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WITH ANSWERS

Time Allowed: 90 minutes

Instructions: There are five (5) questions.
Each question is worth twenty (20) marks.
Answer all the questions.
Show all your working.
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Question 1.

The following while-program takes as input an integer n and a sequence a[0..n− 1] of inte-
gers. It will return an integer m that is the value of the minimum element in the sequence.

procedure Min (in n, a; out m);
begin

{I0} i := 0;
{I1} j := 0;
{I2} while i < n do
{I3} if a[j] < a[i] then
{I4} j := i
{I5} else
{I6} skip;
{I7} i := i + 1;
{I8} m := a[j]
{I9} end

The following loop invariant may be used to prove the program correct:

I2
4= n > 0 ∧ 0 ≤ i ≤ n ∧ ((∀k ∈ 0..i− 1)a[j] ≤ a[k])

(a) Write a formal specification (signature, precondition, and postcondition) that this pro-
gram satisfies. [4 marks]

Input: integer n, integer sequence a
Output: integer m
Precondition: I0

4= n > 0
Postcondition: I9

4= ((∀k ∈ 0..n− 1)m ≤ a[k]) ∧ ((∃k ∈ 0..n− 1)m = a[k])

(b) Here are proof laws for assignment (:=) and sequence (;):

{Q[e/x]}x := e{Q} {P}S1{Q} {Q}S2{R}
{P}S1; S2{R}

i. State what needs to be proved to show that I2 holds upon entry to the loop.
{I0}i := 0; j := 0{I2}

ii. Use the laws given above to show that I2 holds upon entry to the loop. [7 marks]

I1
4= n > 0∧ i = 0.

By the assignment law, {I0}i := 0{I1}, since I1[0/i] is equivalent to I0.
By the assignment law, {I1}j := 0{I2}, since I2[0/j] is equivalent to I1.
Thus, by the sequence law, {I0}i := 0; j := 0{I2}.

(c) Assume that the loop invariant is correctly maintained by the loop body, so that I2 still
holds after the last iteration of the loop.
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i. State an assertion I8 that may be used to verify the program.
Hint: What property of j is required to show {I8}m := a[j]{I9}?

I8
4= ((∀k ∈ 0..n− 1)a[j] ≤ a[k]) ∧ ((∃k ∈ 0..n− 1)a[j] = a[k])

ii. Hence, show that the program is correct. [9 marks]

The loop invariant holds before the loop by (b) above.
The loop invariant is maintained by the body by assumption.
Hence, upon exit from the loop, I2 ∧ i ≥ n holds. But this implies i = n and hence I8.
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Question 2.

Let L1 be the language defined by the FA M1 = (Q, Σ, δ, q0, F), where
Q = {S0, S1, S2, S3, S4}, Σ = {a, b}, q0 = S0, F = {S3}, and

δ a b
S0 S1 S0
S1 S2 S3
S2 S3 S1
S3 S4 S4
S4 S4 S4

(a) Draw M1. [4 marks]
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(b) For each of the following strings, state if it is accepted or rejected by M1. (Remember:
showing your working may gain you partial credit for incorrect answers.)

i. baabb

ii. babaa

iii. aabba

iv. aababaa

v. aaaa [10 marks]

i. accept: the sequence of transitions is S0, b, S0, a, S1, a, S2, b, S1, b, S3 and S3 ∈ F.

ii. reject: S0, b, S0, a, S1, b, S3, a, S4, a, S4 and S4 /∈ F.

iii. reject: S0, a, S1, a, S2, b, S1, b, S3, a, S4 and S4 /∈ F.

iv. accept: S0, a, S1, a, S2, b, S1, b, a, S2, b, S1, a, S2, a, S3 and S3 ∈ F.

v. reject: S0, a, S1, a, S2, a, S3, a, S4 and S4 /∈ F.

(c) Describe the language L1. [6 marks]
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L1 = Language(b∗a(ab)∗(b + aa)).

Question 3.

Let L2 be the language defined by the NFA M2 = (Q, Σ, δ, q0, F), where
Q = {S0, S1, S2, S3}, Σ = {a, b}, q0 = S0, F = {S1, S3}, and
δ a b
S0 {S0, S1} {S2}
S1 {} {S3}
S2 {S1, S3} {}
S3 {S2} {S1}

(a) State Kleene’s Theorem. [6 marks]

A language is regular iff it is accepted by a FA.
A language is regular iff it is accepted by an NFA.
A language is regular iff it is described by a regular expression.
A language is regular iff it is generated by a regular grammar.

(b) Draw M2. [4 marks]
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(c) Find an FA which accepts L2. [10 marks]
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Let M′
2 = (Q′, Σ′, δ′, q′0, F′), where

Q′ = {{S0}, {S0, S1}, {S2}, {S2, S3}, {}, {S1, S2, S3}, {S1}, {S1, S3}, {S3}}
Σ′ = Σ
q′0 = {S0}
F′ = {S0, S1}, {S2, S3}, {S1, S2, S3}, {S1}, {S1, S3}, {S3}}

δ′ a b
{S0} {S0, S1} {S2}
{S0, S1} {S0, S1} {S2, S3}
{S2} {S1, S3} {}
{S2, S3} {S1, S2, S3} {S1}
{} {} {}
{S1, S2, S3} {S1, S2, S3} {S1, S3}
{S1} {} {S3}
{S1, S3} {S2} {S1, S3}
{S3} {S2} {S1}

Note: {} may be omitted.
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Question 4.

(a) Outline the method for constructing a NFA from a NFA with Λ transitions, such that
both machines accept the same language. [8 marks]

See Lecture notes.
Main points:

• same states

• same alphabet

• same initial state

• same non-Λ transitions

• for every transition B x→ C, add transitions A x→ D if B is reachable from A on
Λ-transitions alone, and D is reachable from C on Λ-transitions alone. (That is, if
D is reachanble from A by a sequence of Λ-transitions, followed by an x-transition,
followed by another sequence of Λ-transitions.)

• same final states, with the addition that the initial state is final if there is a path to any
final state on Λ-transitions alone.

(b) Given an alphabet Σ = {a, b}, draw NFA with Λ transitions which accept the following
languages:
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iv. Language((b + a)b(b + a)∗)
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Question 5.

(a) Let L3 and L4 be regular languages. Show:

i. L3 ∪ L4 is regular.
By Kleene’s theorem, there exist regular expressions r3 and r4 for L3 and L4.
Let r = r3 + r4.
This regular expression describes the language L3 ∪ L4, and so by Kleene’s theorem the
language is regular.

ii. L3 is regular.
By Kleene’s theorem, there exists a total finite automaton M3 that accepts L3. Let M′

3 be a
FA whose states Q, alphabet Σ, and transition function δ are the same as M3’s, but whose
final states are given by F′ = Q − F. Now M′

3 accepts L3, and so by Kleene’s theorem the
language is regular.

iii. (L3L4)∗ is regular. [6 marks]

By Kleene’s theorem, there exist regular expressions r3 and r4 for L3 and L4.
Let r = (r3r4)∗.
This regular expression describes the language (L3L4)∗, and so by Kleene’s theorem the
language is regular.

(b) The pumping lemma tells us that if L is a regular language then there is a number p,
such that (∀s ∈ L)(|s| ≥ p ⇒ s = xyz), where:

1. (∀i ≥ 0)xyiz ∈ L

2. |y| > 0

3. |xy| ≤ p

Outline the proof of the pumping lemma. [7 marks]
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The explanation for lectures appears as the next box. The key points that I was looking for
were really to say that if the language is regular then there is an FA which accepts it, to
mention the pigeon-hole principle, and hence, for sufficiently long strings in the language
they can be split and pumped as the PL requires.

We have three things to prove corresponding to conditions 1, 2 and 3 in the pumping
lemma. Let:

• M = (Q, Σ, δ, q0, F) be a FA which accepts L,

• p be the number of states in M (i.e. p = 2Q)

• s = s1s2 . . . sn−1sn be a string in L such that n ≥ p

• r1 = q0

• ri+1 = δ(ri, si), 1 ≤ i ≤ n

Then the sequence r1r2 . . . rnrn+1 is the sequence of states that the machine goes through to
accept s. The last state rn+1 is an accepting state.
This sequence has length n + 1, which is greater than p. The pigeonhole principle tells us that
in the first p + 1 items in r1r2 . . . rnrn+1 one state must occur twice.
We suppose it occurs second as rl and first as rj.
Notice: l 6= j, and l ≤ p + 1.
Now let:

• x = s1 . . . sj−1

• y = sj . . . sl−1

• z = sl . . . sn

So:

• x takes M from r1 to rj

• y takes M from rj to rj

• z takes M from rj to rn+1

Hence M accepts xyiz, i ≥ 0. Thus we have shown that condition 1 of the pumping lemma
holds.
Because l 6= j we know that |y| 6= 0. Thus we have shown that condition 2 of the pumping
lemma holds.
Because l ≤ p + 1 we know that |xy| ≤ p. Thus we have shown that condition 3 of the
pumping lemma holds.
Hence the pumping lemma holds.

(c) Give an example of a non-regular language, and explain why it is non-regular.
[7 marks]
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Example: {bnan|n ≥ 0}
Proof: We begin the proof by assuming that this is a regular language, so there is some
machine N which accepts it.
Hence, by the pumping lemma, there must be some integer k, such that the string akbk can
be pumped to give a string which is also accepted by N.
We let xyz = akbk, and show that xyyz is not in {anbn|n ≥ 0}
There are three cases to consider:

1. y is a sequence of as

2. y is a sequence of as followed by a sequence of bs

3. y is a sequence of bs

In case 1 xyyz will have more as than bs, and so xyyz 6∈ L.
In case 3 xyyz will have more bs than as, and so xyyz 6∈ L.
In case 2 xyyz will have two occurrences of the substring ab, and so xyyz 6∈ L.
So in each case the assumption that {anbn|n ≥ 0} is regular leads to a contradiction.
So {anbn|n ≥ 0} is not regular.

********************************
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