takes M from r_{j} to r_{j}
- z takes M from r_{j} to r_{n+1}

Hence M accepts $x y^{i} z, i \geq 0$. Thus we have shown that condition 1 of the pumping lemma holds.
Because $l \neq j$ we know that $|y| \neq 0$. Thus we have shown that condition 2 of the pumping lemma holds.
Because $l \leq p+1$ we know that $|x y| \leq p$. Thus we have shown that condition 3 of the pumping lemma holds.
Hence the pumping lemma holds.
(c) Give an example of a non-regular language, and explain why it is non-regular.
[7 marks]

Example: $\left\{b^{n} a^{n} \mid n \geq 0\right\}$
Proof: We begin the proof by assuming that this is a regular language, so there is some machine N which accepts it.
Hence, by the pumping lemma, there must be some integer k, such that the string $a^{k} b^{k}$ can be pumped to give a string which is also accepted by N.
We let $x y z=a^{k} b^{k}$, and show that $x y y z$ is not in $\left\{a^{n} b^{n} \mid n \geq 0\right\}$
There are three cases to consider:

1. y is a sequence of a s
2. y is a sequence of a s followed by a sequence of $b s$
3. y is a sequence of $b s$

In case 1 xyyz will have more a s than b s, and so $x y y z \notin L$.
In case 3 xyyz will have more b s than a s, and so $x y y z \notin L$.
In case $2 x y y z$ will have two occurrences of the substring $a b$, and so $x y y z \notin L$.
So in each case the assumption that $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular leads to a contradiction. So $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.

