EXAMINATIONS — 2007
 END-YEAR

COMP 202 Formal Methods of Computer Science

Time Allowed: 3 Hours
Instructions: There are nine (9) questions, worth varying numbers of marks.
There are one hundred and eighty (180) marks in total.
Answer all the questions.
You may use printed foreign language dictionaries.
You may not use calculators or electronic dictionaries.

L_{0}, a context-free language

The following describes a context-free language L_{0}, which is a small fragment of English. Use it in answering questions 1-3.

You may wish to tear this page from the front of the paper.
The sentences of L_{0} are defined by a context free grammar G_{0}.

The terminal symbols of G_{0} are English words, identified by single lower-case letters, possibly with subscripts:

terminal	word
a	a
t	ten
c_{1}	cat
c_{2}	cats
r_{1}	rat
r_{2}	rats
e_{1}	eats
e_{2}	eat

The nonterminal symbols of G_{0} are single capital letters, possibly with subscripts. The nonterminals stand for parts of English sentences, as follows:

nonterminal	sentence part
S	sentence
P_{n}	noun phrase
P_{v}	verb phrase
N	noun
N_{1}	singular noun
N_{2}	plural noun
V	verb
D	determiner

The productions of G_{0}, labelled $P_{1} . . P_{15}$, are as follows:

$$
\begin{array}{llll}
S & \rightarrow P_{n} P_{v} & \left(P_{1}, P_{2}\right) \\
P_{n} & \rightarrow D N & \left(P_{3}\right) \\
P_{v} & \rightarrow V \mid V P_{n} & \left(P_{4}, P_{5}\right) \\
N & \rightarrow N_{1} \mid N_{2} & \left(P_{6}, P_{7}\right) \\
N_{1} & \rightarrow c_{1} \mid r_{1} & \left(P_{8}, P_{9}\right) \\
N_{2} & \rightarrow c_{2} \mid r_{2} & \left(P_{10}, P_{11}\right) \\
V & \rightarrow e_{1} \mid e_{2} & \left(P_{12}, P_{13}\right) \\
D & \rightarrow a \mid t & \left(P_{14}, P_{15}\right)
\end{array}
$$

Question 1. 26 marks

Refer to the definition of L_{0} on page 2 of the paper in answering this question.
(a) State Σ, N, S, and P for G_{0}. Use the labels $P_{1} . . P_{15}$ as names for the productions. [6 marks]
(b) Using G_{0}, give a derivation for each of the following sentences:
(i) a cat eats a rat
(ii) ten cats eat
(iii) a rat eats ten cats
(iv) ten cats eats a rats (*)
[12 marks]
(c) The sentence marked $\left({ }^{*}\right)$ above is not valid English: English requires agreement in number (singular / plural) between determiners, nouns, and verbs.
(i) Define the term "covering grammar".
(ii) Briefly describe two techniques that may be used to define a recogniser for the fragment of English that uses the vocabulary of G_{0} but that correctly observes number agreement.

Question 2. 26 marks

(a) State the two requirements for a context-free grammar to be LL(1).
(b) Using G_{0}, as defined on page 2 of this paper, compute the following.
(i) $\operatorname{first}\left(N_{1}\right)$
(ii) first $\left(N_{2}\right)$
(iii) $\operatorname{first}(N)$
(iv) first (V)
(v) $\operatorname{first}\left(P_{v}\right)$
(c) Show that G_{0} is not LL(1).

Question 3. 24 marks

Refer to the definition of L_{0} on page 2 of the paper in answering this question.
Let G_{1} be the grammar obtained from G_{0} by adding a new nonterminal P_{0} (object phrase), removing productions P_{4} and P_{5}, and adding the following productions:

$$
\begin{array}{lll}
P_{v} \rightarrow V P_{o} & \left(P_{16}\right) \\
P_{o} \rightarrow \Lambda \mid P_{n} & \left(P_{17}, P_{18}\right)
\end{array}
$$

(a) Using G_{1}, compute:
(i) $\operatorname{first}\left(P_{o}\right)$
(ii) follow $\left(P_{o}\right)$
(b) Show that G_{1} is $\operatorname{LL}(1)$.
(c) The following are two procedures of a recursive descent parser for L_{0}. The global variable ss initially holds the sequence of terminal symbols that is to be parsed.

```
procedure \(N\)
    if empty(ss) then
            error
    else if head \((s s)=c_{1}\) or head \((s s)=r_{1}\) then
            \(N_{1}\)
    else
        \(N_{2}\)
```

 procedure \(N_{1}\)
 if empty(ss) then
 error
 else if head \((s s)=c_{1}\) then
 ss \(:=\operatorname{tail}(s s)\)
 else if head \((s s)=r_{1}\) then
 \(s s:=\operatorname{tail}(s s)\)
 else
 error
 Using the definitions of N and N_{1} as a model, define procedures for:
(i) V
(ii) P_{o}
(iii) S

Question 4. 16 marks

(a) Regular expressions over an alphabet Σ may be defined inductively as follows:

- \varnothing and $\boldsymbol{\Lambda}$ are regular expressions
- for every $x \in \Sigma, \mathbf{x}$ is a regular expression
- if \mathbf{r} and \mathbf{s} are regular expressions, so are $\mathbf{r}^{*}, \mathbf{r s}$, and $\mathbf{r}+\mathbf{s}$.

Let \mathbf{r}_{2} be a regular expression describing some language L_{2}. Describe how to construct the transition diagram for a nondeterministic finite automaton with Λ transitions (NFA Λ) that accepts L_{2}.
(b) Let L_{3} be the language accepted by F_{3}, a deterministic finite automaton (FA) defined by

$$
F_{3}=\left(\Sigma, Q, q_{0}, F, \delta\right) .
$$

Give a formal proof that there is a nondeterministic finite automaton (NFA)

$$
N_{3}=\left(\Sigma^{\prime}, Q^{\prime}, q_{0}^{\prime}, F^{\prime}, \delta^{\prime}\right)
$$

which accepts L_{3}.

Question 5. 16 marks

(a) Let L_{4} be the language accepted by M_{4}, a nondeterministic finite automaton with Λ transitions (NFA Λ) defined by $M_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- $Q=\left\{S_{0}, S_{1}, S_{2}\right\}$
- $\Sigma=\{a, b\}$
- $q_{0}=S_{0}$
- $F=\left\{S_{2}\right\}$
and δ is given by the table:

δ	a	b	Λ
S_{0}	$\left\{S_{0}\right\}$	$\}$	$\left\{S_{1}\right\}$
S_{1}	$\}$	$\left\{S_{1}\right\}$	$\left\{S_{2}\right\}$
S_{2}	$\left\{S_{2}\right\}$	$\}$	$\left\{S_{2}\right\}$

(i) Draw M_{4}.
(ii) Find a determinstic finite automaton (FA) which accepts the same language as M_{4}.
[10 marks]
(b) Let: $\Sigma=\{a, b\}$
$L_{5}=$ Language $\left(\mathbf{a}(\mathbf{a}+\mathbf{b})^{*}\right)$
$L_{6}=$ Language $\left((\mathbf{b a})^{*}\right)$
$L_{7}=$ Language $\left(\mathbf{a}^{*}+\mathbf{b}^{*}\right)$
Give a string which:
(i) is in L_{5} but not in L_{6} or L_{7}
(ii) is in L_{6} but not in L_{5} or L_{7}
(iii) is in L_{7} but not in L_{5} or L_{6}

Question 6. 24 marks

(a) State Kleene's Theorem.
[6 marks]
(b) Explain how to construct a recursive scanner that recognizes the language accepted by a given regular grammar.
(c) Explain how to construct a regular expression that describes the language accepted by a given regular grammar.
[6 marks]
(d) Describe a language that is not regular, and explain informally why it cannot be regular.

Question 7. 20 marks

(a) Define a pushdown automaton that accepts each of the following languages:
(i) The language $\left\{a^{n} b^{m} c^{m+n} \mid m, n>0\right\}$.
(ii) The language consisting of strings over the alphabet $\{a, b\}$ with the same number of a and $b s$, but occurring in any order.
(b) Consider the CFG $G=(N, \Sigma, S, P)$ with productions:

$$
\begin{aligned}
& S \rightarrow S T c \mid T \\
& T \rightarrow a T \mid U \\
& U \rightarrow a S \mid \Lambda
\end{aligned}
$$

(i) Define a pushdown automaton that accepts the language generated by G, using a top-down (expand-match) strategy.
(ii) Define a pushdown automaton that accepts the language generated by G, using a bottom-up (shift-reduce) strategy.
[12 marks]

Question 8. 16 marks

(a) A Turing machine may be defined by a 6-tuple ($\left.Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$.

Explain each of the following:
(i) Σ
(ii) Γ
(iii) δ
(b) Let T be a Turing machine with input alphabet Σ.
(i) Define $\operatorname{accept}(T)$.
(ii) Define $\operatorname{reject}(T)$.
(iii) Define $\operatorname{loop}(T)$.
(iv) Define "computably enumerable language".

Question 9. 12 marks

The following is (part of) a definition of a semantic function \mathcal{V} for evaluating Boolean expressions:

$$
\begin{aligned}
& \mathcal{V}(p \text { and } q)= \begin{cases}\mathcal{V}(q), & \text { if } \mathcal{V}(p)=1 \\
0, & \text { otherwise }\end{cases} \\
& \mathcal{V}(\text { not } p)= \begin{cases}1, & \text { if } \mathcal{V}(p)=0 \\
0, & \text { otherwise }\end{cases} \\
& \mathcal{V}(\text { true })=1 \\
& \mathcal{V}(\text { false })=0
\end{aligned}
$$

Extend the definition to handle Boolean variables, v, whose values are determined by a store.

